压缩机防喘振的两种方法
- 格式:pdf
- 大小:571.22 KB
- 文档页数:5
1. 压缩机的防喘振控制方案以往方案大致可分为固定极限流量和可变极限流量防喘振控制两类。
但到目前为止,对于不同摩尔质量、温度、压力的压缩气体,还没有一种切实可行的方法来有效、精确地计算压缩机的喘振线,通常都是建立一个较大的额外安全空间,保证机组在可预设的最佳工作状况下安全运行,但这种方法使得压缩机的工作效率大为降低,因此有关的专业技术人员一直在寻找更有效的方法来解决防喘振控制过程中的安全与效率问题。
TS3000 系统的成功应用,就较好地解决了此问题。
2. 喘振线作图的基本方法压缩机防喘振控制系统的基本原理,如图2 所示。
图中:Yl=Y2/Y3=Pd/Ps=(PT2+ 1.0332)/(PT1+1.0332);SP=Y4=V(Pd/Ps)+K(给定);Y5= h/Ps=FT5/(PT1+1.0332)(测量)采用Pd/Ps 和c·h/Ps 做喘振曲线,其基本形状为抛物线,而采用Pd/Ps 和(c· h/Ps )2作图时得到的喘振线则在工作点附近基本呈直线形状(简化后,C2h/Ps)。
其关系式如下:h/Ps=V·(Pd/Ps)+K式中,Pd—压缩机出口压力(绝压),kPa;Ps—压缩机入口压力(绝压),kPa;C—常数(由孔板尺寸决定),m2;h—孔板差压(与流量的关系式为Q2=H),kPa3. 工艺控制方案(1)压缩机防喘振调节画面组成(a)防喘振动态示意图,将压缩机实际工作点在防喘振示意图上相应显示。
(b)动态数据,将实际工作点数据在ESD 画面相应处显示。
(c)点击ESD 流程图上相应调节阀,可弹出PID 画面,可在线修改设定值或输出值。
(2)调节防喘振电磁阀设定3 种状态,正常运转状态下,可设定自动调节,开停工或异常状态下,可设定手动调节或强制调节。
(3)报警利用声光报警及画面报警提示。
(4)控制要点(a)开压缩机前,应先将防喘振阀强制打开至100%。
(b)当压缩机实际工作点靠近防喘振线时,应提高压缩机转速,维持正常生产,若压缩机转速已达最大,则应打开防喘振阀,并适当降低装置负荷,保证压缩机的正常运行。
4.2 离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。
此时可看到气体出口压力表、流量表的指示大幅波动。
随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。
如不及时 采取措施,将使压缩机遭到严重破坏。
例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。
下面以图 4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。
离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。
当转速n 一定时,曲线上点c 有最大压缩比,对应流量设为P Q ,该点称为喘振点。
如果工作点为B 点,要求压缩机流量继续下降,则压缩机吸入流量P Q Q < ,工作点从C 点突跳到D 点,压缩机出口压力C P 从突然下降到D P ,而出口管网压力仍为C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。
因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重复上述过程,出现工作点从B A D C B →→→→的反复循环,由于这种循环过程极迅速,因此也称为“飞动”。
由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。
2.喘振线方程喘振是离心压缩机的固有特性。
离心压缩机的喘振点与被压缩机介质的特性、转速等有关。
将不同转速下的喘振点连接,组成该压缩机的喘振线。
实际应用时,需要考虑安全余量。
喘振线方程可近似用抛物线方程描述为:θ2121Q b a p p += (4.2-1)式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流量和温度;b a 、是压缩机系数,由压缩机厂商提供。
压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统是用于防止压缩机在工作过程中出现喘振现象的一种控制系统。
