1.5 圆周运动的角量描述 角量与线量的关系
- 格式:ppt
- 大小:279.50 KB
- 文档页数:5
济南大学大学物理大作业答案完整版第1章 质点运动学§1.3 用直角坐标表示位移、速度和加速度一.选择题和填空题1. (B)2. (B)3. 8 m10 m4. ()[]t t A t ωβωωωββsin 2cos e 22 +--()ωπ/1221+n (n = 0, 1, 2,…) 5. h 1v /(h 1-h 2)二.计算题1解: (1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m2解: =a d v /d t 4=t ,d v 4=t d t⎰⎰=vv 00d 4d tt tv=2t 2v=dx/dt=2t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)§1.5 圆周运动的角量描述 角量与线量的关系一.选择题和填空题 1. (D) 2. (C)3. 16R t 24rad /s 24. -c(b -ct )2/R二.计算题1. 解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cbc R t -=§1.6 不同参考系中的速度和加速度变换定理简介一.选择题和填空题1. (C)2. (B)3. (A)4.0321=++v v v二.计算题1.解:选取如图所示的坐标系,以V表示质点的对地速度,其x 、y 方向投影为:u gy u V x x +=+=αcos 2v ,αsin 2gy V y y ==v当y =h 时,V的大小为: ()2cos 222222αgh u gh uy x ++=+=V V V V 的方向与x 轴夹角为γ,ugh gh xy +==--ααγcos 2sin 2tg tg 11V V第2章 牛顿定律§2.3 牛顿运动定律的应用一.选择题和填空题 1. (C) 2. (C) 3. (E)4. l/cos 2θ5. θcos /mgθθcos sin gl二.计算题1. 解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f和质量为m 的物块对它的拉力F的合力提供.当M 物块有离心趋势时,f 和F 的方向相同,而当M 物块有向心运动趋势时,二者的方向相反.因M 物块相对于转台静止,故有F + f max =M r max ω2 2分 F - f max =M r min ω2 2分m 物块是静止的,因而F = m g 1分 又 f max =μs M g 1分 故2.372max =+=ωμM Mgmg r s mm 2分 4.122min=-=ωμM Mg mg r s mm 2分γ v2. 解:球A 只受法向力N 和重力g m,根据牛顿第二定律法向: R m mg N /cos 2v =-θ ① 1分 切向: t ma mg =θsin ② 1分由①式可得 )/c o s (2R g m N v +=θ 1分 根据牛顿第三定律,球对槽压力大小同上,方向沿半径向外. 1分 由②式得 θsin g a t = 1分三.理论推导与证明题 证:小球受力如图,根据牛顿第二定律tm ma F k mg d d vv ==--t mF k mg d /)(d =--v v初始条件: t = 0, v = 0.⎰⎰=-tt F)/m k mg 00d (d v -v v∴ k F mg mkt /)e1)((/---=v第3章 功和能§3.3 动能定理一.选择题和填空题 1. (B) 2. (C)3. 1.28×104 J4. 18 J 6 m/s二.计算题1. 解:用动能定理,对物体⎰⎰+==-402402d 610d 021x x x F m )(v 3分3210x x +==168解出 v =13 m/s 2分§3.4(1)势能一.选择题和填空题1.(C)2. 20kx2021kx -2021kx3. R GmM 32RG m M 3-4. 保守力的功与路径无关W = -ΔE P二.计算题1. 