方法点拨整式
- 格式:docx
- 大小:10.98 KB
- 文档页数:1
第一讲 幂的运算本讲知识要点:同底数的幂相乘、幂的乘方、积得乘方、零指数、负指数。
一、典例精讲考点1、 判断整式例1、指出下列各代数式中哪些是单项式,哪些是多项式,哪些是整式?2,,,2a 3,5,4y y ab x y b a m π---+,3-π,88n m +,-9。
方法点拨:一个数字或一个字母也是单项式,(数字与字母的乘积)。
整式分单项式和多项式。
代数式分整式和分式(分式是分母是字母)。
考点2 、 同底数的幂相乘例2、计算:(1)-a ·(-a )3·(-a )2 ·(-a 4); (2)()()()5223...a a a a ---;(3 (a -b )·(b -a )2·(b -a )3·(a -b ) 4思考:8 m+2×2m ×16=64,求m 的值。
考点3 、幂的乘方、积得乘方例3、计算:(1)()()()[]23328..p p p --- (2)()()()()22323223.2.23y x y x y x -+-+-(3)2010200931273⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛-变式练习1:(1) ()()()5223...a a a a ---; (2)()()()()4242222220.53.4b a b a ab b ab +--+---;(3)1)25.0(42324--⨯ (4)(3)2010200931273⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛-思考1:(1)、若352=+y x ,求yx 32.4的值. (2)2333333++⋅⋅-n n n考点4、乘法分配律的逆用例4、计算(-2)2007+(-2)2008的结果是▲ 考点5、比较大小▲ 例5、比较大小:3334445555,4,3。
方法点拨:底数和指数都不一样,把指数化成相同,比较底数.变式议练1 比较大小:(1)100753,4; (2)223344556,5,3,2考点6、幂的有关公式逆运算(常考B 卷题)例6、(1)已知4,32==n n b a ,求()nb a 242的值。
一元二次方程的重难点及题型【重难点1 一元二次方程的概念】【方法点拨】解决此类问题掌握一元二次方程的定义是关键;等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。
【思路点拨】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【题型】①ax2+x+2=0,当a=0时,该方程属于一元一次方程,故错误;②3(x﹣9)2﹣(x+1)2=1、④(a2+a+1)x2﹣a=0符合一元二次方程的定义,故正确;③x+3=1/x属于分式方程,故错误;⑤√x+1=x﹣1属于无理方程,故错误;故选:B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2。
【重难点2 一元二次方程的解】【方法点拨】一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解,解决此类问题,通常是将方程的根或解反代回去再进行求解.【思路点拨】把x=0代入方程(m﹣3)x²+3x+m²﹣9=0中,解关于m的一元二次方程,注意m的取值不能使原方程对二次项系数为0【题型】把x=0代入方程(m﹣3)x²+3x+m²﹣9=0中,得m²﹣9=0,解得m=﹣3或3,当m=3时,原方程二次项系数m﹣3=0,舍去,故选:B【点睛】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念【重难点3 用指定方法解一元二次方程】【方法点拨】解决此类问题需熟练掌握直接开方法、配方法、公式法、因式分解法的步骤【思路点拨】(1)方程变形后,利用平方根的定义开方即可求出解;(2)方程常数项移到右边,两边加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方即可求出解;(3)方程整理为一般形式,找出a,b,c的值,当根的判别式大于等于0时,代入求根公式即可求出解;(4)方程左边提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【点睛】此题考查了解一元二次方程﹣因式分解法,配方法,公式法,以及直接开平方法,熟练掌握各自解法是解本题的关键.【重难点4 一元二次方程根的判别式】【方法点拨】解决此类问题需熟练掌握根的判别式:当①b²-4ac>0时,方程有两个不相等的实数根;②b²-4ac=0时,方程有两个相等的实数根;③b²-4ac<0时,方程无实数根,反之亦成立.【思路点拨】(1)根据一元二次方程根的判别式列出不等式,结合一元二次方程的定义可得a的范围;(2)将a的值代入得出方程,解之可得.【题型】(1)由题意知△≥0,即4(a﹣1)²﹣4(a﹣2)(a+1)≥0,解得:a≤3,∴a≤3且a≠2;(2)由题意知a=3,则方程为x2﹣4x+4=0,解得:x1=x2=2.【点睛】本题考查的是根的判别式,熟知一元二次方程ax²+bx+c=0(a≠0)的根与△=b²﹣4ac的关系是解答此题的关键.【重难点5 一元二次方程根与系数的关系】【方法点拨】解决此类问题需熟练掌根与系数的关系,熟记两根之和与两根之积,并且能够灵活运用所学知识对代数式进行变形得到两根之和与两根之积的形式,代入即可求值.【思路点拨】(1)将所求的代数式进行变形处理:x₁²+x₂²=(x₁+x₂)²﹣2x₁x₂。
整式的除法(基础)【学习目标】1. 会进行单项式除以单项式的计算.2. 会进行多项式除以单项式的计算. 【要点梳理】要点一、单项式除以单项式法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只有被除式里含有的字母,则连同它的指数作为商的一个因式.要点诠释:(1)法则包括三个方面:①系数相除;②同底数幂相除;③只在被除式里出现的字母,连同它的指数作为商的一个因式.(2)单项式除法的实质即有理数的除法(系数部分)和同底数幂的除法的组合,单项式除以单项式的结果仍为单项式.要点二、多项式除以单项式法则多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加.即()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点诠释:(1)由法则可知,多项式除以单项式转化为单项式除以单项式来解决,其实质是将它分解成多个单项式除以单项式.(2)利用法则计算时,多项式的各项要包括它前面的符号,要注意符号的变化. 【典型例题】类型一、单项式除以单项式1、计算:(1)342222(4)(2)x y x y ÷; (2)2137323m n m m n xy z x y x y z +⎛⎫÷÷- ⎪⎝⎭;(3)22[()()]()()x y x y x y x y +-÷+÷-; (4)2[12()()][4()()]a b b c a b b c ++÷++.【思路点拨】(1)先乘方,再进行除法计算.(2)、(3)三个单项式连除按顺序计算.(3)、(4)中多项式因式当做一个整体参与计算. 【答案与解析】解:(1)342222684424(4)(2)1644x y x y x y x y x y ÷=÷=. (2)2137323m n m m n xy z x y x y z +⎛⎫÷÷- ⎪⎝⎭21373211()()()3m m m n n x x x y y y z z +⎡⎤⎛⎫=÷÷-÷÷÷÷÷ ⎪⎢⎥⎝⎭⎣⎦21432n xy z -=-.(3)22[()()]()()x y x y x y x y +-÷+÷-222()()()()x y x y x y x y =+-÷+÷- 2()()x y x y x y =-÷-=-.(4)2[12()()][4()()]a b b c a b b c ++÷++2(124)[()()][()()]a b a b b c b c =÷+÷++÷+3()33a b a b =+=+.【总结升华】(1)单项式的除法的顺序为:①系数相除;②相同字母相除;③被除式中单独有的字母,连同它的指数作为商的一个因式.(2)注意书写规范:系数不能用带分数表示,必须写成假分数. 