概率论与数理统计课后习题答案第八章习题详解
- 格式:doc
- 大小:116.00 KB
- 文档页数:3
第八章 假设检验 作业解答1. 某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。
设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.解:设测定值总体X ~N (µ,σ 2),µ,σ 2均未知步骤:(1)提出假设检验H 0:µ=3.25; H 1:µ≠3.25(2)选取检验统计量为)1(~25.3−−=n t nS X t (3)H 0的拒绝域为| t |≥).1(2−n t α(4)n=5, α = 0.01,由计算知01304.0)(11,252.3512=−−==∑=i i X Xn S x查表t 0.005(4)=4.6041, )1(343.0501304.025.3252.3||2−<=−=n t t α (5)故在α = 0.01下,接受假设H 02. 如果一个矩形的宽度ω与长度l 的比618.0)15(21≈−=l ω,这样的矩形称为黄金矩形。
这种尺寸的矩形使人们看上去有良好的感觉。
现代建筑构件(如窗架)、 工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。
下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。
设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为µ,试检验假设(取α = 0.05) H 0:µ = 0.618 H 1:µ≠0.6180.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933.解:步骤:(1)H 0:µ = 0.618; H 1:µ≠0.618(2)选取检验统计量为)1(~618.0−−=n t nS X t (3)H 0的拒绝域为| t |≥).1(2−n t α(4)n=20 α = 0.05,计算知0925.0)(11,6605.01121=−−===∑∑==n i i n i i x xn S xn x ,)1(055.2200925.0618.06605.0||,0930.2)1(22−<=−==−n t t n t αα (5)故在α = 0.05下,接受H 0,认为这批矩形的宽度和长度的比值为0.6183. 要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ =100小时的正态分布。
第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差σ2 = 1.21,随机抽取6件,记录其长度(毫米)分别为32.46,31.54,30.10,29.76,31.67,31.23在显著性水平α = 0.01下,能否认为这批零件的平均长度为32.50毫米? 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平α = 0.01下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在0.01的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。
EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平α = 0.05下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异?解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平α = 0.05下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i i x x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ)9(025.0t t >可知,t 落入拒绝域中,故在0.05的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。
第八章 假设检验注意: 这是第一稿(存在一些错误)1 、解 由题意知:~(0,1)/X N nμσ- (1)对参数μ提出假设:0: 2.3H μ≤, 1: 2.3H μ> (2)当0H 为真时,检验统计量 2.3~(0,1)0.29/35X N -,又样本实测得 2.4x =,于是002.4 2.3()( 2.04)1(2.04)0.0207/0.29/35/H H X X P P P n nμμσσ----=≥=≥=-Φ= (3)由(2)知,犯第I 类错误的概率为0.0207 (4)如果0.05α=时,经查表得 1.645z α=,于是2.3 2.3{}{ 1.645}/0.29/35X X W z W n ασ-->=>(5)是。
2、 14.5515x =<故将希望得到支持的假设“15μ>”作为原假设,即考虑假设问题 0H :15μ≥,1H :15μ<因2σ未知,取检验统计量为0/X T S nμ-=,由样本资料10n =,14.55x =, 1.2445s =和015μ=代入得观察值0 1.2857t =-,拒绝域为()00.059/X W T t S n μ⎧⎫-==≤-⎨⎬⎩⎭,查分布表得()0.059 1.8331t =,()00.059t t >-故接受原假设0H ,即认为该广告是真实的。