解:(1) 外力做的功=31 J 1分(2) 设弹力为F ′= 5.34 m/s 1分(3) 此力为保守力,因为其功的值仅与弹簧的始末态有关. 2分§3.4(2)机械能守恒定律一.选择题和填空题1. (C)2.)(mr k )2(r k -二.计算题1. (1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g lymf μ= 1分 摩擦力的功 ⎰⎰--==00d d a l a l f y gy lmy f W μ 2分=022a l y l mg -μ =2)(2a l lmg--μ 2分 (2)以链条为对象,应用质点的动能定理 ∑W =222121v v m m-其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰la x P d =la l mg x x l mg la 2)(d 22-=⎰ 2分al -a⎰⎰⋅+==21d )4.388.52(d 2x x xx x xF W ⎰⎰⋅=-==1212d d 21'2x x x x Wx F x F m v 3分3分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分 2. 解:把卸料车视为质点.设弹簧被压缩的最大长度为l ,劲度系数为k .在卸料车由最高点下滑到弹簧压缩最大这一过程中,应用功能原理有h G kl h G 12121sin 2.0-=-α ① 2分对卸料车卸料后回升过程应用功能原理,可得:22221sin 2.0kl h G h G -=-α ② 2分由式①和②联立解得: 372.030sin 2.030sin 21=-︒+︒=G G 1分第4章 冲量和动量§4.2 质点系的动量定理一.选择题和填空题 1. (D) 2. (C)3. 18 N ²s二.计算题1. 解:设在某极短的时间t ∆内落在传送带B 上矿砂的质量为m ,即m=q mt ∆,这时矿砂动量的增量为(参看附图)图1分12v v vm m m -=∆)( 1212221s m kg 98.375cos 2)(-⋅⋅∆=︒-+=∆t q m m m v v v v v 2分设传送带作用在矿砂上的力为F,根据动量定理)(v m t F ∆=∆ 于是 N 2.213.98/)(==∆∆=m q t m F v2分 方向: ︒==︒∆2975θ,sin sin )(θm m 2v v 2分由牛顿第三定律,矿砂作用在传送带B 上的(撞击)力与F大小相等方向相反,即等于2.21 N ,偏离竖直方向1︒,指向前下方. 1分§4.3 质点系动量守恒定律一.选择题和填空题 1. (C)2. 4.33 m/s ;与A 原先运动方向成 -30° 3.二.计算题1. 解:这个问题有两个物理过程:第一过程为木块M 沿光滑的固定斜面下滑,到达B 点时速度的大小为θsin gl 21=v 1分方向:沿斜面向下第二个过程:子弹与木块作完全非弹性碰撞.在斜面方向上,内力的分量远远大于外力,动量近似守恒,以斜面向上为正,则有V v v )(cos M m M m +=-1θ 3分Mm gl M m +-=θθsin cos 2v V 1分2. 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分负号表示冲量方向与0v方向相反. 2分第5章 刚体力学基础 动量矩§5.2 力矩 刚体绕定轴转动微分方程量一.选择题和填空题 1. (C) 2. (B) 3.(B)4. 6.54 rad / s 24.8 s5. 62.51.67s6. 0.25 kg ²m 2二.计算题1. 解:(1) ∵ mg -T =ma 1分TR =J β 2分 a =R β 1分 ∴ β = mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分211m m t F +∆22211m t F m m t F ∆∆++(2) ∵βθωω2202-=当ω=0 时, rad 612.0220==βωθ物体上升的高度h = R θ = 6.12³10-2 m 2分(3)==βθω210.0 rad/s方向垂直纸面向外. 