喘振是指压缩机在运行过程中由于压力倒挂和气阀开闭不当等原因,使得压缩机出现杂音、振动加剧,甚至引起设备损坏的现象。
1. 振动增大:喘振会使得压缩机的振动加剧,导致设备整体的振动增大,从而造成设备寿命降低、设备故障增多等问题。
2. 噪音增大:喘振会使得压缩机发出较大的噪音,影响工作环境和工人的身心健康。
3. 能耗增加:喘振会使得压缩机的工作效率下降,从而导致能耗增加,造成能源的浪费。
4. 设备损坏:喘振会使得压缩机的工作过程不稳定,从而可能导致设备的损坏,增加维修和更换的成本。
1. 定期检修:定期检修压缩机,对机械设备、气阀等进行维护和修理,确保其正常工作。
2. 合理选型:在选用压缩机时,需要根据实际工况和设备需要,选择合适的型号和规格,减少喘振的可能性。
3. 安装调试:在安装压缩机时,需要严格按照厂家的要求进行安装和调试,确保设备的稳定运行。
4. 加装减振装置:在压缩机的进出口处加装减振装置,减少设备振动对周围环境和设备的影响。
5. 增加控制系统:增加喘振控制系统,可以监测和控制压缩机的工作状态,及时采取措施避免喘振的发生。
6. 做好运行维护:在压缩机工作过程中,要做好运行控制和维护,及时清洁设备和更换损坏的部件,确保设备的正常工作。
7. 培训工作人员:对使用压缩机的工作人员进行培训,提高其对喘振现象的识别和处理能力,减少人为操作引起的喘振问题。
通过采取上述防范措施,可以有效降低压缩机防喘振系统出现问题的可能性,提高设备的安全性和稳定性,延长设备的使用寿命,减少生产成本。
压缩机喘振原因及预防措施压缩机喘振原因及预防措施0 引言压缩机运行中一个特殊现象就是喘振。
防止喘振是压缩机运行中极其重要的问题。
许多事实证明,压缩机大量事故都与喘振有关。
喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。
喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这在国内外已经发生过了。
喘振在运行中是必须时刻提防的问题。
在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在于咳一般。
判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。
1 喘振发生的条件根据喘振原理可知,喘振在下述条件下发生:1.1 在流量小时,流量降到该转速下的喘振流量时发生压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量——喘振流量。
当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。
上述流量,出口压力,转速和喘振流量综合关系构成压缩机的特性线,也叫性能曲线。
在一定转速下使流量大于喘振流量就不会发生喘振。
1.2 管网系统内气体的压力,大于一定转速下对应的最高压力是发生喘振如果压缩机与管网系统联合运行,当系统压力大大高出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机喘振。
2 在运行中造成喘振的原因在运行中可能造成喘振的各种原因有:2.1 系统压力超高造成这种情况有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动等等。
据我公司与陕鼓技术协议,压缩机流量调节方式为回流调节+变频调速,收集相关资料整理如下:回流调节+变频调速在离心压缩机喘振控制中的应用1 喘振1.1 喘振现象当压缩机在运转过程中,流量减小到一定程度时,就会在压缩机流道中出现严重的旋转脱离,流动严重恶化,使压缩机出口压力突然严重下降。
由于压缩机总是和管网系统联合工作的,这时管网中的压力并不马上减低,这时管网中的气体压力就反大于压缩机出口处的压力,因而管网中的气体就倒流向压缩机,一直到管网中的压力下降至低于压缩机出口压力为止,这时倒流停止,压缩机又开始向管网供气,压缩机的流量又增大,压缩机又恢复正常工作。
但是当管网中的压力也恢复到原来的压力时,压缩机的流量又减小,系统中气体又产生倒流,如此周而复始,就在整个系统中产生了周期性的气流振荡现象,这种现象称为“喘振”。