3、 解(1)由题意得,检验统计量1/X Z nσ-=,其拒绝域为1{}{ 1.66}/X W Z z W X nασ-==≥=≥ 当2μ=时,犯第II 类错误的概率为:0021.662{|}{ 1.66|2}P{}=0.198//X P H H P X n nβμσσ--==≤==≤接受是错误的 (2)222(n 1)S ~(n 1)χσ--,当2σ未知时,检验统计量224S ,其拒绝域为:2221W {24S (24)}{S 0.577}αχ-=<=<当21.25σ=时,检验犯第I 类错误的概率为:2220024S 240.577{|}{S 0.577| 1.25}P{}=0.0121.251.25P H H P ασ⋅==<==<拒绝是正确的4、 (1)提出假设0H :3000μ=,1H :3000μ≠ 建立检验统计量0/X T S nμ-=,其中03000μ=在显著水平0.05α=下,检验的拒绝域为()00.0257 2.3646/X W T t S n μ⎧⎫-==≥=⎨⎬⎩⎭,由样本资料得观察值()00.0252958.7530002.97271348.4375/8t t -==>,故有显著差异。
第八章 假设检验部分习题解答2~(32.05,1.1)6cm 32.5629.6631.6430.0031.8731.0332.050.050.01.N ξαα==已知某种零件的长度,现从中抽查件,测得它们的长度(单位:)为:,,,,,试问这批零件的平均长度是否就是厘米?检查使用两个不同的显著性水平:,0011:32.05.~(0,1)1,.6,31.03)31.127.H N n U u µµξα==<−=+=解:()提出假设,),计算将以上数据代入得观察值/20.02510/20.005102.056.(5)0.05 1.96,|| 2.056 1.96,0.05;0.01 2.58,|| 2.58,0.01u u u H u u u H αααααα=−====>====<=作出判断。
当时,因而时,拒绝当时,因而时,接受。
0(,1)100 5.32:50.01N H µξµα===从正态总体中抽取个样品,计算得,试检验是否成立(显著性水平)?00/2/201/20.01: 5.(2)(3),(||)1.(4) 5.32.3.250.01H u P U u U u u u αααµµξαµα==<=−=======解:()提出假设,使求观察值。
已知将以上数据代入得观察值()作出判断。
当时,0510 2.58,|| 2.58,0.01u H α=>=因而时,拒绝。
26.~(100,1.2)999.3 98.7 100.5 101.2 98.3 99.7 102.1 100.5 99.5.0.05(1)2N g ξα=某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量,现测量支灌装样品的灌装量(单位:)为,,,,,,,,问在显著性水平下,灌装量是否符合标准?()灌装精度是否在标准范围内?001/20.0251():100.()~(0,1)()1,.()9,0.05.0.05 1.i H ii N iii iv n u v u u αµµξααα==−<−==−===解:()提出假设,)()作出判断。
概率统计——习题八参考答案8.1 设t (单位:公斤)表示进货数,],[21t t t ∈,进货t 所获利润记为Y ,则有:⎩⎨⎧<<≤<--=21,,)(t X t at t X t b X t aX Y 又X 的密度函数为 ⎪⎩⎪⎨⎧<<-=其它,0,1)(2112t x t t t x f所以 ⎰⎰-+---=21121211])([)(t t t t dx t t at dx t t b x t ax Y E 1221212]2)(2[t t t b a t at bt t b a -+-+++-= 令 dt Y dE )(0])([1221=-+++-=t t at bt t b a ,得驻点b a bt at t ++=12。
所以该店应该进ba bt at ++12公斤商品,才可使利润的数学期望最大。
8.2 设⎩⎨⎧=,,,0,1否则只球与盒配对第i X i n i ,,2,1 = 则.1∑==n i i X X ∑===∴===n i i i i X E X E n X P X E 1.1)()(,1}1{)( 8.3 ∑∑∞=∞=--=--⋅-=--=-=0121,1)]1(1[1)1()1()1()1()(k k k k p p p p p p k p p p kp X E )()]1([])1([)(2X E X X E X X X E X E +-=+-=∑∑∞=∞=--+---=-+--=02221)1)(1()1(1)1()1(k k k k p p p k k p p p p p p k k ,)2)(1(])1(2[11)]1(1[2)1(2232p p p p p p p p p p p p --=+--=-+---= .11)2)(1()]([)()(22222p p p p p p p X E X E X D -=⎪⎪⎭⎫ ⎝⎛----=-=∴ 8.4 μ+μ-===⎰⎰⎰+∞∞-μ--+∞∞-μ--+∞∞-dx e x dx e x dx x xf X E x x 21)(21)()(μ=μ+=⎰+∞∞--dt e t t 21 ⎰⎰⎰+∞∞--+∞∞-μ--+∞∞-=μ-=-=dy e y dx e x dx x f X E x X D y x 2222121)()()]([)(202==⎰+∞-dy e y y 8.5 用切比雪夫不等式即得,2)(1}2|)({|}2|{|212X D X E X P X P -≥<-=<= 故 .2)211(4)(=-≥X D 8.6 (1)1=ρXY ; (2)73.0)(=+Y X D ;(3))()(),(y F x F y x F Y X Y X =⇔相互独立与;0=ρ⇔XY Y X 不相关与;=⋂⇔B A B A 互不相容与事件∅; =⋂Ω=⋃⇔B A B A B A 且互为对立事件与事件∅或A B =;)()()(B P A P AB P B A =⇔相互独立与事件。