2分2. 解:(1) 0=ω 0+β tβ=-ω 0 / t =-0.50 rad ²s -2 2分 (2) M r =ml 2β / 12=-0.25 N ²m 2分 (3) θ10=ω 0t +21β t 2=75 rad 1分§5.3 绕定轴转动刚体的动能 动能定理一.选择题和填空题 1. (D) 2. (A) 3.(D)4. 6π rad/s 237 J5. 角动量gl mM 334二.计算题1.解:选泥团和杆为系统,在打击过程中,系统所受外力对O 轴的合力矩为零,对定轴O 的角动量守恒,设刚打击后两者一起摆起的角速度为ω,则有 1分ωJ lm lm +=v v 110 ① 2分其中 2/l ⋅=ωv ② 1分在泥团、杆上摆过程中,选杆、泥团、地球为系统,有机械能守恒.当杆摆到最大角度θ 时有()()222121cos 121ωθJ m l g m M +=-+v ③ 3分联立解以上三式可得()()⎥⎦⎤⎢⎣⎡++-=-gl M m m M m 4331cos 221v θ 3分2.解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量: W =∆E k =212210222204)21(214)21(21n ml J n ml J π+-π+2 4分 这里的J 0是没有砝码时系统的转动惯量.(2) 过程中无外力矩作用,系统的动量矩守恒:2π(J 0+2121ml ) n 1 = 2π (J 0+2221ml ) n 2 ∴ ()()1222212102n n n l n l m J --= 4分(3) 将J 0代入W 式,得 ()2221212l l n mn W -π= 2分a§5.4 动量矩和动量矩守恒定律一.选择题和填空题 1. (C) 2. (B) 3.(C) 4.(D)5. 031ω6. ()212m R J m r J ++ω 7. ()l m M /3460+v二.计算题1. 解:将杆与两小球视为一刚体,水平飞来小球与刚体视为一系统.由角动量守恒得 1分ωJ l m lm +-=3223200v v (逆时针为正向) ① 2分 又 22)3(2)32(l m l m J += ② 1分将②代入①得 l230v =ω 1分2. 解:(1) 设当人以速率v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为ω,则人对与地固联的转轴的角速度为R R v v221-=-='ωωω ① 2分 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒. 1分设盘的质量为M ,则人的质量为M / 10,有:ωωω'⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+22022211021211021R M MR R M MR ② 2分 将①式代入②式得:R2120v+=ωω ③ 1分(2) 欲使盘对地静止,则式③必为零.即ω0 +2v / (21R )=0 2分 得: v =-21R ω0 / 2 1分式中负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致.1分3. 解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v 2分∴l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ²s -1 2分(2) -M r =(231ml +2l m ')β 2分0-ω 2=2βθ 2分∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad 2分答案 第六章 振动§6.1-1简谐振动 振幅 周期和频率 相位1-2.BB3. 1.2 s 1分; -20.9 cm/s 2分.4. 0.05 m 2分; -0.205π(或-36.9°)2分.5. )212cos(π-πT t A 2分; )312cos(π+πT t A 2分.二计算题1. 