上图中n为压缩机的转速,在每种转速下都有一个p2/p1值最高的点(驼峰点),将不同转速下的各个驼峰点连接起来就可以得到一条所谓的喘振边界线(上图中实线所示)。
边界线左侧部分为不稳定的喘振区,边界右侧部分则是安全运行区。
在喘振区,压缩比p2/p1随着Q的增大而增大,即出口压力p2增大,到大于管道阻力时,就会使压缩机排出量增大,并恢复到稳定的值QA。
假如流量继续下降到小于驼峰值QB,这时压缩比不仅不会增大,反而下降,即p2下降,就会出现恶性循环:压缩机排出量会继续减小,而出口压力p2会继续下降,当p2下降到低于管网压力时,瞬间将会出现气体的倒流;随着倒流的产生,管网压力下降,当管网压力下降到与压缩机出口压力相等时倒流停止;然而压缩机仍在运转,于是压缩机又将倒流回来的气体重新压回去;此后又引起p2/p1下降,被压出的气体又倒流回来。
这种现象将重复产生,这就是所谓的喘振。
1.2 产生喘振的先决条件从喘振现象可知,影响喘振的因素有:(1) 流量;(2) 转速;(3) 管网特性。
(1)流量是导致喘振的先决条件,因为当压缩机越过最小流量值时,就会在流道中产生严重的旋转脱流和脱流区急剧扩大的情况,进而发展到喘振状态。
大型透平式压缩机防喘振控制及应用随着工业生产的日益发展,大型透平式压缩机在工业生产中扮演着重要的角色。
由于透平式压缩机工作时会产生较大的振动和噪音,如果不加以控制和防范,很容易引发喘振问题,严重影响设备的安全性和正常运行。
对大型透平式压缩机的喘振控制及应用成为工程技术领域亟待解决的重要问题。
什么是喘振?喘振是由于压缩机内部气体振荡而产生的一种不稳定的振动现象。
当压缩机工作时,由于气体流动速度和压力变化引起的共振效应,会使得系统产生自激振动,即所谓的喘振。
喘振不仅会导致设备损坏,还会引起严重的噪音污染,甚至对生产车间的安全形成威胁。
大型透平式压缩机的喘振控制成为了工程技术领域的焦点关注。
在喘振控制中,需要从多个方面入手,包括结构设计、控制系统、运行管理等多个方面,才能全面有效地解决喘振问题。
对于大型透平式压缩机的结构设计来说,需要合理设计压缩机的内部结构。
通过科学的设计和优化,减小气体流动速度的变化,降低共振效应的发生,从而减少喘振的产生。
还可以通过结构的改善和优化,增加阻尼器、削减共振频率等措施来有效抑制喘振的发生。
在压缩机的结构设计阶段,就可以采取措施来预防喘振问题的产生,这是避免喘振问题的有效手段。
对于大型透平式压缩机的控制系统来说,需要建立完善的控制系统,并对其进行合理的配置和优化。
通过运用先进的控制算法和技术,实时监测和调节压缩机的工作状态,及时发现并处理喘振问题。
还可以通过自适应控制、模糊控制和神经网络控制等方法,对压缩机的振动进行智能化控制,从而有效减少喘振的发生。
还可以通过合理的控制策略和调整参数,提高控制系统的稳定性和可靠性,进一步降低喘振的风险。
对于大型透平式压缩机的运行管理而言,需要建立严格的运行管理制度,确保设备的正常运行。
通过定期的维护和保养,及时发现和解决压缩机设备的问题,确保设备处于良好的工作状态。
还可以通过对设备运行数据的分析,及时发现异常情况,采取措施进行修复和调整,有效降低喘振的发生。
压气机防喘振措施嘿,小伙伴们,今天咱们来聊聊压气机的防喘振措施。
你们知道吗,压气机喘振可是个大问题,就像是咱们跑步时突然喘不过气来一样,压气机也会出现这种情况,不过它的“喘”可是会直接影响到整个机器的运行哦!要想防止压气机喘振,咱们得从它的工作原理说起。
压气机啊,就像是个大力士,得不停地吸气、压缩、再排气,才能维持机器的正常运转。
但是呢,有时候它吸进的空气太多或太少,就会导致内部的压力不稳定,从而产生喘振现象。
所以啊,咱们得想点办法,让它吸进的空气量刚刚好。
第一个妙招,就是中间放气。
这就像是咱们吃饭,吃撑了就得松松裤腰带,让肚子舒服点。
压气机也一样,当它吸进的空气太多时,咱们就打开放气阀,让一部分空气溜出去,这样它的压力就不会太高了。
当然啦,这个放气阀得是个智能的家伙,得知道什么时候该开、什么时候该关,不然咱们可就亏大了,毕竟放出去的可都是白花花的能量啊!第二个妙招,是改变压气机的进口叶片角度。
这就像是咱们开车,遇到上坡就得加大油门,让车子更有劲。
压气机也一样,当它吸进的空气量不够时,咱们就调整进口叶片的角度,让空气更容易被吸进去。
这样一来,压气机就能吸到足够的空气,保持稳定的运行啦!第三个妙招,是双转子或三转子设计。
