第四章 - MOS逻辑集成电路
- 格式:ppt
- 大小:2.49 MB
- 文档页数:113
MOS与门电路详解MOS(Metal-Oxide-Semiconductor)与门电路是一种常见的数字逻辑门电路,它由金属、氧化物和半导体材料组成。
与门电路是一种基本的数字逻辑门电路,它接受两个输入信号并产生一个输出信号。
本文将详细解析MOS与门电路的工作原理以及应用。
MOS与门电路的工作原理MOS与门电路由两个MOS场效应晶体管组成,其中一个是N型MOS场效应晶体管(NMOS),另一个是P型MOS场效应晶体管(PMOS)。
NMOS和PMOS晶体管有不同的导电特性,因此它们可以被用于构建与门电路。
对于MOS与门电路,当输入信号为低电平(通常为0V)时,NMOS的通道导通,PMOS的通道截断,从而使输出信号为高电平(通常为VDD电源电压)。
当输入信号为高电平(通常为VDD电源电压)时,NMOS的通道截断,PMOS的通道导通,从而使输出信号为低电平。
MOS与门电路的工作原理可以用以下逻辑表达式表示:输出 = 输入1 AND 输入2其中,AND操作是逻辑与操作,只有当两个输入信号同时为高电平时,输出信号才为高电平,否则输出信号为低电平。
MOS与门电路的应用MOS与门电路是数字集成电路中最常用的门电路之一,它广泛应用于各种数字电路和系统中。
以下是一些常见的应用场景:1.时序电路:MOS与门电路可以用于构建各种时序电路,如时钟信号的同步与门。
在时序电路中,MOS与门相当于控制信号的开关,用于控制时钟信号的传输和同步。
2.计算机处理器:MOS与门电路是构建计算机处理器中的算术逻辑单元(ALU)和控制单元的基础。
在处理器中,MOS与门电路用于执行诸如加法、乘法、比较和控制等逻辑操作。
3.存储器:MOS与门电路也可以用于构建各种存储器,如静态随机存取存储器(SRAM)和动态随机存取存储器(DRAM)。
存储器使用与门电路来控制数据读取和写入操作。
4.通信电路:MOS与门电路常用于数字通信系统中的编码和解码电路。
它用于将信号从模拟形式转换为数字形式,并进行相关的信号处理和解码操作。
MOS管集成电路设计题目:CMOS反相器电路仿真及版图设计*名:***学号:***********专业:通信工程指导老师:***2014年6月1日摘要本文介绍了集成电路设计的相关思路、电路的实现、SPICE电路模拟软件和LASI7集成电路版图设计的相关用法。
主要讲述CMOS反相器的设计目的、设计的思路、以及设计的过程,用SPICE电路设计软件来实现对反相器的设计和仿真。
集成电路反相器的实现用到NMOS和PMOS各一个,用LASI7实现了其版图的设计。
关键字:集成电路CMOS反相器LT SPICE LASI7目录引言 ....................................................................................................................................... - 2 -一、概述 ............................................................................................................................... - 2 -1.1MOS集成电路简介.................................................................................................... - 2 -1.2MOS集成电路分类.................................................................................................... - 2 -1.3MOS集成电路的优点................................................................................................ - 3 -二、LTspice电路仿真 .......................................................................................................... - 3 -2.1SPICE简介 ................................................................................................................... - 3 -2.2CMOS反相器LT SPICE仿真过程 ..................................................................... - 3 -2.2.1实现方案 .............................................................................................................. - 3 -2.2.2 LTspice电路仿真结果 ...................................................................................... - 5 -三、LASI版图设计 ............................................................................................................... - 5 -3.1LASI软件简介........................................................................................................ - 5 -3.2版图设计原理......................................................................................................... - 6 -3.3LASI的版图设计.................................................................................................... - 6 -四、实验结果分析 ............................................................................................................... - 8 -五、结束语 ........................................................................................................................... - 8 -参考文献 ............................................................................................................................... - 8 -引言CMOS技术自身的巨大潜力是IC高速持续发展的基础。
模拟CMOS集成电路设计第四章差分放大器分解差分放大器是CMOS集成电路设计中非常重要的一部分,它在电信号放大、差分信号处理和模拟信号传输等领域具有广泛的应用。
本文将对CMOS集成电路设计中的差分放大器进行分解,以帮助读者更好地理解和应用这一核心电路模块。
差分放大器是一种由两个输入端和一个输出端组成的放大器,它的特点是能够放大两个输入信号的差值,并抑制共模信号(即两个输入信号的平均值)。
差分放大器常用的两种结构是共源共栅结构和共源共栅共源共栅结构。
下面将详细介绍这两种结构的分解方法。
1.共源共栅结构的分解共源共栅结构的特点是输入信号通过共源极放入电路,输出信号通过共栅极输出。
它的优点是输入电阻高、增益稳定,适用于高频和宽频带应用。
首先,我们来看一下共源共栅结构的电路原理图。
它由一个共源极M1、一个共栅极M2和一个负载电阻RL组成。
其中,M1的栅、漏极与输入信号相连,M2的源极与M1的源极相连,并通过电流源IB偏置。
负载电阻RL连接在M2的漏极和M1的源极之间。
接下来,我们对这个电路进行分解。
首先,将M1和M2的直流工作点确定。
假设输入信号为微弱的交流信号,可以将M1和M2视为理想可变电阻,其中M1的栅极和漏极之间的电压为vgs1,M2的栅极和源极之间的电压为vgs2、根据共源共栅和平衡电流假设,可以得到:id1 = id2 = id/2gm1vgs1 = gm2vgs2其中,id为分配给两个MOS管的总漏源电流,gm1和gm2分别为M1和M2的跨导。
然后,通过公式计算共源共栅结构的增益,可以得到:Av = -gm2RL最后,在进行差分模式和共模模式的分析。
差分模式下,输入信号为vcm-vd,其中vcm是共模信号,vd是差模信号。
共模模式下,输入信号为(vcm1+vcm2)/2、根据共模模式下输出电流为零的条件,可以得到共模抑制比CMRR与差分增益Av的关系为CMRR = Av/2gm.2.共源共栅共源共栅结构的分解共源共栅共源共栅结构是一种衍生自共源共栅结构的放大器,它包含两对共源共栅结构,具有更高的增益和更稳定的工作特性。
什么是逻辑门电路逻辑门电路的注意事项实现基本和常用逻辑运算的电子电路叫逻辑门电路。
那么你对逻辑门电路了解多少呢?以下是由店铺整理关于什么是逻辑门电路的内容,希望大家喜欢!逻辑门电路的简介定义最基本的逻辑关系是与、或、非,最基本的逻辑门是与门、或门和非门。
实现“与”运算的叫与门,实现“或”运算的叫或门,实现“非”运算的叫非门,也叫做反相器,等等。
逻辑门是在集成电路(也称:集成电路)上的基本组件。
组成逻辑门可以用电阻、电容、二极管、三极管等分立原件构成,成为分立元件门。
也可以将门电路的所有器件及连接导线制作在同一块半导体基片上,构成集成逻辑门电路。
简单的逻辑门可由晶体管组成。
这些晶体管的组合可以使代表两种信号的高低电平在通过它们之后产生高电平或者低电平的信号。
作用高、低电平可以分别代表逻辑上的“真”与“假”或二进制当中的1和0,从而实现逻辑运算。
常见的逻辑门包括“与”门,“或”门,“非”门,“异或”门(也称:互斥或)等等。