举一反三: 【变式】计算:(1)3153a b ab ÷; (2)532253x y z x y -÷;(3)2221126a b c ab ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (4)63(1010)(210)⨯÷⨯. 【答案】解:(1)33202153(153)()()55a b ab a a b b a b a ÷=÷÷÷==. (2)532252323553(53)()()3x y z x y x x y y z x yz -÷=-÷÷÷=-. (3)22222201111()()332626a b c ab a a b b c ab c ac ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-÷-÷÷== ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. (4)63633(1010)(210)(102)(1010)510⨯÷⨯=÷÷=⨯.2、(泾阳县校级月考)金星是太阳系九大行星中距离地球最近的行星,也是人在地球上看到的天空中最漂亮的一颗星.金星离地球的距离为4.2×107千米,从金星射出的光到达地球需要多少时间?(光速为3.0×105千米/秒)【答案与解析】 解:t=秒,答:从金星射出的光到达地球需要1.4×102秒.【总结升华】本题考查了同底数幂的除法法则,关键是利用时间=路程÷速度这一公式,此题比较简单,易于掌握. 类型二、多项式除以单项式3、计算(1)254311222x x x x ⎛⎫⎛⎫++÷ ⎪ ⎪⎝⎭⎝⎭ ;(2)()()32271833x x x x -+÷-.【思路点拨】直接利用多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加计算.【答案与解析】解:(1)254311222x x x x ⎛⎫⎛⎫++÷ ⎪ ⎪⎝⎭⎝⎭54325242323211224111124424482x x x x x x x x x x x x x⎛⎫=++÷ ⎪⎝⎭=÷+÷+÷=++(2)()()32271833x x x x -+÷-()()()32227318333961x x x x x x x x =÷--÷-+÷-=-+-【总结升华】本题考查多项式除以单项式的运算,熟练掌握运算法则是解题的关键,要注意符号的处理.4、计算:(1)324(67)x y x y xy -÷; (2)42(342)(2)x x x x -+-÷-; (3)22222(1284)(4)x y xy y y -+÷-; (4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭. 【答案与解析】解:(1)32432423(67)(6)(7)67x y x y xy x y xy x y xy x y x -÷=÷+-÷=-. (2)42(342)(2)x x x x -+-÷-42[(3)(2)][4(2)][(2)(2)]x x x x x x =-÷-+÷-+-÷-33212x x =-+. (3)22222(1284)(4)x y xy y y -+÷-222222212(4)(8)(4)4(4)x y y xy y y y =÷-+-÷-+÷-2321x x =-+-(4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭22322432110.3(0.5)(0.5)(0.5)36a b a b a b a b a b a b ⎛⎫⎛⎫=÷-+-÷-+-÷- ⎪ ⎪⎝⎭⎝⎭22321533ab a b =-++.【总结升华】(1)多项式除以单项式是转化为单项式除以单项式来解决的.(2)利用法则计算时,不能漏项.特别是多项式中与除式相同的项,相除结果为1.(3)运算时要注意符号的变化. 举一反三:【高清课堂399108 整式的除法 例5】 【变式1】计算:(1)23233421(3)2(3)92xy x x xy y x y ⎡⎤--÷⎢⎥⎣⎦; (2)2[(2)(2)4()]6x y x y x y x +-+-÷. 【答案】解: (1)原式223239421922792x yx x x y y x y ⎛⎫=-÷ ⎪⎝⎭52510428(927)93x y x y x y x xy =-÷=-. (2)原式2222[44(2)]6x y x xy y x =-+-+÷2222(4484)6x y x xy y x =-+-+÷ 2(58)6x xy x =-÷5463x y =-. 【变式2】(滕州市校级月考)计算:[(3a+b )2﹣b 2]÷3a. 解:[(3a+b )2﹣b 2]÷3a,=(9a 2+6ab+b 2﹣b 2)÷3a,=(9a 2+6ab )÷3a, =3a+2b 【巩固练习】一.选择题1. 下列计算结果正确的是( )A .2334222x y xy x y -⋅=- B .222352x y xy x y -=-C .4232874x y x y xy ÷= D .()()2323294a a a ---=-2. 423287a b a b ÷的结果是 ( ) A.24abB.44a bC. 224a bD. 4ab3.(下城区二模)下列运算正确的是( ) A .(a 3﹣a )÷a=a 2 B .(a 3)2=a 5 C .a 3+a 2=a 5 D .a 3÷a 3=14. 如果□×3ab =23a b ,则□内应填的代数式是( )A.abB.3abC.aD.3a5.下列计算正确的是( ). A.()13n n x y z +-÷()13n n x y z +- =0B.()()221510532x y xy xy x y -÷-=- C.x xy xy y x 216)63(2=÷- D.231123931)3(x x x x xn n n +=÷+-++ 6. 太阳的质量约为2.1×2710t ,地球的质量约为6×2110t ,则太阳的质量约是地球质量的( )A.3.5×610倍 B.2.9×510倍 C.3.5×510倍 D.2.9×610-倍 二.填空题7. 计算:()()22963a b ab ab -÷=_______. 8. 2xy •(______)=26x yz -. 9. 计算()()34432322396332x y x y x y x y x y xy -+÷=-+-.10.直接写出结果:(1)()()35aa -÷-=_______;(2)()24a a -÷-=_______;(3)1042x x x ÷÷=_______; (4)10n ÷210n -=_______;(5)()3mm aa ÷=_______;(6)()()21nn y x x y --÷-=_______.11.(成都校级月考)(﹣a 6b 7)÷= .12.学校图书馆藏书约3.6×410册,学校现有师生约1.8×310人,每个教师或学生假期平均最多可以借阅______册图书. 三.解答题13.(陇西县期末)(1)计算:()2÷(﹣)2(2)计算:(x 2y ﹣xy 2﹣y 3)(﹣4xy 2).14. 先化简,再求值:()()()23242622532a a a a a ⎡⎤⋅-÷÷-⎢⎥⎣⎦,其中a =-5. 15.天文学上常用太阳和地球的平均距离 1.4960×810千米作为一个天文单位,已知月亮和地球的平均距离约为384401千米,合多少天文单位?(用小数表示,精确到0.0001)【答案与解析】 一.选择题1. 【答案】C ;【解析】A 、2334224x y xy x y -⋅=-,所以A 选项错误;B 、两个整式不是同类项,不能合并,所以B 选项错误;D 、()()2323294a a a ---=-+,所以,D 选项错误.2. 【答案】D ;3. 【答案】D ;【解析】解:A 、(a 3﹣a )÷a=a 2﹣1,错误;B 、(a 3)2=a 6,错误;C 、a 3与a 2表示同类项,不能合并,错误;D 、a 3÷a 3=1,正确; 故选D .4. 【答案】C ;5. 【答案】D ; 【解析】()13n n xy z +-÷()13n n xy z +- =1;()()221510532x y xy xy x y-÷-=-+;21(36)612x y xy xy x -÷=-. 6. 【答案】C ;【解析】(2.1×2710)÷(6×2110)=0.35×610=3.5×510. 二.填空题7. 【答案】32a b -; 8. 【答案】3xz -;【解析】26x yz -÷2xy =3xz -. 9. 【答案】23xy -;10. 【答案】(1)2a ;(2)-2a ;(3)4x ;(4)100;(5) 2ma ;(6) ()1n x y +- ;【解析】(6)()()()()21211nn n n n y x x y x y x y --++-÷-=-=-.11.【答案】﹣3a 2b 5; 【解析】解:(﹣a 6b 7)÷=,故答案为:﹣3a 2b 5. 12.【答案】20册;【解析】3.6×410÷(1.8×310)=20. 三.解答题 13.【解析】 解:(1)()2÷(﹣)2=×=;(2)(x 2y ﹣xy 2﹣y 3)(﹣4xy 2)=﹣3x 3y 3+2x 2y 4+xy 5.14. 【解析】解:原式=()61264594a a a a -÷÷ =6444a a -÷ =2a -当a =-5时,原式=-25. 15.【解析】解:由题意得:384401÷1.4960×810≈0.0026(个天文单位) 答:月亮和地球的平均距离约为0.0026个天文单位.。