假设检验第八章。
3.24(%)3.25 3.27 3.24 3.26 1.[一]某批矿砂的5个样品中的镍含量,经测定为下能否接受假设:这批矿砂的含镍量的均值= 0.01设测定值总体服从正态分布,问在α3.25.为 2 2~均未知μ,,σσ)解:设测定值总体X,N(μ3.25 :μ=3.25; H:≠μ步骤:(1)提出假设检验H1025X?3.)~t(nt??1 2)选取检验统计量为(Sn).t(n?1 ≥| (3)H的拒绝域为t | ?201304?0?Xx?3.252,S?)(X. ,由计算知n=(4)5, α= 0.01α0251i1n?1?i25.3.252?3)1t|?343?t(n??0.| t(4)=4.6041, 查表0.005α01304.025H5)故在α= 0.01下,接受假设(01?ωl01)?.618(5?的比l二2.,这样的矩[] 如果一个矩形的宽度ω与长度 2 、现代建筑构件形称为黄金矩形。
这种尺寸的矩形使人们看上去有良好的感觉。
(如窗架)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。
下工艺品(如图片镜框)个矩形的宽度与长度的比值。
设这一工厂生产的矩形20面列出某工艺品工厂随机取的)μ,试检验假设(取α= 0.05的宽度与长短的比值总体服从正态分布,其均值为0.618≠H:μH:μ= 0.618 100.668 0.628 0.615 0.606 0.690 0.693 0.749 0.654 0.670 0.662 0.6720.933. 0.576 0.570 0.844 0.601 0.611 0.606 0.609 0.5530.618 :Hμ≠:)Hμ= 0.618;(解:步骤:110618.?0X)?1~t?t(n 2()选取检验统计量为Snt(n?1). 的拒绝域为)(3H≥|| t 0α268,计算知(4)n=20 α= 0.05nn11??20925?x)(xx?.x,?0.6605S??0 ,ii1n?n1i?i1?618.?00.6605)1n??)?2.0930,|t|?2.055?t(?t(n1 αα09250.22200.618 H,认为这批矩形的宽度和长度的比值为(5)故在α= 0.05下,接受0今从一批这种元件中随机抽取1000小时,3.[三] 要求一种元件使用寿命不得低于小时=10025件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ。
习题八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)?【解】0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)3.851,0.108.H Hn Z ZxxZZZαμμμμασ==≠=======-===->所以拒绝H0,认为总体平均值有显著性变化.2. 某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25.【解】设0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)0.344,0.013(4).H Hn t n tx sxtttαμμμμα==≠===-====-===<所以接受H0,认为这批矿砂的含镍量为3.25.3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s2=0.1(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).【解】设0010/20.02520.025: 1.1;: 1.1.36,0.05,(1)(35) 2.0301,36,1.008,0.1,6 1.7456,1.7456(35)2.0301.H Hn t n t nx sxtttαμμμμα==≠===-=========<=所以接受H0,认为这堆香烟(支)的重要(克)正常.4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05). 【解】0100.050.05:21.5;:21.5.21.5,6,0.05, 1.65, 2.9,20,(2021.5)1.267,2.91.65.H Hn z xxzz zμμμασ≥<======-===->-=-所以接受H0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出x=0.452(%),s=0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验.(1)H0:μ=0.5(%);H1:μ<0.5(%).