逻辑门可以组合使用实现更为复杂的逻辑运算。
类别逻辑门电路是数字电路中最基本的逻辑元件。
所谓门就是一种开关,它能按照一定的条件去控制信号的通过或不通过。
门电路的输入和输出之间存在一定的逻辑关系(因果关系),所以门电路又称为逻辑门电路。
基本逻辑关系为“与”、“或”、“非”三种。
逻辑门电路按其内部有源器件的不同可以分为三大类。
第一类为双极型晶体管逻辑门电路,包括TTL、ECL电路和I2L电路等几种类型;第二类为单极型MOS逻辑门电路,包括NMOS、PMOS、LDMOS、VDMOS、VVMOS、IGT等几种类型;第三类则是二者的组合BICMOS门电路。
常用的是CMOS逻辑门电路。
1、TTL全称Transistor-Transistor Logic,即BJT-BJT逻辑门电路,是数字电子技术中常用的一种逻辑门电路,应用较早,技术已比较成熟。
TTL主要有BJT(Bipolar Junction Transistor 即双极结型晶体管,晶体三极管)和电阻构成,具有速度快的特点。
第四章数字集成电路的基本单元电路-动态CMOS电路动态逻辑电路的特点静态电路:靠管子稳定的导通、截止来保持输出状态动态电路:靠电容来保存信息V DDV V V outΦDD AMMP2P1A BC LB Y =A .B M MN2V out动态电路的优点AN1B:相对NMOS 电路:动态电路可降低功耗,无比电路电路:用动态电路简化电路提高速度相对CMOS 电路:用动态电路简化电路,提高速度—预充求值动态CMOS 电路的构成Φ=0,预充;Φ=1,求值V DDV ΦV outA C LoutA M1B存在的问题:Φ=0,A =B =1,V V 解决了预充过程OH 小于DD下拉支路导通问题outV outΦΦ富NMOS 动态电路Φ=0,预充;Φ=1,求值富PMOS 动态电路Φ=1,预充;Φ=0,求值下降时间影响速度上升时间影响速度YCBNΦY AB C=+Y AB C=+富NMOS 电路实现富PMOS 电路实现—预充求值电路中的电荷分享问题M1V V out (0) =V (0) =0V DD ()1()M1C B1Φf L DD L V V C V C C V C )(1+=出现电荷分享的条件:时LDDL DD L f C C C C V /111+=+=Φ=0时,A =0;Φ=1时,A =1;B 始终为0。
电荷分享过程中的节点电平变化M1V outΦ极端情况:C L =C 1, 则V f =V DD /2一般情况:般情况:C L >C 11C V V V V =−−()outDD DD TN LCMOS 管电容的耦合作用对电荷分享的影响V DDV outC C GDC V A AALC C GSV 1AC LC C GS GD V 1V out 11—预充求值电路的级连举例A=B=1,C=0M P1V outΦCV1M N1V2不能用富富NMOS注意:NMOS与富NMOS(或富PMOS与富PMOS)电路直接级连。
CMOS 集成逻辑门电路特点及使用方法1.CMOS集成电路特点CMOS集成电路的特点是功耗极低、输出幅度大噪声容限大、扇出能力强。
MOS逻辑门电路主要分为NMOS、PMOS、CMOS三大类,PMOS是MOS逻辑门的早期产品,它不仅工作速度慢且使用负电源,不便与TTL电路连接,CMOS是在NMOS的基础上发展起来,它的各种性能较NMOS都好。
2.集成CMOS电路的特性参数CMOS门电路主要参数的定义同TTL电路,下面主要说明CMOS电路主要参数的特点。
(1)输出高电平U OH 与输出低电平U OLCMOS门电路U OH的理论值为电源电压U DD,U OH(min)=0.9U DD;U OL的理论值为0V,U OL(max)=0.01U DD。
所以CMOS门电路的逻辑摆幅(即高低电平之差)较大,接近电源电压U DD值。
(2)阈值电压U TH从CMOS 非门电压传输特性曲线中看出,输出高低电平的过渡区很陡,阈值电压U TH 约为U DD/2。
(3)抗干扰容限CMOS非门的关门电平U OFF为0.45U DD,开门电平U ON为0.55U DD。
因此,其高、低电平噪声容限均达0.45U DD。
其他CMOS门电路的噪声容限一般也大于0.3U DD,电源电压U DD 越大,其抗干扰能力越强。
(4)传输延迟与功耗CMOS电路的功耗很小,一般小于1 mW/门,但传输延迟较大,一般为几十ns/门,且与电源电压有关,电源电压越高,CMOS电路的传输延迟越小,功耗越大。
前面提到74HC 高速CMOS系列的工作速度已与TTL系列相当。
(5)扇出系数因CMOS电路有极高的输入阻抗,故其扇出系数很大,一般额定的扇出系数可达50。
但必须指出的是,扇出系数是指驱动CMOS电路的个数,若就灌电流负载能力和拉电流负载能力而言,CMOS电路远远低于TTL电路。
以测试过的CD4001为例,其主要特性参数见表11-12。
表3 CD4001四2或非门主要特性参数注:以上参数范围为电源电压选择5V、10V及15V的前提下所得。
CMOS逻辑门电路CMOS是互补对称MOS电路的简称(Complementary Metal-Oxide-Semiconductor),其电路结构都采用增强型PMOS管和增强型NMOS管按互补对称形式连接而成,由于CMOS 集成电路具有功耗低、工作电流电压范围宽、抗干扰能力强、输入阻抗高、扇出系数大、集成度高,成本低等一系列优点,其应用领域十分广泛,尤其在大规模集成电路中更显示出它的优越性,是目前得到广泛应用的器件。