数学初中阶段学习重难点与方法点拨1、数与运算【学习重难点①】知识板块的条理性:我们教材上的课程设置通常是由易到难,由浅入深。
我们的数与运算同样是按照这样的思想,在不断扩充数的范围:六年级第一学期学整数和分数六年级下学期扩展到有理数进入到七年级第一学期进一步拓展到实数;跟数的内容安排一样,我们所学习的式子也是从整式(分母中没有未知数,根号下无字母)然后分式(分母中有未知数,根号下无字母)最后学习二次根式。
学生在学习过程中没有梳理、总结知识的意识,往往都是单一的学习某一块的内容,随着时间推移,接触内容多了之后,对之前学过的内容就会产生混乱。
【方法点拨】a.掌握基本定义这部分内容在考察的时候往往不太难,通常是基本的定义和简单运算。
所以把概念理解清楚是至关重要的,只有做到这些内容才能做到基础题不丢分。
b.把不同知识点对比讲解可以把不同的知识点对比着理解,这样可以让学生更加清楚各知识点的差异,能够更深刻地理解每个知识点。
c.形成知识体系做好复习工作,不光是对本学期所学内容进行复习,或者说到中考前才对整个初中阶段的内容进行复习;而是应该在适当的时机对相关内容进行复习。
比如在数与运算这块内容,我们可以在八年级上学期学完二次根式后,对数与运算相关的内容进行一个完整的梳理,这样的话有利于学生形成一个完整的知识体系,不至于学到后面,前面忘光。
【例题解析】【题目】同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离。
试探索:(1)求|5-(-2)|=______。
(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是_____。
(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值如果没有说明理由。
(8分)【答案】【解析】(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要x的整数值可以进行分段计算,令x+5=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.本题是一道去绝对值和数轴相联系的综合试题,考查了取绝对值的方法,取绝对值在数轴上的运用.难度较大.去绝对的关键是确定绝对值里面的数的正负性.解:(1)原式=|5+2|=7 答案为7(2)令x+5=0或x-2=0时,则x=-5或x=2当x<-5时,∴-(x+5)-(x-2)=7,-x-5-x+2=7,x=5(范围内不成立)当-5<x<2时,∴(x+5)-(x-2)=7,x+5-x+2=7,7=7,∴x=-4,-3,-2,-1,0,1当x >2时,∴(x+5)+(x-2)=7, x+5+x-2=7, 2x=4, x=2, x=2(范围内不成立)∴综上所述,符合条件的整数x 有:-5,-4,-3,-2,-1,0,1,2 (3)由(2)的探索猜想,对于任何有理数x ,|x-3|+|x-6|有最小值为3【推荐课程】六年级秋季课程/六年级寒假课程/六年级春季课程/七年级暑假课程/七年级秋季课程/七年级寒假课程/八年级暑假课程/八年级秋季课程/八年级寒假课程2、方程与不等式 【学习重难点①】 列方程解应用题:许多学生总觉得应用题难。
专题1.3 整式乘法与因式分解章末重难点题型【苏科版】【考点1 单项式乘单项式】【方法点拨】单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中只含有的字母,则连同它的指数作为积的一个因式.【例1】(2019秋•金牛区校级期中)下列各式中,计算正确的是()A.(﹣5a n+1b)•(﹣2a)=10a n+1bB.(﹣4a2b)•(﹣a2b2)•cC.(﹣3xy)•(﹣x2z)•6xy2=3x3y3zD.【分析】单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.【答案】解:A、(﹣5a n+1b)•(﹣2a)=10a n+2b,此选项错误;B、(﹣4a2b)•(﹣a2b2)•c,此选项正确;C、(﹣3xy)•(﹣x2z)•6xy2=18x4y3z,此选项错误;D、(2a n b3)(﹣ab n﹣1)=﹣a n+1b n+2,此选项错误.故选:B.【点睛】考查了单项式乘单项式,关键是熟练掌握计算法则正确进行计算.【变式1-1】(2019秋•雨花区校级期末)如果一个单项式与﹣2a2b的积为﹣a3bc2,则这个单项式为()A.ac2B.ac C.ac D.ac2【分析】已知两个因式的积与其中一个因式,求另一个因式,用除法.根据单项式的除法法则计算即可得出结果.【答案】解:(﹣a3bc2)÷(﹣2a2b)=ac2.故选:A.【点睛】本题考查了单项式的除法法则.单项式与单项式相除,把他们的系数分别相除,相同字母的幂分别相除,对于只在被除式里出现的字母,连同他的指数不变,作为商的一个因式.【变式1-2】(2019春•城关区校级期中)化简的结果是()A.B.2(x﹣y)7C.(y﹣x)7D.4(y﹣x)7【分析】根据整式的运算法则即可求出答案.【答案】解:原式=16(x﹣y)4•(﹣)3(y﹣x)3=﹣16(x﹣y)4•()(x﹣y)3=2(x﹣y)7,故选:B.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.【变式1-3】(2019秋•丛台区校级期中)若(2xy2)3•(x m y n)2=x7y8,则()A.m=4,n=2B.m=3,n=3C.m=2,n=1D.m=3,n=1【分析】直接利用积的乘方运算法则进而得出m,n的值.【答案】解:∵(2xy2)3•(x m y n)2=x7y8,∴8x3y6•x2m y2n=x7y8,则x2m+3y2n+6=x7y8,∴2m+3=7,2n+6=8,解得:m=2,n=1,故选:C.【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键.【考点2 单项式乘多项式】【方法点拨】就是用单项式去乘多项式的每一项,再把所有的项相加,利用法则进行单项式和多项式运算时要注意:(1)多项式每一项都包括前面的符号,运用法则计算时,一定要强调积的符号.(2)单项式必须和多项式中的每一项相乘,不能漏乘多项式中的任何一项.因此,单项式与多项式相乘的结果是一个多项式,其项数与因式中多项式的项数相同.【例2】(2019秋•安居区期末)今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内上应填写()A.3xy B.﹣3xy C.﹣1D.1【分析】先把等式左边的式子根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加,所得结果与等式右边的式子相对照即可得出结论.【答案】解:∵左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,∴□内上应填写3xy.故选:A.【点睛】本题考查的是单项式乘多项式,熟知单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加是解答此题的关键.【变式2-1】(2019春•雁塔区校级期中)已知7x5y3与一个多项式之积是28x7y3+98x6y5﹣21x5y5,则这个多项式是()A.4x2﹣3y2B.4x2y﹣3xy2C.4x2﹣3y2+14xy2D.4x2﹣3y2+7xy3【分析】根据乘法与除法的互逆关系,可得整式的除法,根据整式的除法,可得答案.