解: (1) v m = ωA ∴ω = v m / A =1.5 s -1∴ T = 2π/ω = 4.19 s 3分(2) a m = ω2A = v m ω = 4.5³10-2m/s 2 2分(3) π=21φ x = 0.02)215.1cos(π+t (SI) 3分 2. 解:(1) 1s 10/-==m k ω 1分, 63.0/2=π=ωT s 1分(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0 由 2020)/(ωv +=x A 得 3.12020-=--=x A ωv m/s 2分π=-=-31)/(tg 001x ωφv 或 4π/3 2分;∵ x 0 > 0 ,∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI) 2分§6.1-2简谐运动的能量1-3:DBD4. b ,f 2分; a ,e 2分.5. 9.90³102 J 3分§9-3旋转矢量1-6:BBBBCA7. π 1分; - π /2 2分; π/3. 2分.8. 10 cm 1分; (π/6) rad/s 1分; π/3 1分. 二.计算题1. 解:旋转矢量如图所示. 图3分由振动方程可得 π21=ω,π=∆31φ 1分667.0/=∆=∆ωφt s 1分2. 解:(1) 设振动方程为 )cos(φω+=t A x-由曲线可知 A = 10 cm , t = 0,φcos 1050=-=x ,0sin 100<-=φωv 解上面两式,可得 φ = 2π/3 2分由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得 )3/22c o s (100π+=ω(SI) 则有2/33/22π=π+ω,∴ ω = 5 π/12 2分 故所求振动方程为:)3/212/5cos(1.0π+π=t x (SI) 1分 3. 解:依题意画出旋转矢量图3分。
第四节圆周运动及其描述上一节学习了一般的平面曲线运动,本节学习一种特殊且常见的曲线运动――圆周运动。
1 圆周运动的线量描述回顾上一节,我们在自然坐标系下使用了位置、速度、加速度等量来描述曲线运动。
这些量称为线量,所以上一节对于曲线运动的描述称为线量描述。
由于圆周运动是一种特殊的曲线运动,因而上一节关于曲线运动的描述完全适用于圆周运动的描述。
所以可以把上一节的结论直接用于圆周运动的线量描述。
位置:s=s(t)速度:dsdt v=τ加速度:22d sdtτ=aτ(1a)2nvR=a n(1b)(1b)式中的R就是圆的半径,而v则是质点做圆周运动的速率。
质点作圆周运动时,如果切向加速度为0,就是所谓的匀速圆周运动......。
2 圆周运动的角量描述极坐标系2.1 角位移除了线量描述形式外,对于圆周运动还有一种常用的描述形式――角量描述。
如图1所示,以圆心为极点,沿着任意方向引出一条线作为极轴,就建立了一个坐标系,称为极坐标系。
在极坐标系中,质点的位置所对应的矢径r与极轴的夹角θ称为质点的角位置,而dθ称为dt时间内的角位移。
注意:1,角位移...d.θ.既有大小,又有方向.........(.但未必是矢量......1)。
其方向由右手定则确定,即:伸出右手,使四指沿着质点旋转的方向弯曲,与四指垂直的拇指所指的方向1矢量的严格定义是:矢量是在空间中有一定的方向和数值,并遵从平行四边形加法法则的量。
即为d θ的正方向。
2,有限大小的角位移不是矢量(因为角位移的合成不符合交换律,比如翻一本书:先x->90,再y ->90,最后z ->90得到的结果,与先x->90,再z ->90,最后y ->90得到的结果不一样),只有..当△..t . .0.时,角位移.....d .θ.才是矢量....。
3,质点作圆周运动时,其角位移只有两种可能的方向,因此可以在标量前...............................加正号或者是负号来指明角位移的方向.................。
圆周运动各物理量之间的关系一、把握基础知识 1.线速度与角速度的关系在圆周运动中,v = ,即线速度的大小等于 与的乘积。