一、CMOS反相器CMOS反相器是CMOS集成电路最基本的逻辑元件之一,其电路如图11-36所示,它是由一个增强型NMOS管T N和一个PMOS管T P按互补对称形式连接而成。
两管的栅极相连作为反相器的输入端,漏极相连作为输出端,T P管的衬底和源极相连接电源U DD,T N管的衬底与源极相连后接地,一般地U DD>(U TN+|U TP|),(U TN和|U TP|是T N和T P的开启电压)。
当输入电压u i=“0”(低电平)时,NMOS管T N截止,而PMOS管T P导通,这时T N 管的阻抗比T P管的阻抗高的多,(两阻抗比值可高达106以上),电源电压主要降在T N上,输出电压为“1”(约为U DD)。
当输入电压u i=“1”(高电平)时,T N导通,T P截止,电源电压主要降在T P上,输出u o=“0”,可见此电路实现了逻辑“非”功能。
通过CMOS反相器电路原理分析,可发现CMOS门电路相比NMOS、PMOS门电路具有如下优点:①无论输入是高电平还是低电平,T N和T P两管中总是一个管子截止,另一个导通,流过电源的电流仅是截止管的沟道泄漏电流,因此,静态功耗很小。
②两管总是一个管子充分导通,这使得输出端的等效电容C L能通过低阻抗充放电,改善了输出波形,同时提高了工作速度。
③由于输出低电平约为0V,输出高电平为U DD,因此,输出的逻辑幅度大。
CMOS反相器的电压传输特性如图11-37所示。
mos管逻辑门电路逻辑门是数字电子电路中的一种基本组件,常用于数字电路的逻辑分析和控制。
其中,mos管逻辑门电路是一种常见且重要的逻辑门电路。
本文将详细介绍mos管逻辑门电路的原理及应用。
1. 什么是mos管逻辑门电路?mos管逻辑门电路是由金属氧化物半导体场效应管(MOSFET)构成的逻辑门电路。
通过不同组合的mos管,可以实现不同的逻辑操作,例如与门、或门、非门等。
mos管逻辑门电路具有高集成度、低功耗、快速响应等特点,广泛应用于数字电路领域。
2. mos管逻辑门电路的构成与原理mos管逻辑门电路主要由P型MOS管和N型MOS管组成。
当输入信号施加在mos管的栅极上时,栅极与源极之间的电压会控制mos管内部形成的电场,从而改变导通特性。
根据mos管导通与否的不同组合方式,可以实现各种逻辑门的功能。
mos管逻辑门电路广泛应用于数字电路中的逻辑操作。
通过将多个mos管逻辑门电路串联或并联,可以构建复杂的数字逻辑电路,实现数字系统的逻辑功能。
同时,mos管逻辑门电路还可以用于时序电路的设计、数据处理、微处理器等领域。
mos管逻辑门电路具有以下特点:(1)高集成度:mos管逻辑门电路性能稳定,体积小,便于集成化设计;(2)低功耗:由于mos管的导通特性和控制方式,mos管逻辑门电路功耗较低;(3)快速响应:mos管逻辑门电路响应速度快,能够满足高速数字系统的要求。
mos管逻辑门电路是一种常见且重要的逻辑门电路,在数字电路领域起着关键作用。
本文介绍了mos管逻辑门电路的构成与原理,以及其在逻辑操作、数字系统设计和高速数字系统等方面的应用。
通过了解mos管逻辑门电路的特点,我们可以更好地理解其在数字电路中的作用与价值,为相关领域的研究与应用提供参考。
不断研究和应用mos 管逻辑门电路将推动数字电路技术的发展,为电子信息领域的进一步创新打下坚实基础。
第四章 MOS晶体管及其版图学习指导学习目标与要求1.了解集成电路中有源器件MOS晶体管的结构2.了解集成电路中有源器件MOS晶体管 版图定义、内涵及实质,掌握集成电路中有源器件MOS晶体管版图的特点3.掌握集成电路中有源器件MOS晶体管的特性、不同类型MOS晶体管版图设计及MOS晶体管版图的失配及匹配的设计技巧4.基本掌握集成电路中有源器件MOS晶体管版图设计方法学习重点1.集成电路中有源器件MOS晶体管的特性2.不同类型MOS晶体管版图设计及MOS晶体管版图的失配及匹配的设计技巧学习难点1.MOS晶体管版图设计技巧及设计方法2.MOS晶体管版图的失配及匹配的设计方法及设计准则第一节 NMOS 晶体管及版图一、 N MOS 晶体管概述1. NMOS 晶体管的简化三端电路模型:NMOS 晶体管在栅极和晶体管的其余部分之间存在绝缘层,没有直流电流从栅极流过。
电容CGS 和CGD 分别代表由栅介质产生的栅源电容和栅漏电容。
电容符号上绘制的斜线表示电容值的大小与偏置有关。
压控电流源I1为栅氧化层下从漏极经过沟道流向源极的电流。
漏极电压ID 的大小取决于栅源电压VGS 和栅漏电压VDS 。
2. 2种类型的NMOS 晶体管:(A)增强型NMOS;(B)耗尽型NMOS3. 器件跨导k 决定了在给定Vgst 的情况下流过MOS 管的漏极电流大小,可表明一个MOS管的尺寸。
器件跨导的单位是A/V2或者μA/V 2。
k’是一个常数,叫做工艺跨导, 为载流子的有效迁移率, 。
4. 阈值电压Vt 是指当背栅与源极连接在一起时使能栅介质下面恰好产生沟道所需要的栅源电压。
MOS 管的阈值电压与以下因素有关:栅极电材料,背栅掺杂,栅氧化层厚度,表面态电荷密度,氧化层中的电荷密度(固定点荷和可用电荷)。
(A) (B)k k'(/)W L =n r k 'ox t ομεε=二、 NMOS 晶体管的版图1. 自对准硅栅NMOS 晶体管的背栅由生长在P+衬底上的P 型外延层构成。