这就像是咱们团队合作,每个人都有自己的特长,相互配合才能完成任务。
压气机也一样,采用双转子或三转子设计后,每个转子都有自己的工作范围和最佳转速。
这样一来,无论机器运行在什么状态下,都能找到最合适的转子来配合工作,避免喘振现象的发生。
好啦,今天咱们就聊到这里啦!希望这些防喘振措施能帮到大家,让咱们的压气机都能健健康康地运行!记得哦,机器也是咱们的“小伙伴”,得好好照顾它们才行!。
转自海川论坛0 引言压缩机运行中一个特殊现象就是喘振。
防止喘振是压缩机运行中极其重要的问题。
许多事实证明,压缩机大量事故都与喘振有关。
喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。
喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这在国内外已经发生过了。
喘振在运行中是必须时刻提防的问题。
在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在于咳一般。
判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。
1 喘振发生的条件根据喘振原理可知,喘振在下述条件下发生:1.1 在流量小时,流量降到该转速下的喘振流量时发生压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量——喘振流量。
当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。
上述流量,出口压力,转速和喘振流量综合关系构成压缩机的特性线,也叫性能曲线。
在一定转速下使流量大于喘振流量就不会发生喘振。
1.2 管网系统内气体的压力,大于一定转速下对应的最高压力是发生喘振如果压缩机与管网系统联合运行,当系统压力大大高出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机喘振。
2 在运行中造成喘振的原因在运行中可能造成喘振的各种原因有:2.1 系统压力超高造成这种情况有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动等等。
1. 压缩机的防喘振控制方案以往方案大致可分为固定极限流量和可变极限流量防喘振控制两类。
但到目前为止,对于不同摩尔质量、温度、压力的压缩气体,还没有一种切实可行的方法来有效、精确地计算压缩机的喘振线,通常都是建立一个较大的额外安全空间,保证机组在可预设的最佳工作状况下安全运行,但这种方法使得压缩机的工作效率大为降低,因此有关的专业技术人员一直在寻找更有效的方法来解决防喘振控制过程中的安全与效率问题。
TS3000 系统的成功应用,就较好地解决了此问题。
2. 喘振线作图的基本方法压缩机防喘振控制系统的基本原理,如图2 所示。
图中:Yl=Y2/Y3=Pd/Ps=(PT2+ 1.0332)/(PT1+1.0332);SP=Y4=V(Pd/Ps)+K(给定);Y5= h/Ps=FT5/(PT1+1.0332)(测量)采用Pd/Ps 和c·h/Ps 做喘振曲线,其基本形状为抛物线,而采用Pd/Ps 和(c· h/Ps )2作图时得到的喘振线则在工作点附近基本呈直线形状(简化后,C2h/Ps)。
其关系式如下:h/Ps=V·(Pd/Ps)+K式中,Pd—压缩机出口压力(绝压),kPa;Ps—压缩机入口压力(绝压),kPa;C—常数(由孔板尺寸决定),m2;h—孔板差压(与流量的关系式为Q2=H),kPa3. 工艺控制方案(1)压缩机防喘振调节画面组成(a)防喘振动态示意图,将压缩机实际工作点在防喘振示意图上相应显示。
(b)动态数据,将实际工作点数据在ESD 画面相应处显示。
(c)点击ESD 流程图上相应调节阀,可弹出PID 画面,可在线修改设定值或输出值。
(2)调节防喘振电磁阀设定3 种状态,正常运转状态下,可设定自动调节,开停工或异常状态下,可设定手动调节或强制调节。
(3)报警利用声光报警及画面报警提示。
(4)控制要点(a)开压缩机前,应先将防喘振阀强制打开至100%。
(b)当压缩机实际工作点靠近防喘振线时,应提高压缩机转速,维持正常生产,若压缩机转速已达最大,则应打开防喘振阀,并适当降低装置负荷,保证压缩机的正常运行。