2.圆周运动中其他各量之间的关系(1)v 、T 、r 的关系:物体在转动一周的过程中,转过的弧长Δs =2πr ,时间为T ,则v =ΔsΔt= 。
答案:ωr ,半径,角速度大小,2πrT(2)ω、T 的关系:物体在转动一周的过程中,转过的角度Δθ=2π,时间为T ,则ω=ΔθΔt= 。
(3)ω与n 的关系:物体在1 s 内转过n 转,1转转过的角度为2π,则1 s 内转过的角度Δθ=2πn ,即ω=2πn 。
答案:2πT二、重难点突破 常见的传动装置及其特点(1)同轴转动:A 点和B 点在同轴的一个圆盘上,如图5-4-2所示,圆盘转动时,它们的角速度、周期相同:ωA =ωB ,T A =T B 。
线速度与圆周半径成正比,v A v B =r R。
(2)皮带传动:A 点和B 点分别是两个轮子边缘的点,两个轮子用皮带连起来,并且皮带不打滑。
如图5-4-3所示,轮子转动时,它们的线速度大小相同:v A =v B ,周期与半径成正比,角速度与半径成反比:ωA ωB =r R ,T A T B =Rr。
并且转动方向相同。
(3)齿轮传动:A 点和B 点分别是两个齿轮边缘上的点,两个齿轮轮齿啮合。
如图所示,齿轮转动时,它们的线速度、角速度、周期存在以下定量关系:v A =v B ,T A T B =r 1r 2,ωA ωB =r 2r 1。
A 、B 两点转动方向相反。
101小贴士:在处理传动装置中各物理量间的关系时,关键是确定其相同的量(线速度或角速度),再由描述圆周运动的各物理量间的关系,确定其他各量间的关系。
趁热打铁:如图所示的装置中,已知大齿轮的半径是小齿轮半径的3倍,A 点和B 点分别在两轮边缘C 点离大轮轴距离等于小轮半径。
如果不打滑,则它们的线速度之比v A ∶v B ∶v C 为A .1∶3∶3B .1∶3∶1C .3∶3∶1D .3∶1∶3解析:A 、C 两点转动的角速度相等,由v =ωr 可知,vA ∶vC =3∶1;A 、B 两点的线速度大小相等,即vA ∶vB =1∶1,则vA ∶vB ∶vC =3∶3∶1。
第1章质点运动学基本要求1.掌握描述质点运动的基本物理量 位置矢量㊁位移㊁速度和加速度等概念及其主要性质(矢量性㊁瞬时性和相对性)㊂2.理解运动方程和轨道方程的意义,能应用直线运动方程和运动叠加原理求解简单的质点运动学问题㊂(1)已知质点运动方程,求质点的位移㊁速度和加速度等物理量;(2)已知速度或加速度及初始条件,求质点的运动方程;(3)熟练掌握匀变速直线运动㊁抛体运动的规律㊂3.掌握圆周运动中角速度㊁角加速度㊁切向加速度和法向加速度等概念㊂基本概念和基本规律1.质点在所研究的问题中,物体的大小和形状可忽略不计时,我们把它看作只具有质量而无大小㊁形状的理想物体,称为质点㊂质点是物理学中物体的理想模型㊂2.位置矢量(或矢径)r在直角坐标系中点P的位置矢量(如图1.2.1所示)表示为r=x i+y j+z k位置矢量的大小为r=|r|=x2+y2+z2位置矢量的方向用方向余弦表示为c o sα=x r,c o sβ=y r,c o sγ=z r在二维运动中(如图1.2.2所示)r=x i+y jr=|r|=x2+y2θ=a r c t a n y x式中θ是r与x轴正向间夹角㊂Ң2大学物理学习指导图 1.2.1图 1.2.23.位移位移是描述质点在t ~t +Δt 时间内位置矢量变化的物理量(如图1.2.3所示)㊂质点在Δt 内由P 1到P 2的位移等于同一时间内位置矢量的增量Δr:图 1.2.3Δr =r 2-r 1=(x 2-x 1)i +(y 2-y 1)j +(z 2-z 1)k 位移的大小|Δr |=(x 2-x 1)2+(y2-y 1)2+(z 2-z 1)2位移的方向:c o s α=Δx |Δr |, c o s β=Δy |Δr |, c o s γ=Δz |Δr | 注意:①位移Δr 与位置矢量r 的物理意义不同,r 与时刻t 对应,Δr 与Δt 对应;②|Δr |ʂΔr =r 2-r 1,Δr =x 22+y 22+z 22-x 21+y21+z 21;③位移与参照系的选择有关,具有相对性;④直线运动中的位移Δx =x 2-x 1,Δx 的正负表示位移的方向沿x 轴的正向或负向㊂4.