【答案】解:由7x5y3与一个多项式之积是28x7y3+98x6y5﹣21x5y5,得(28x7y3+98x6y5﹣21x5y5)÷7x5y3=4x2+14xy2﹣3y2,故选:C.【点睛】本题考查了单项式乘多项式,利用了整式的除法:用多项式的每一项除以单项式,把所得商相加.【变式2-2】(2019秋•秀屿区校级期中)要使(x2+ax+5)(﹣6x3)的展开式中不含x4项,则a应等于()A.1B.﹣1C.D.0【分析】先展开,再根据题意得出x4项的系数为0即可.【答案】解:(x2+ax+5)(﹣6x3)=﹣6x5﹣6ax4﹣30x3,∵(x2+ax+5)(﹣6x3)的展开式中不含x4项,∴﹣6a=0,∴a=0,故选:D.【点睛】本题考查了单项式乘以多项式,掌握运算法则是解题的关键.【变式2-3】(2019春•凤翔县期中)某同学在计算﹣3x2乘一个多项式时错误的计算成了加法,得到的答案是x2﹣x+1,由此可以推断正确的计算结果是()A.4x2﹣x+1B.x2﹣x+1C.﹣12x4+3x3﹣3x2D.无法确定【分析】根据整式的减法法则求出多项式,根据单项式与多项式相乘的运算法则计算,得到答案.【答案】解:x2﹣x+1﹣(﹣3x2)=x2﹣x+1+3x2=4x2﹣x+1,﹣3x2•(4x2﹣x+1)=﹣12x4+3x3﹣3x2,故选:C.【点睛】本题考查的是单项式乘多项式、整式的加减混合运算,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【考点3 多项式乘多项式】【方法点拨】多项式乘多项式法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。
教材习题点拨P95“探究”答案:7,5,m +n练习解:(1)b 5·b =b 5+1=b 6. (2)⎝⎛⎭⎫-12×⎝⎛⎭⎫-122×⎝⎛⎭⎫-123=⎝⎛⎭⎫-121+2+3=⎝⎛⎭⎫-126=126. (3)a 2·a 6=a 8.(4)y 2n ·y n +1=y 3n +1. 点拨:运用同底数幂乘法的运算法则可得.P96“探究”答案:6,6,3m练习解:(1)(103)3=103×3=109. (2)(x 3)2=x 3×2=x 6. (3)-(x m )5=-x 5m .(4)(a 2)3·a 5=a 6·a 5=a 11.点拨:运用幂的乘方性质可得.P97“探究”答案:(1)2,2(2)(ab )·(ab )·(ab ),(a ·a ·a )(b ·b ·b ),3,3练习解:(1)(ab )4=a 4b 4.(2)(-12xy )3=-18x 3y 3. (3)(-3×102)3=-27×106=-2.7×107.(4)(2ab 2)3=8a 3b 6.点拨:利用积的乘方运算法则可得.P98”思考”(1)(3×105)×(5×102)=(3×5)×(105×102)=15×107=1.5×108分配、结合.(2)ac 5·bc 2=abc 7.练习1.解:(1)3x 2·5x 3=15x 5.(2)4y ·(-2xy 2)=-8xy 3.(3)(-3x )2·4x 2=9x 2·4x 2=36x 4.(4)(-2a )3·(-3a )2=-8a 3·9a 2=-72a 5.点拨:利用单项式乘法法则可得.2.解:(1)不对;应为6a 5;(2)对;(3)不对,应为12x 4;(4)不对;应为15y 8.点拨:在进行整式乘法运算时,应首先判断是哪种运算,再运用相关法则进行计算. 练习1.解:(1)3a (5a -2b )=15a 2-6ab ;(2)(x -3y )·(-6x )=-6x 2+18xy .点拨:运用单项式乘以多项式法则易得.2.解:原式=x 2-x +2x 2+2x -6x 2+15x =-3x 2+16x .点拨:注意先做乘法,再合并同类项.练习1.解:(1)(2x +1)(x +3)=2x 2+x +6x +3=2x 2+7x +3.(2)(m +2n )(3n -m )=3mn -m 2+6n 2-2mn =-m 2+mn +6n 2.(3)(a -1)2=(a -1)(a -1)=a 2-2a +1.(4)(a +3b )(a -3b )=a 2-9b 2.(5)原式=2x 3-8x 2-x +4.(6)原式=2x 3-x 2-4x -15.点拨:运用多项式乘以多项式法则可得.2.解:(1)(x +2)(x +3)=x 2+5x +6.(2)(x -4)(x +1)=x 2-3x -4.(3)(y +4)(y -2)=y 2+2y -8.(4)(y -5)(y -3)=y 2-8y +15.填空:x 2 p +q pq .点拨:计算时一定要注意确定积中各项的符号.练习1.解:(1)x 2;(2)1;(3)-a 3;(4)x 2y 2.点拨:运用同底数幂的除法法则进行计算.2.解:(1)-2b 2;(2)-43ab ; (3)7y ;(4)2×103.点拨:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.3.解:(1)6b +5;(2)3x -2y .习题14.11.解:(1)不对,应为b 6;(2)不对,应为x 8;(3)不对,应为a 10;(4)不对,应为a 10;(5)不对,应为a 3b 6;(6)不对,应为4a 2.点拨:利用幂的三个运算性质进行判断.2.解:(1)2x 4;(2)-p 3q 3;(3)-16a 8b 4;(4)6a 8.点拨:利用幂的三个运算性质进行计算.3.解:(1)18x 3y ;(2)-6a 2b 3;(3)-4x 5y 7;(4)4.94×108.点拨:利用单项式乘法法则计算.4.解:(1)-8ab +2b 3;(2)2x 3-x 2;(3)10a 2b -5ab 2+ab ;(4)-18a 3+6a 2+4a .点拨:利用单项式乘以多项式法则计算.5.解:(1)原式=x 2-9x +18;(2)原式=x 2+16x -16; (3)原式=3x 2+8x +4;(4)原式=-4y 2+21y -5;(5)原式=x 3-2x 2+4x -8;(6)原式=x 3-y 3.点拨:利用多项式乘以多项式法则进行计算.6.解:(1)1;(2)ab 4;(3)-4x ;(4)16m 3p 2;(5)-3x 2+4x ;(6)-0.5+ab +13a 2b 2. 7.解:原式=x 3-x 2-x 3-x 2+x =-2x 2+x ,当x =12时,原式=-2×⎝⎛⎭⎫122+12=0. 点拨:在计算时要注意运算顺序.8.解:(1)-5x 2-12x +15;(2)2x 2-8.点拨:对于混合运算,先算乘法,再算加减,得出最简结果.9.解:8G =8×210×210×210B =23×230B =233B.点拨:本题实质是单位换算.10.解:7.9×103×2×102=1.58×106(m).点拨:计算结果仍用科学记数法表示.11.解:题图中阴影部分的面积是(a +2a +2a +2a +a )·(1.5a +2.5a )-2a ·2.5a -2a ·2.5a=8a ·4a -5a 2-5a 2=32a 2-10a 2=22a 2(m 2).点拨:阴影部分面积等于大矩形面积减去两个小矩形面积.12.解:长方形纸板的长为4a 2b ÷ab +2a =4a +2a =6a ;宽为b +2a .13.解:∵2m =a ,∴(2m )3=a 3.∴23m =a 3.∵32n =b ,∴(25)n =b .∴25n =b .∴210n =b 2,23m ×210n =a 3b 2.∴23m +10n =a 3b 2.点拨:本题运用了幂的乘方和同底数幂相乘的运算法则进行计算.14.解:(1)x 2-5x +6+18=x 2+10x +9,15x =15,得x =1.(2)9x 2-16<9(x 2+x -6),9x 2-16<9x 2+9x -54,38<9x ,x >389. 点拨:先利用整式的加、减、乘混合运算化简等号(小于号)两侧的多项式,再经过移项、合并同类项等程序得到解.15.解:(1)m =13;(2)m =-20;(3)m =15;(4)m =-12;(5)m =37,20,15,13,12.点拨:(1)(2)(3)(4)可先展开等式的左侧,对比右侧可得.(5)中由于pq =36,且pq 为正整数,所以有下列五种情形:①p =1,q =36,此时m =37;②p =2,q =18,此时m =20;③p =3,q =12,此时m =15;④p =4,q =9,此时m =13;⑤p =6,q =6,此时m =12;所以m 的值分别为37,20,15,13,12.。