(2):Hσ'=0.04(%);1:Hσ'<0.04(%).【解】(1)00.050.050.5;10,0.05,(1)(9) 1.8331,0.452,0.037,(0.4520.5)4.10241,0.037(9) 1.8331.n t n tx sxtt tαμα===-====-===-<-=-所以拒绝H0,接受H1.(2)2222010.9522222220.95(0.04),10,0.05,(9) 3.325,0.452,0.037,(1)90.0377.7006,0.04(9).nx sn sασαχχχσχχ-=======-⨯===>所以接受H0,拒绝H1.6.某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?【解】00102222/20.0251/20.975222220.02522:0.005;:0.005.9,0.05,0.008,(8)(8)17.535,(8)(8) 2.088,(1)80.00820.48,(8).(0.005)H Hn sn sαασσσσαχχχχχχχσ-===≠=======-⨯===>故应拒绝H0,不能认为这批导线的电阻标准差仍为0.005.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本:n1=200,x=0.532kg, s1=0.218kg;第二批棉纱样本:n2=200,y=0.57kg, s2=0.176kg.设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05) 【解】01211212/2120.0250.0250.025:;:.200,0.05,(2)(398) 1.96,0.1981,1.918;(398).w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显著差别.8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设222201:;:.A B A B H H σσσσ=≠【解】221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,(1,1)(4,4)9.6,11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006n n s s F n n F F F s F s αα=====--========那么0.9750.025(4,4)(4,4).F F F << 所以接受H 0,拒绝H 1. 9~12. 略。
习题8-11.填空题(1) 假设检验易犯的两类错误分别是____________和__________.解第一类错误(弃真错误); 第二类错误(取伪错误).(2) 犯第一类错误的概率越大, 则右侧检验的临界值(点)越_____, 同时犯第二类错误的概率越_____.解小, 小.2. 已知一批零件的长度X(单位:cm)服从正态分布(,1)Nμ, 从中随机地抽取16个零件, 得到长度的平均值为40cm. 求:(1) 取显著性水平α=0.05时, 均值μ的双侧假设检验的拒绝域;(2) μ的置信水平为0.95的置信区间;(3) 问题(1)和(2)的结果有什么关系.解(1) 计算得到拒绝域为(-∞, 39.51)∪(40.49, +∞).(2) 已知x=40, σ =1,α = 0.05, 查表可得0.02521.96,z zα==所求置信区间为22()(40 1.96,40 1.96),x z x zαα+=-(39.51,40.49).=(3) 对于显著性水平α=0.05, μ的双侧假设检验的接受域恰为μ的置信水平为0.95的置信区间.习题8-21.填空题(1) 设总体2~(,)X Nμσ,12,,,nX X X是来自总体X的样本. 对于检验假设H:μμ=(μμ≥或μμ≤), 当2σ未知时的检验统计量是,H为真时该检验统计量服从分布; 给定显著性水平为α, 关于μ的双侧检验的拒绝域为, 左侧检验的拒绝域为, 右侧检验的拒绝域为__________.解Xt=; 自由度为n-1的t分布;2t tα…;t tα-…;t tα….2. 统计资料表明某市人均年收入服从2150μ=元的正态分布. 对该市从事某种职业的职工调查30人, 算得人均年收入为2280x=元, 样本标准差476s=元. 取显著性水平0.1, 试检验该种职业家庭人均年收入是否高于该市人均年收入?解由于总体方差未知, 故提出假设H0:μ≤μ0=2150; H1:μ>μ0.对于α=0.1,选取检验统计量X t =拒绝域为t >)1(-n t α=t 0.1(29)=1.3114.代入数据n =30, x =2280, s =476, 得到4959.130476215022800=-=-=n s x t μ>1.3114.所以拒绝原假设, 可以认为该种职业家庭人均年收入高于市人均年收入.3. 从某种试验物中取出24个样品,测量其发热量, 算得平均值11958, 样本标准差316s =.设发热量服从正态分布. 取显著性水平α=0.05, 问是否可认为该试验物发热量的期望值为12100?解 提出假设 H 0: μ=μ0=12100; H 1:μ≠μ0 .对于α=0.05,选取检验统计量X t =, 拒绝域为|t |>)1(2-n t α=t 0.025(23)=2.0687代入数据n =24, x =11958, s =316, 得到|| 2.20144x t ===>2.0687.