重物的误差是多少? 重物的误差是多少?
∆x = x ⋅ δ = 500× 0.1% = 0.5g
相对误差的特征: 相对误差的特征: ⑴大小与被测量单位无关 ⑵能反映误差的大小和方向 ⑶能反映测量工作的精细程度
相对误差比较符合实际检测需要,一般地, 相对误差比较符合实际检测需要,一般地,测 量范围越小,要求的绝对误差越小。 量范围越小,要求的绝对误差越小。比如量程为 1000Kg的秤 相对误差为1%,则测量10Kg重物的 的秤, 则测量10Kg 1000Kg的秤,相对误差为1%,则测量10Kg重物的 误差为0.1Kg 而测量500Kg重物的误差为5Kg 0.1Kg, 500Kg重物的误差为5Kg。 误差为0.1Kg,而测量500Kg重物的误差为5Kg。
对残余误差进行列表或作图进行观察。 对残余误差进行列表或作图进行观察。
U U U
0
n
差 周期性系统误差
b)残余误差之和相减法(马利科夫判据): b)残余误差之和相减法(马利科夫判据): 残余误差之和相减法 当测量次数较多时, 当测量次数较多时,将测量列前一半的残余误 差之和,减去测量列后一半的残余误差之和。 差之和,减去测量列后一半的残余误差之和。
举例说明: 举例说明: 1.测量温度的绝对误差为 例1.测量温度的绝对误差为±10C,测量水的沸点 温度100 测量的相对误差是多少? 温度1000C,测量的相对误差是多少?
1 δ = × 100 % = 1 % 100 2.某电子天平的相对误差是0.5%,测量500g 某电子天平的相对误差是0.5% 例2.某电子天平的相对误差是0.5%,测量500g
学习误差的意义: 学习误差的意义: 1.正确认识误差的性质, 1.正确认识误差的性质,分析误差产生的原 正确认识误差的性质 以便消除或减小它; 因,以便消除或减小它; 2.正确处理数据,合理计算所得结果,以便在 2.正确处理数据,合理计算所得结果, 正确处理数据 一定条件下,得到更接近真实值的数据; 一定条件下,得到更接近真实值的数据; 3.正确组成检测系统, 3.正确组成检测系统,合理设计检测系统或选 正确组成检测系统 用测量仪表,正确选择检测方法, 用测量仪表,正确选择检测方法,以便在最经济 的条件下,得到理想的测量结果. 的条件下,得到理想的测量结果.