整式的运算技巧Revised on November 25, 2020整式的运算整式的加减一、整式的有关概念1.单项式(1)概念:注意:单项式中数与字母或字母与字母之间是乘积关系,例如:2x 可以看成12x ⋅,所以2x 是单项式;而2x 表示2与x 的商,所以2x 不是单项式,凡是分母中含有字母的就一定不是单项式.(2)系数:单项式中的数字因数叫做这个单项式的系数. 例如:212x y -的系数是12-;2r π的系数是2.π 注意:①单项式的系数包括其前面的符号;②当一个单项式的系数是1或1-时,“1”通常省略不写,但符号不能省略. 如:23,xy a b c -等;③π是数字,不是字母.(3)次数:一个单项式中,所有字母指数的和叫做这个单项式的次数. 注意:①计算单项式的次数时,不要漏掉字母的指数为1的情况. 如322xy z 的次数为1326++=,而不是5;②切勿加上系数上的指数,如522xy 的次数是3,而不是8;322x y π-的次数是5,而不是6.2.多项式(1)概念:几个单项式的和叫做多项式. 其含义是:①必须由单项式组成;②体现和的运算法则.(2)项:在多项式中,每一个单项式叫做多项式的项,其中不含字母的项叫常数项;一个多项式含有几个单项式就叫几项式.例如:2231x y --共含有有三项,分别是22,3,1x y --,所以2231x y --是一个三项式.注意:多项式的项包括它前面的符号,如上例中常数项是1-,而不是1.(3)次数:多项式中,次数最高项的次数,就是这个多项式的次数.注意:要防止把多项式的次数与单项式的次数相混淆,而误认为多项式的次数是各项次数之和. 例如:多项式2242235x y x y xy -+中,222x y 的次数是4,43x y -的次数是5,25xy 的次数是3,故此多项式的次数是5,而不是45312++=.3.整式:单项式和多项式统称做整式.4.降幂排列与升幂排列(1)降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来叫做把这个多项式按这个字母的降幂排列.(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来叫做把这个多项式按这个字母的升幂排列.注意:①降(升)幂排列的根据是:加法的交换律和结合律;②把一个多项式按降(升)幂重新排列,移动多项式的项时,需连同项的符号一起移动;③在进行多项式的排列时,要先确定按哪个字母的指数来排列. 例如:多项式24423332xy x y x y x y ----按x 的升幂排列为:42233432y xy x y x y x -+---;按y 的降幂排列为:42323432y x y xy x y x --+--.二、整式的加减1.同类项:所含的字母相同,并且相同字母的指数也分别相同的项叫做同类项.注意:同类项与其系数及字母的排列顺序无关. 例如:232a b 与323b a -是同类项;而232a b 与325a b 却不是同类项,因为相同的字母的指数不同.2.合并同类项(1)概念:把多项式中相同的项合并成一项叫做合并同类项.注意:①合并同类项时,只能把同类项合并成一项,不是同类项的不能合并,如235a b ab +=显然不正确;②不能合并的项,在每步运算中不要漏掉.(2)法则:合并同类项就是把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.注意:①合并同类项,只是系数上的变化,字母与字母的指数不变,不能将字母的指数相加;②合并同类项的依据是加法交换律、结合律及乘法分配律;③两个同类项合并后的结果与原来的两个单项式仍是同类项或者是0.3.去括号与填括号(1)去括号法则:括号前面是“+”,把括号和它前面的“+”去掉,括号内的各项都不变号;括号前面是“-”,把括号和它前面的“-”去掉,括号内的各项都改变符号.注意:①去括号的依据是乘法分配律,当括号前面有数字因数时,应先利用分配律计算,切勿漏乘;②明确法则中的“都”字,变符号时,各项都变;若不变符号,各项都不变. 例如:()();a b c a b c a b c a b c +-=+---=-+;③当出现多层括号时,一般由里向外逐层去括号,如遇特殊情况,为了简便运算也可由外向内逐层去括号.(2)填括号法则:所添括号前面是“+”号,添到括号内的各项都不变号;所添括号前面是“-”号,添到括号内的各项都改变符号.注意:①添括号是添上括号和括号前面的“+”或“-”,它不是原来多项式的某一项的符号“移”出来的;②添括号和去括号的过程正好相反,添括号是否正确,可用去括号来检验. 例如:()();.a b c a b c a b c a b c +-=+--+=--4.整式的加减整式的加减实质上是去括号和合并同类项,其一般步骤是:(1)如果有括号,那么先去括号;(2)如果有同类项,再合并同类项.注意:整式运算的结果仍是整式.类型一:用字母表示数量关系1.填空题:(1)香蕉每千克售价3元,m千克售价____________元。
整式的乘法运算应把握的几点山东 王孝敏整式的乘法运算包括单项式与单项式相乘,单项式与多项式相乘以及多项式与多项式相乘。
进行整式的乘法运算应注意把握以下几点:一、把握积的符号 例1 计算: (-3xy )·(-2x )·(-xy 2)2.分析:本题是单项式的乘法运算,且含有积的乘方运算,再运算时应先确定积的符号,因为前两个单项式的系数为负,第三个单项式的系数为正,所以积的结果为正.解: (-3xy )·(-2x )·(-xy 2)2=(3xy )·(2x )·(x 2y 4)=6x 4y 5.【点拨】当多个单项式相乘时,应先确定积的符合,然后再按照法则进行计算。
二、把握分配律的使用例2 计算:(-2x ) 2·(xy -3xy 2-1).分析:本题是单项式与多项式相乘,且含有乘方运算,可先进行乘方运算,然后按乘法的分配律用单项式去乘多项式的每一项,计算时应注意符号的确定.解: (-2x ) 2·(xy -3xy 2-1)=4x 2·(xy -3xy 2-1)=4x 2·xy +4x 2·(-3xy 2)+4x 2·(-1)=4x 3y -12x 3y 2-4x 2.【点拨】单项式乘以多项式,先用单项式去乘多项式中的每一项,再把所得积相加.注意不要漏项.三、把握多项式与多项式相乘的运算法则例3 计算(x -3)(x +4).分析:进行多项式的乘法运算,首先要理解多项式乘以多项式的运算法则:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.本题的计算不要出现(x -3)(x +4)=x 2-12的错误.解: (x -3)(x +4)=x ·x +x ·4+(-3)·x +(-3)·4=x 2+4x -3x -12=x 2+x -12.【点拨】两项多项式与两项多项式的积为四项,有时可合并成三项或两项.两项多项式与三项多项式相乘,结果为2×3=6项,然后能合并的再进行合并.四、把握运算顺序例4 计算 (-x 2)(x -y +1)-(x +2)(x -1).分析:本题是一道混合运算,计算时应把握运算顺序,先算乘法运算,然后再进行加减运算,并注意符号问题.解: (-x 2)(x +1)-(x +2)(x -1)=-x 3-x 2-(x 2-x +2x -2)=-x 3-x 2-x 2+x -2x +2=-x 3-2x 2-x +2.【点拨】混合运算,先算乘方,再算乘除,最后加减,应注意运算符号。