所以拒绝原假设, 不能认为该试验物发热量的期望值为12100.4.从某锌矿的东西两支矿脉中, 各抽取容量分别为9和8的样品, 计算其样本含锌量(%)的平均值与方差分别为:东支: 0.230,x =2110.1337,9;n s ==西支: 0.269,y =2220.1736,8s n ==.假定东、西两支矿脉的含锌量都服从正态分布. 取显著性水平0.05α=, 问能否认为两支矿脉的含锌量相同?解 提出假设 H 0:μ1-μ2=0 ; H 1: μ1-μ2≠0.已知α=0.05, 210.230,0.1337x s ==, 220.269,0.1736y s ==,129,8,n n ==选取检验统计量X Y t =, 22112212(1)(1)2w n S n S S n n -+-=+-,拒绝域为|t |>120.0252(2)(15) 2.1315.t n n t α+-==因为2222112212(1)(1)(91)0.1337(81)0.17360.392982wn s n s s n n -+--⨯+-⨯===+-+-,||0.2058x y t ===<2.1315,所以不能拒绝原假设, 可以认为两支矿脉的含锌量相同.习题8-3一、 填空题1. 设总体2~(,)X N μσ, 12,,,n X X X 是来自总体X 的样本, 则检验假设0H :220σσ=(220σσ≥或220σσ≤), 当μ未知时的检验统计量是 , 0H 为真时该检验统计量服从 分布; 给定显著性水平α, 关于σ2的双侧检验的拒绝域为 , 左侧检验的拒绝域为 , 右侧检验的拒绝域为__________.解 2220(1)n S χσ-=; 2(1)n χ-; 2212(1)n αχχ--≤或222(1)n αχχ-≥;221(1)n αχχ--≤;22(1)n αχχ-≥. 2. 为测定某种溶液中的水分, 由它的10个测定值算出样本标准差的观察值0.037s =%. 设测定值总体服从正态分布, 2σ为总体方差, 2σ未知. 试在0.05α=下检验假设0:0.04H σ≥%; 1:0.04H σ<%.解 只需考虑假设 022:0.04)%H ≥(σ; 122:(0.04)%H <σ . 对于α=0.05, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22210.95(1)(9) 3.325n αχχχ--==≤.代入数据10=n ,220(0.04%)=σ, s 2=(0.037%)2, 计算得到222220(1)(101)(0.037%)(0.04%)n S --⨯==χσ=7.701>3.325,不落在拒绝域内,所以在水平α=0.05下接受H 0, 即认为σ≥0.04%.3. 有容量为100的样本, 其样本均值观察值 2.7x =, 而10021225()i i x -x ==∑.试以0.01α=检验假设H 0: σ2=2.5.解 提出假设 2201: 2.5;: 2.5.H H σσ=≠对于α=0.01, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22220.9950.995121(1)(99)(2n z αχχχ--=≈+≤=65.67,或22220.0050.00521(1)(99)(2n z αχχχ-=≈≥=137.96.代入数据n =100, 2(1)225,n s -=得到2220(1)2252.5n s χσ-===90.因为65.67<90<137.96, 即χ2的观察值不落在拒绝域内, 所以在水平α=0.01下接受H 0, 即认为σ2=2.5.习题8-41..试在显著性水平α=0.025下检验H 0: X 的概率密度2,01,()0,.x x f x <<⎧=⎨⎩其它解 因为22/4(1)/41(1){}2,4416i i i i i i i p P X x x ----=<==⎰≤d i =1, 2, 3, 4.待检假设 02,01,:()0,.x x H X f x <<⎧=⎨⎩ 其它列计算表如表8-1所示, 算得2421() 1.83.i i i if np npχ=-==∑表8-1 第1题数据处理查表知20.025(3)9.348,χ= 经比较知220.0251.83(3)9.348,χχ=<=故接受H 0, 认为X 的概率密度为2,01,()0,.x x f x <<⎧=⎨⎩其它2. 在显著性水平α=0.05下, 检验这枚骰子是否均匀.解 用X 表示骰子掷出的点数, P {X =i }=p i , i =1, 2, …, 6. 如果骰子是均匀的, 则p i =16, i =1, 2, …, 6. 因此待检假设01:6i H p =, i =1, 2, …, 6. 计算检验统计量221()ni i i if np np χ=-=∑的值, 得2222222100100100[(13)(14)(20)666100100100100(17)(15)(21)]66663.2.χ=-+-+-+-+-+-÷=查表知20.05(61)11.071,χ-= 经比较知220.053.2(5)11.071,χχ=<= 故接受H 0, 认为骰子是均匀的.。
习题八
1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N,.现在测了5炉铁水,其含碳量(%)分别为
问若标准差不改变,总体平均值有无显着性变化(α=)
【解】
0010
/20.025
0.025
: 4.55;: 4.55.