速度速度是描述质点的位置随时间变化快慢和方向的物理量㊂(1)平均速度췍-=Δr Δt =Δx Δt i +Δy Δt j +Δz Δtk =v -x i +v -y j +v -z k 췍-称为质点在t ~t +Δt 这段时间内的平均速度㊂(2)瞬时速度췍=d r d t =d x d t i +d y d t j +dz d tk =v x i +v yj +v z k 췍称为质点在时刻t 的瞬时速度,简称速度㊂注意:①v =|췍|=v 2x +v 2y +v 2z =d x d æèçöø÷t 2+d y d æèçöø÷t 2+d z d æèçöø÷t 2ʂd r d t;②直线运动中v =d x d t,v 的正负表示速度的方向沿x轴正向㊁负向㊂(3)平均速率v -=Δs Δt式中Δs 是质点在t ~t +Δt 时间内走过的路程,v -称质点在t ~t +Δt 时间内的平均速率㊂第1章 质点运动学Ң3(4)瞬时速率v =d s d tv 称为质点在t 时刻的瞬时速率,简称速率㊂同一瞬间的瞬时速率和瞬时速度的大小是相同的㊂5.加速度加速度是描述质点运动速度变化的物理量㊂(1)平均加速度a -=Δ췍Δt =Δv x Δt i +Δv y Δt j +Δv zΔtk a -称为质点在t ~t +Δt 这段时间内的平均加速度㊂(2)瞬时加速度a =d 췍d t =d v x d t i +d v y d t j +d v z d t k =d 2x d t 2i +d 2y d t 2j +d 2z d t2k =a x i +a yj +a z k a 称为质点在t 时刻的瞬时加速度,简称加速度㊂(3)质点作平面曲线运动时的加速度,亦可用自然坐标系中的法向加速度和切向加速度表示:法向加速度a n =v 2ρ,方向指向该处的曲率中心;切向加速度a τ=d v d t,正㊁负表示切向加速度的方向与该处速度方向 同 ㊁ 反 ㊂总加速度a =a n +a τ式中,v 为质点所在处的速率;ρ为质点所在处曲率半径㊂注意:①a 的方向是速度变化的方向,即Δ췍的极限方向,一般不代表质点的运动方向㊂②区分췍和a 概念:췍=0,a 不一定为零;췍大,a 不一定大㊂③曲线运动中a n ʂ0;直线运动中a n =0,a τ=d v d t;直线运动a 的正㊁负表示加速度的方向沿选定轴的正向㊁负向㊂6.圆周运动的角量描述设质点作圆周运动,t 时刻质点在A 点,t +Δt 时刻质点运动到B 点,如图1.2.4所示㊂则质点的运动亦可用下述角量描述㊂图 1.2.4θ为半径O A 与x 轴间夹角,θA 是质点在A 点的角位置,则Δθ=θB -θAΔθ称为质点在t ~t +Δt 内对O 点的角位移㊂ω=l i mΔt ң0ΔθΔt =d θd tω称为质点在t 时刻对O 点的瞬时角速度(简称角速度)㊂α=l i mΔt ң0ΔωΔt =d ωd tα称为质点在t 时刻对O 点的瞬时角加速度(简称角加速度)㊂Ң4大学物理学习指导角量与线量间的关系:v =R ωa n =v 2R , a τ=d v d t=R α7.运动方程r (t)质点的位置矢量r (t)(或角位置θ)随时间的变化规律称为质点的运动方程,可表示为r (t )=x (t )i +y (t )j +z (t )k 或θ=θ(t)质点的运动方程在直角坐标系中亦可用分量式表示为x =x (t )y =y (t )z =z (tìîíïïï) 运动方程反映了质点的空间位置随时间的变化过程㊂从运动方程的分量式中消去t,得到x ㊁y ㊁z 间的关系式,称为质点的轨道方程㊂8.运动叠加原理一个运动可看成几个各自独立进行的运动叠加而成,这称为运动叠加原理或运动独立性原理㊂例如,抛体运动可看成水平方向的匀速直线运动和竖直方向的匀变速直线运动的叠加㊂9.