专题14.3整式的乘法(6大知识点15类题型)(知识梳理与题型分类讲解)第一部分【知识点归纳与题型目录】【知识点1】同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a -÷=(a ≠0,m n 、都是正整数,并且m n >)【要点提示】(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式.(3)当三个或三个以上同底数幂相除时,也具有这一性质.(4)底数可以是一个数,也可以是单项式或多项式.【知识点2】单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.【要点提示】(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.(4)三个或三个以上的单项式相乘同样适用以上法则.【知识点3】单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即()m a b c ma mb mc ++=++.【要点提示】(1)单项式与多项式相乘的计算方法,实质利用乘法分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算过程中要注意符号问题,多项式中的每一项包括它前面的符号,还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.【知识点4】多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.【要点提示】多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2x a x b x a b x ab ++=+++.知识点与题型目录【知识点一】同底数幂的除法【题型1】同底数幂的除法运算及逆运算.........................................3;【知识点二】单项式相乘【题型2】单项式相乘.........................................................3;【题型3】利用单项式相乘求字母或代数式的值...................................3;【知识点三】单项式乘以多项式【题型4】单项式乘以多项式的运算与求值.......................................4;【题型5】单项式乘以多项式的应用.............................................4;【题型6】利用单项式乘以多项式求字母的值.....................................4;【知识点四】多项式相乘【题型7】计算多项式乘以多项式...............................................5;【题型8】计算多项式乘以多项式化简求值.......................................5;【题型9】(x+p)(x+q)型多项式相乘..........................................5;【题型10】整式乘法中的不含某个字母问题......................................5;【题型11】多项式相乘中的几何问题............................................6;【知识点五】多项式除以单项式【题型12】多项式除以单项式..................................................6;【知识点六】多项式除以单项式【题型13】整式乘法混合运算..................................................7;【直通中考与拓展延伸】【题型14】直通中考..........................................................7;【题型15】拓展延伸..........................................................8.第二部分【题型展示与方法点拨】【题型1】同底数的除法运算及逆运算【例1】(23-24八年级上·天津滨海新·期末)计算:()()23432253339xy x x y xy x y ⎡⎤-÷⎢⎥⎦⋅-⋅⎣.【变式1】(22-23七年级下·广东深圳·阶段练习)若4m a =,8n a =,则32m n a -的值为()A .12B .1C .2D .4【变式2】(23-24七年级下·全国·单元测试)已知2320x y --=,则()()231010x y ÷=.【题型2】单项式相乘【例2】(22-23八年级上·福建厦门·期中)计算:(1)()2243623a a a a ⋅+-;(2)()()23225x x y -⋅-【变式1】(23-24七年级下·全国·单元测试)计算()222133x y xy ⎛⎫-⋅- ⎪⎝⎭的结果为()A .45x y -B .4513x y C .3213x y -D .4513x y -【变式2】(23-24七年级下·全国·单元测试)计算:()()3222324623418ab a b a b a b -⋅+⋅=.【题型3】利用单项式相乘求字母或代数式的值【例3】(22-23七年级下·广东梅州·期中)先化简,后求值:2332223141644x y x y x y xy ⎛⎫⎛⎫⋅-+-⋅ ⎪ ⎪⎝⎭⎝⎭,其中0.4x =,2.5y =-.【变式1】(2024·陕西榆林·三模)已知单项式24xy 与313x y -的积为3n mx y ,则m ,n 的值为()A .43m =-,4n =B .12=-m ,2n =-C .43m =-,3n =D .12=-m ,3n =【变式2】(23-24七年级下·全国·假期作业)若()()1221253m n n n a b a b a b ++-⋅=,则m n +的值为.【题型4】单项式乘以多项式的运算与求值【例4】(23-24八年级上·吉林·阶段练习)先化简,再求值:()()223243234a a a a a -+-+,其中1a =-.【变式1】(2024·陕西咸阳·模拟预测)计算132xy x y ⎛⎫-⋅- ⎪⎝⎭的结果是()A .223x y xy +B .22332x y xy --C .22332x y xy -+D .22132x y xy -+【变式2】(23-24七年级下·江苏南京·阶段练习)若220240a a +-=,代数式()()220241a a -+的值是.【题型5】单项式乘以多项式的应用【例5】(23-24七年级下·广东佛山·阶段练习)小红的爸爸将一块长为322455a b ⎛⎫+⎪⎝⎭分米、宽55a 分米的长方形铁皮的四个角都剪去一个边长为412a 分米的小正方形,然后沿虚线折成一个无盖的盒子.(1)用含a ,b 的整式表示盒子的外表面积;(2)若1a =,0.2b =,现往盒子的外表面上喷漆,每平方分米喷漆价格为15元,求喷漆共需要多少元?【变式1】(23-24七年级下·山东菏泽·期中)某同学在计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,那么正确的计算结果是()A .432484x x x -+-B .432484x x x +-C .43244x x x -+-D .432484x x x --【变式2】(22-23八年级上·福建泉州·阶段练习)已知:2210x x --=,则352020x x -+=.【题型6】利用单项式乘以多项式求字母的值【例6】(21-22七年级下·河南驻马店·阶段练习)已知x (x ﹣m )+n (x +m )=2x +5x ﹣6对任意数都成立,求m (n ﹣1)+n (m +1)的值.【变式1】(23-24七年级下·河南周口·阶段练习)若()24x ax x x +=+,则a 的值为()A .2B .3C .4D .8【变式2】(23-24七年级下·山东济南·阶段练习)要使()32412x x ax x -+++中不含有x 的四次项,则a =.【题型7】计算多项式乘以多项式【例7】(24-25八年级上·全国·单元测试)计算:(1)()()()222323x x x x +---+;(2)22(1)(1)x x x x ++-+;(3)2(1)(2)(2)x x x x +-++【变式1】(22-23七年级下·甘肃张掖·期中)下列计算正确的是()A .()()324242ab ab a b ⋅-=B .()()22356m m m m +-=--C .()()245920y y y y +-=+-D .()()21454x x x x ++=++【变式2】(22-23七年级下·山东菏泽·期中)如果()()()()32912x x x x ---+-=,那么x 的值是.【题型8】计算多项式乘以多项式化简求值【例8】(24-25八年级上·河南南阳·阶段练习)先化简,再求值:()()()222112a a a a a a +--+-,其中3a =-.【变式1】(23-24七年级下·安徽合肥·期中)我们规定a b ad bc cd=-,例如121423234=⨯-⨯=-,已知2523m n nm n m n+=-+-,则代数式2261m n --的值是()A .4B .5C .8D .9【变式2】(2024·湖南长沙·模拟预测)已知235a ab +=,则2()(2)2a b a b b ++-的值为.【题型9】(x+p)(x+q)型多项式相乘【例9】(22-23七年级下·辽宁沈阳·期中)先化简,再求值:()()()()()23333442x x x x x +-++---,其中2x =.