5,0.05, 1.96,0.108
4.364,
(4.364 4.55)
3.851,
0.108
.
H H
n Z Z
x
x
Z
Z
Z
α
μμμμ
ασ
==≠=
=====
=
-
===-
>
所以拒绝H0,认为总体平均值有显着性变化.
2. 某种矿砂的5个样品中的含镍量(%)经测定为:
设含镍量服从正态分布,问在α=下能否接收假设:这批矿砂的含镍量为.
【解】设
0010
/20.005
0.005
: 3.25;: 3.25.
5,0.01,(1)(4) 4.6041
3.252,0.013,
(3.252 3.25)
0.344,
0.013
(4).
H H
n t n t
x s
x
t
t
t
α
μμμμ
α
==≠=
==-==
==
-
===
<
所以接受H0,认为这批矿砂的含镍量为.
3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为(克),样本方差s2=(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=).
【解】设
0010
/20.025
2
0.025
: 1.1;: 1.1.
36,0.05,(1)(35) 2.0301,36,
1.008,0.1,
6 1.7456,
1.7456(35)
2.0301.
H H
n t n t n
x s
x
t
t
t
α
μμμμ
α
==≠=
==-===
==
===
=<=
所以接受H0,认为这堆香烟(支)的重要(克)正常.
4.某公司宣称由他们生产的某种型号的电池其平均寿命为小时,标准差为小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短设电池寿命近似地服
从正态分布(取α=).【解】
01
00.05
0.05
:21.5;:21.5.
21.5,6,0.05, 1.65, 2.9,20,
(2021.5)
1.267,
2.9
1.65.
H H
n z x
x
z
z z
μμ
μασ
≥<
======
-
===-
>-=-
所以接受H0,认为电池的寿命不比该公司宣称的短.
5.测量某种溶液中的水分,从它的10个测定值得出x=(%),s=(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=下检验.
(1)H0:μ=(%);H1:μ<(%).
(2)
:
Hσ
'=(%);
1
:
Hσ
'<(%).
【解】(1)
00.05
0.05
0.5;10,0.05,(1)(9) 1.8331,
0.452,0.037,
(0.4520.5)
4.10241,
0.037
(9) 1.8331.
n t n t
x s
x
t
t t
α
μα
===-==
==
-
===-
<-=-
所以拒绝H0,接受H1.
(2)
2222
010.95
22
2
22
22
0.95
(0.04),10,0.05,(9) 3.325,
0.452,0.037,
(1)90.037
7.7006,
0.04
(9).
n
x s
n s
α
σαχχ
χ
σ
χχ
-
=====
==
-⨯
===
>
所以接受H0,拒绝H1.
6.某种导线的电阻服从正态分布N(μ,).今从新生产的一批导线中抽取9根,测其电阻,得s=欧.对于α=,能否认为这批导线电阻的标准差仍为
【解】
0010
2222
/20.0251/20.975
22
222
0.025
22
:0.005;:0.005.
9,0.05,0.008,
(8)(8)17.535,(8)(8) 2.088,
(1)80.008
20.48,(8).
(0.005)
H H
n s
n s
αα
σσσσ
α
χχχχ
χχχ
σ
-
===≠
===
====
-⨯
===>
故应拒绝H0,不能认为这批导线的电阻标准差仍为.
7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:
第一批棉纱样本:n1=200,x=0.532kg, s1=0.218kg;
第二批棉纱样本:n2=200,y=0.57kg, s2=0.176kg.
设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显着差异(α=
【解】
01211212/2120.0250.0250.025:;:.
200,0.05,
(2)(398) 1.96,
0.1981,1.918;(398).
w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显着差别.
8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为(%2)与(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=下检验方差齐性的假设
222201:;:.A B A B H H σσσσ=≠
【解】
221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,
(1,1)(4,4)9.6,
11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006
n n s s F n n F F F s F s αα=====--========
那么0.9750.025(4,4)(4,4).F F F <<
所以接受H 0,拒绝H 1.
9~12. 略。