几种简单的运动规律(1)直线运动的规律(假设运动发生在x 轴上)匀速直线运动方程:x =x 0+v t 匀变速直线运动方程:x =x 0+v 0t +12a t 2变速直线运动方程:x =x 0+ʏt 0v d t v =v 0+ʏt 0a dt式中x 0㊁v 0分别是t=0时质点的初始位置㊁初始速度㊂(2)圆周运动的角量描述规律匀速圆周运动:θ=θ0+ωt a n =R ω2, a τ=0 匀变速圆周运动:θ=θ0+ω0t +12αt 2a n =R ω2, a τ=d vd t=Rα第1章 质点运动学Ң5 式中θ0㊁ω0分别是t=0时质点的角位置㊁初角速度㊂(3)抛体运动规律图 1.2.5抛体运动(如图1.2.5所示)方程为x =v 0c o s θ0t y =h +v0s i n θ0t -12g t 2讨论:θ0=0时为平抛运动;θ0=π2时为竖直上抛运动;θ0=-π2且v 0=0,则为自由落体运动㊂10.运动的相对性由于位置矢量㊁速度和加速度的大小和方向都与参照系的选择有关,具有相对性,因此同一质点的运动对不同参照系的描述是不同的㊂设坐标系O x ᶄy ᶄz ᶄ相对于坐标系O x yz 的平动速度为u ,则位移Δr =Δr ᶄ+u Δt 速度췍=췍ᶄ+u或表示为췍A 对C =췍A 对B +췍B 对C上式称速度变换原理或速度合成定理㊂加速度a A 对C =a A 对B +a B 对C上式称加速度交换原理或加速度合成定理㊂解题指导本章的重点是深刻理解位置矢量㊁位移㊁速度和加速度等概念,注意其矢量性与相对性㊂本章习题一般分两大类:第一类是已知质点的运动方程,利用微分法求各物理量(速度㊁加速度等);第二类是已知速度或加速度及初始条件,利用积分法求运动方程㊂第二类问题和学会用速度合成定理处理运动的矢量性和相对性问题是本章的难点㊂在直线运动中,位移㊁速度和加速度的方向均在一直线上,建立坐标后,这些矢量可作为标量来处理㊂位移Δx ㊁速度v 和加速度a 的正负,表示其方向与选定坐标轴的正向一致或相反㊂应特别注意的是,中学阶段定量研究的是匀变速直线运动,加速度是常量㊂但大学物理中讨论的是具有普遍意义的运动,加速度不一定是常量,必须用高等数学中的微积分解题㊂由中学的 常量 到大学的 变量 ,这是学习的一个飞跃㊂质点运动学问题的一般解题程序为:(1)审清题意,确定研究对象,分析研究对象的运动情况㊂(2)选择适当的参照系,建立坐标系㊂(3)根据所求物理量的定义,列式并求解㊂或根据运动的特点和题设条件,列方程求解㊂Ң6大学物理学习指导(4)必要时进行分析讨论㊂ʌ例题1.1ɔ有一物体作直线运动,其运动方程为x=6t2-2t3,式中x的单位为m,t 的单位为s㊂求:(1)速度和加速度的表达式;(2)t=0,1,2,3,4s时物体的位置x㊁速度v和加速度a;(3)第2s内的平均速度;(4)最初4s内物体的位移㊁路程㊁平均速度和平均速率;(5)讨论物体的运动情况㊂ʌ解ɔ(1)物体的运动方程x=6t2-2t3速度v=d x d t=12t-6t2(m/s)加速度a=d v d t=12-12t(m/s2)(2)将t的各值代入上述三式,可得各时刻的x㊁v和a,见表1.3.1:表1.3.1t/s01234x/m0480-32v/(m/s)060-18-48a/(m/s2)120-12-24-36(3)第2s内平均速度v-1 2=x2-x1t2-t1=8-42-1=4(m/s)但这不能用下式来计算:v-1 2=v1+v22为什么不行?请读者自己思考㊂(4)位移Δx=x4-x0=-32-0=-32(m)式中负号表示位移的方向沿x轴负向㊂路程Δs是否等于位移Δx通常ΔsʂΔx,只有在直线运动中速度不改变方向的那段时间内,路程才与位移的大小相等㊂今由d x d t=12t-6t2=0得t=2s时开始速度改变方向,所以路程为Δs=Δs1+Δs2=|x2-x0|+|x4-x2|=|8-0|+|-32-8|=48(m)平均速度为v-0 4=x4-x0t4-t0=-324=-8(m/s)式中负号表示平均速度的方向沿x轴负向㊂第1章质点运动学Ң7平均速率为v-0 4=ΔsΔt=484=12(m/s)(5)由v=12t-6t2,可见t<2s,v>0;t=2s,v=0;t>2s,v<0㊂而由a=12-12t得t<1s,a>0;t=1s,a=0;t>1s,a<0㊂因此:t在0~1s内,v>0,a>0,物体作加速运动;t在1~2s内,v>0,a<0,物体作减速运动;t>2s,v<0,a<0,物体沿x轴负向作加速运动㊂应注意:a>0,并不表示物体作加速运动;a<0也不一定是减速运动㊂如何判断物体作加速还是减速运动呢?