【变式1】(23-24七年级下·辽宁锦州·阶段练习)若()()2315x x n x mx ++=+-,则mn 的值为()A .5-B .5C .10D .10-【变式2】(22-23七年级下·江苏盐城·阶段练习)若()()228x m x x nx +-=+-,则2m n +=.【题型10】整式乘法中的不含某个字母问题【例10】(22-23七年级下·四川达州·期中)已知代数式()22mx x +与()232x nx ++积是一个关于x 的三次多项式,且化简后含2x 项的系数为1,求m 和n 的值.【变式1】(23-24七年级下·全国·期中)已知多项式x a -与221x x +-的乘积中2x 的项系数与x 的项系数之和为4,则常数a 的值为()A .1-B .1C .2-D .2【变式2】(24-25八年级上·吉林长春·阶段练习)若()()23x m x x n +-+的积中不含2x x 、项,则m =,n =.【题型11】多项式相乘中的几何问题【例11】(22-23八年级上·四川绵阳·期末)学校需要设计一处长方形文化景观,分为中央雕塑区和四周绿化区.中央雕塑区的长边为(33m -)米,短边为2m 米,绿化区外边沿的长边为(42m -)米,短边为(31m -)米.试比较雕塑区和绿化区的面积大小.(m 为正数)【变式1】(23-24七年级上·湖南长沙·期末)下面四个整式中,不能..表示图中阴影部分面积的是()A .(4)(3)3x x x ++-B .24(3)x x ++C .24x x+D .(4)12x x ++【变式2】(23-24七年级下·全国·单元测试)有若干张如图所示的正方形A 类、B 类卡片和长方形C 类卡片.如果要拼成一个长为()2a b +,宽为()32a b +的大长方形,那么需要C 类卡片张.【题型12】多项式除以单项式【例12】(22-23七年级下·宁夏银川·期末)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,2211322xy x y xy xy ⨯=-+(1)求所捂的多项式;(2)若2132x y ==,,求所捂多项式的值.【变式1】(2024·湖北武汉·模拟预测)若22233241216m x y x y x y ⨯=-,则m =()A .43x y-B .43x y-+C .43x y+D .43x y--【变式2】(22-23七年级下·浙江温州·期末)若223615xy A x y xy =- ,则A 代表的整式是.【题型13】整式乘法混合运算【例13】(23-24七年级下·贵州毕节·期末)先化简,再求值:(1)()()()()22224x y x y x y x x y -+-+--,其中1x =-,2y =.(2)已知2210x x +-=,求代数式()()()()21433x x x x x ++++-+的值.【变式1】(21-22六年级下·全国·单元测试)等式()()324322xyz x y z y ⎡⎤÷-⋅=⎣⎦中的括号内应填入()A .6538x y z B .228x y zC .222x y zD .222x y z±【变式2】(2024·福建厦门·二模)已知11x x-=-,则()()22131x x x +-+的值为.第三部分【中考链接与拓展延伸】【题型14】直通中考【例1】(2024·山东青岛·中考真题)下列计算正确的是()A .223a a a +=B .523a a a ÷=C .235()a a a -⋅=-D .()23622a a =【例2】(2023·黑龙江大庆·中考真题)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,7()a b +展开的多项式中各项系数之和为.【题型15】拓展延伸【例1】(23-24八年级上·四川眉山·期中)观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;…根据规律计算:202220212020201943222222222-+-+⋯⋯+-+-的值是()A .2023223-B .202321-C .20232-【例2】(2024七年级上·全国·专题练习)按如图所示的程序进行计算,如果第一次输入x 的值是3-,则第2024次计算后输出的结果为.。
专题11 一次函数的基本性质考点一函数的定义及其性质【方法点拨】理解函数的概念:对于x的每一个值,y都有唯一的值与它对应。
注意自变量的取值范围:①整式:自变量取一切实数;②分式:分母不为零;③偶次方根:被开方数为非负数;④零指数幂与非负指数幂:底数不为零;⑤在实际问题中,自变量的取值范围必须保证每个量都有意义1.在下列图象中,不能表示y是x的函数是()A.B.C.D.2.下列各图象中,不能表示y是x的函数的是()A.B.C.D.3.下列图象中,不能表示y是x的函数的是()A.B.C.D.4.下列各图象中,不能表示y是x的函数的是()A.B.C.D.5.下列图象中,不能表示y是x的函数的是()A.B.C.D.6.函数y=√x−2中,自变量x的取值范围是()A.x≠2B.x≥2C.x>2D.x≥﹣2 7.在函数y=√x−2中,自变量x的取值范围是()A.x>2B.x≥2C.x<2D.x≤28.在函数y=1x−2中,自变量x的取值范围是()A.x≠2B.x>2C.x≥2D.x≠09.函数y=√x+2x−2中自变量x的取值范围是()A .x ≥﹣2B .x ≤﹣2C .x ≠﹣2D .x ≥﹣2且x ≠210.下列说法正确的是 .(填序号)①正比例函数一定是一次函数;②一次函数一定是正比例函数;③若y ﹣1与x 成正比例,则y 是x 的一次函数;④若y =kx +b ,则y 是x 的一次函数.考点二 一次函数和正比例函数的定义【方法点拨】若两个变量x ,y 之间的关系式可以表示成b kx y +=(b k ,为常数,k ≠0)的形式,则称y 是x 的一次函数(x 是自变量,y 是因变量).特别地,当b =0时,称y 是x 的正比例函数。
即一次函数成立需要具备三个条件:①有两个变量之间的关系;②有一个自变量和一个因变量;③因变量随着自变量的变化而变化1.y =2x |m |+3表示一次函数,则m 等于( )A .1B .﹣1C .0或﹣1D .1或﹣12.y =(m ﹣1)x |m |+3m 表示一次函数,则m 等于( )A .1B .﹣1C .0或﹣1D .1或﹣13.下列函数关系中表示一次函数的有( )①y =2x +1 ②y =1x ③y =x+12−x④s =60t ⑤y =100﹣25x .A .1个B .2个C .3个D .4个 4.下列函数关系中表示一次函数的有( )①y =2x ﹣1;②y =12x ;③y =100﹣3x ;④s =pr 2. A .1个 B .2个 C .3个 D .4个5.下列说法正确的是( )A .y =kx +b (k 、b 为任意常数)一定是一次函数B .y =x k (常数k ≠0)不是正比例函数C .正比例函数一定是一次函数D .一次函数一定是正比例函数6.已知y =(m +3)xm 2−8+3是一次函数,则m = . 7.已知y =2x m ﹣2+3是一次函数,则m = .8.已知y =(m ﹣3)x m 2−9+m +1是一次函数,则m = .考点三 一次函数的图象和性质【方法点拨】①一次函数的图像:一次函数b kx y +=的图象是经过点(0,b )和点⎪⎭⎫ ⎝⎛-0,k b 的一条直线,正比例函数kx y =的图象是经过原点(0,0)和(1,k )的一条直线;②一次函数的性质:b kx y +=(b k ,为常数,k ≠0),当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小1.对于一次函数y =x +6,下列说法错误的是( )A .y 的值随着x 值的增大而增大B .函数图象与x 轴正方向成45°角C .函数图象不经过第四象限D .函数图象与x 轴交点坐标是(0,6)2.平面直角坐标系中,将三角形各点的纵坐标都减去﹣3,横坐标保持不变,所得图形与原图形相比() A .向上平移了3个单位 B .向下平移了3个单位C .向右平移了3个单位D .向左平移了3个单位3.对于函数y =﹣3x +1,下列结论正确的是( )A .它的图象必经过点(﹣1,3)B .它的图象经过第一、二、三象限C .y 的值随x 的增大而增大D .当x =13时,y =04.函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )A .B .C.D.4.如图所示,点A(﹣1,m),B(3,n)在一次函数y=kx+b的图象上,则()A.m=n B.m>nC.m<n D.m、n的大小关系不确定5.一次函数y=x﹣3的图象大致是()A.B.C.D.6.关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(﹣1,0)C.当k>0时,y随x的增大而增大D.l经过第一、二、三象限7.下列关于函数y=﹣2x+3的说法正确的是()A.函数图象经过一、二、三象限B.函数图象与y轴的交点坐标为(0,3)C.y的值随着x值得增大而增大D.点(1,2)在函数图象上8.对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴交点坐标是(0,6)C.函数图象不经过第四象限D.函数图象与x轴正方向形成的锐角是45°角9.一次函数y=kx+b(k、b是常数,k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x>0B.x<0C.x>2D.x<210.下列一次函数中,y的值随着x值的增大而减小的是()A.y=(√2−√3)x−2B.y=√5x−1C.y=35x−1D.y=8x+511.已知A(﹣2,a),B(1,b)是一次函数y=﹣2x+3的图象上的两个点,则a与b的大小关系是()A.a>b B.a<b C.a=b D.不能确定12.如图,一次函数y=2x﹣3的图象大致是()A.B.C.D.13.关于x的一次函数y=12x+2,下列说法正确的是()A.图象与坐标轴围成的三角形的面积是4 B.图象与x轴的交点坐标是(0,2)C.当x>﹣4时,y<0D.y随x的增大而减小14.一次函数y=﹣2x+b与x轴交于点(3,0),则它与直线y=x的交点坐标为.15.若一次函数y=2x+6与y=kx图象的交点纵坐标为4,则k的值为.16.已知点M(1,a)和点N(﹣2,b)是一次函数y=﹣3x+1图象上的两点,则a与b的大小关系是.17.若点P(﹣3,a),Q(2,b)在直线y=﹣3x+c的图象上,则a与b的大小关系是。
七年级下册成长资源数学整式方法点拨[例1]下列整式中,次数与项数相同的有哪些?①7 ②-x ③1-s 2+3t ④πx +1 ⑤53a 2b -2bc +3 ⑥6xy点拨:先分别找出每小题的次数与项数,再判断它们是否一致.①单项式,次数是0.②单项式,次数是1——一致.③多项式,二次三项式.④多项式,一次二项式.注意:πx 是第一项,是一次的.π只能出现在某一个单项式或项的系数中.⑤多项式,三次三项式——一致.⑥单项式,次数是2.解答:次数与项数相同的②⑤.[例2]根据题意列出整式,并在括号内说明是单项式还是多项式,若是多项式,写成“几次几项式”的形式.(1)某商店前一个月盈利a 元,这个月盈利比前一个月减少15%,这个月盈利________元.(2)三角形的底是高的2倍,若高x cm,则这个三角形的面积是________cm 2.(3)一斤桔子a 元,一斤苹果b 元,则买10斤桔子和m 斤苹果共________元. 点拨:先根据题意列出整式,再判断单项式和多项式.解:(1)75%a 一次单项式 (2)x 2 二次单项式 (3)(10a +bm ) 二次二项式[例3]若-3axy m 是关于x 、y 的单项式,且系数为-6,次数为3,则a =________,m =________. 点拨:“关于x 、y 的单项式”说明只有x 、y 才是单项式中的字母,a 只是系数的一部分,所以-3a 是系数,也就是-6,即-3a =-6,解得:a =2.而单项式的次数是x 、y 的指数和:(1+m ),也就是3.因此1+m =3得m =2.解:a =2,m =2[例4]一个五次多项式,它的任何一项的次数都A.小于5B.等于5C.不小于5D.不大于5点拨:由于多项式的次数是“多项式中次数最高的项的次数”,因此五次多项式中,次数最高的项是五次的,其余的项的次数可以是五次的,也可以是小于五次的,却不能是大于五次的.因此,五次多项式中的任何一项都是不大于5次的.答案:D。
课题:2.2 去括号【学习目标】:能运用运算律探究去括号法则,并且利用去括号法则将整式化简。
【学习重点】去括号法则,准确应用法则将整式化简。
【学习难点】:括号前面是“-”号去括号时,括号内各项变号容易产生错误。
【导学指导】一、温故知新:1.合并同类项:(1)a a 37- (2)2224x x + (3)22135ab ab - (4)323299y x y x +- 二、自主探究1. 利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?现在我们来看本章引言中的问题(3):在格尔木到拉萨路段,如果列车通过冻土地段要t 小时,•那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t 千米,•非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为 100t+120(t-0.5)千米 ① 冻土地段与非冻土地段相差 100t-120(t-0.5)千米 ②上面的式子①、②都带有括号,它们应如何化简?100t+120(t -0.5)=100t+ =100t -120(t -0.5)=100t =我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:+120(t -0.5)= ③ -120(t -0.5)= ④ 比较③、④两式,你能发现去括号时符号变化的规律吗?归纳去括号的法则:法则1: 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;法则2: 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3);2.范例学习例4.化简下列各式:(1)8a+2b+(5a-b ); (2)(5a-3b )-3(a 2-2b );例5.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,•两船在静水中的速度都是50千米/时,水流速度是a千米/时.(1)2小时后两船相距多远?(2)2小时后甲船比乙船多航行多少千米?去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,•括号内每一项都要变号.为了防止出错,可以先用分配律将数字2•与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号。
●方法点拨
[例1]下列整式中,次数与项数相同的有哪些
①7 ②-x ③1-s 2+3t ④πx +1 ⑤53a 2b -2bc +3 ⑥6
xy 点拨:先分别找出每小题的次数与项数,再判断它们是否一致.
①单项式,次数是0.
②单项式,次数是1——一致.
③多项式,二次三项式.
④多项式,一次二项式.
注意:πx 是第一项,是一次的.π只能出现在某一个单项式或项的系数中.
⑤多项式,三次三项式——一致.
⑥单项式,次数是2.
解答:次数与项数相同的②⑤.
[例2]根据题意列出整式,并在括号内说明是单项式还是多项式,若是多项式,写成“几次几项式”的形式.
(1)某商店前一个月盈利a 元,这个月盈利比前一个月减少15%,这个月盈利________元.
(2)三角形的底是高的2倍,若高x cm,则这个三角形的面积是________cm 2.
(3)一斤桔子a 元,一斤苹果b 元,则买10斤桔子和m 斤苹果共________元. 点拨:先根据题意列出整式,再判断单项式和多项式.
解:(1)75%a 一次单项式 (2)x 2 二次单项式 (3)(10a +bm ) 二次二项
式
[例3]若-3axy m 是关于x 、y 的单项式,且系数为-6,次数为3,则
a =________,m =________.
点拨:“关于x 、y 的单项式”说明只有x 、y 才是单项式中的字母,a 只是系数的一部分,所以-3a 是系数,也就是-6,即-3a =-6,解得:a =2.而单项式的次数是x 、y 的指数和:(1+m ),也就是3.因此1+m =3得m =2.
解:a =2,m =2
[例4]一个五次多项式,它的任何一项的次数都
A.小于5
B.等于5
C.不小于5
D.不大于5
点拨:由于多项式的次数是“多项式中次数最高的项的次数”,因此五次多项式中,次数最高的项是五次的,其余的项的次数可以是五次的,也可以是小于五次的,却不能是大于五次的.因此,五次多项式中的任何一项都是不大于5次的.
答案:D。