这应从a和v的方向是否一致来判断㊂a与v同号(即同方向),则为加速运动;a与v异号(即反向),则为减速运动㊂ʌ例题1.2ɔ已知质点的运动方程为x=3t,y=t2+t式中x㊁y以m计,t以s计㊂试求:(1)t=1s和2s时质点的位置矢量,并计算这1s内质点的位移和平均速度;(2)2s末质点的速度和加速度;(3)质点的轨道方程㊂ʌ解ɔ(1)质点的位置矢量为r=3t i+(t2+t)jt=1s时,r1=3i+(1+1)j=3i+2j(m)t=2s时,r2=6i+6j(m)根据位移的定义,这1s内的位移为Δr=r2-r1=(6-3)i+(6-2)j=3i+4j(m)或用位移的大小和方向表示为|Δr|=(Δx)2+(Δy)2=(6-3)2+(6-2)2=5(m)θ=a r c t a nΔyΔx=a r c t a n6-26-3=53ʎ式中θ是位移与x轴正向间夹角㊂根据平均速度的定义,这1s内的平均速度为췍-=ΔrΔt=3i+4j2-1=3i+4j(m/s)(2)根据速度的定义,可得速度的两个分量v x和v y:v x=d x d t=3(m/s)v y=d y d t=(2t+1)|t=2=2ˑ2+1=5(m/s)所以质点在2s末的速度为췍2=3i+5j(m/s)或用췍2的大小和췍2与x轴正向间夹角来表示为v2=v2x+v2y=32+52=5.83(m/s)Ң8大学物理学习指导θ=a r c t a n v y v x =a r c t a n 53=59ʎ式中θ是速度췍2与x 轴正向间夹角㊂根据加速度的定义,它的两个分量a x ㊁a y 分别为a x =d v xd t=0a y =d v y d t =2(m /s 2)所以a =a x i +a yj =2j (m /s 2)即加速度的大小为a =2m /s2,方向沿y 轴正向㊂由于加速度不随时间变化,所以本题中质点作匀加速运动㊂(3)从质点的运动方程中消去t ,即得轨道方程y =x æèçöø÷32+x 3即x 2+3x -9y =0ʌ例题1.3ɔ 一质点沿x 轴运动㊂已知加速度a =4t (S I ),t =0时,初速度v 0=0,初始位置x 0=10m ㊂试求质点的运动方程㊂ʌ解ɔ 根据加速度的定义a =d v d t,得a d t =4t d t =d v 对上式两边积分,得速度v 随时间t 的变化规律ʏt 04t d t =ʏv 0d v积分后代入上下限得v =2t2又根据速度的定义v =d xd t得d x =v d t =2t 2d t对上式两边积分后得质点的运动方程ʏxx 0d x =ʏt 02t 2d tx =x 0+23t 3将x 0=10m 代入上式得x =10+23t 2(m)本题属已知加速度及初始条件(即t =0时的x 0㊁v 0)求运动方程的问题,主要根据加速度和速度的定义,通过积分解决㊂需注意初始条件的运用和定积分的计算方法㊂ʌ例题1.4ɔ 一物体沿x 轴运动,开始时物体位于坐标原点,初速度v 0=3m /s ㊂若加第1章 质点运动学Ң9速度a =4x (S I),求:(1)物体经过x =2m 时的速度;(2)物体的运动方程㊂ʌ解ɔ (1)本题中加速度随x 而变化,所以物体作变速直线运动㊂根据加速度和速度的定义v =d x d t ,a =d v d t,得v d t =d xa d t =d v =ad xv所以v d v =a d x =4x d x两边积分:ʏvv 0v d v =ʏxx 04x dxv 2-v 20=4(x 2-x 20)将x 0=0,v 0=3m /s 及x =2m 代入上式得v =v 20+4x 2=32+4ˑ22=5(m /s ) (2)再根据速度的定义得d x =v d t =v 20+4x 2d t 所以ʏx 0d xv 20+4x 2=ʏt 0d t由积分公式ʏd x a 2+x2=l n (x +a 2+x 2),将上式积分,则有12l n (2x +v 20+4x 2)|x0=t2x +v 20+4x2v 0=e2t化简后得运动方程x =v 04(e 2t -e -2t )=34(e 2t -e -2t )(m )图 1.3.1需注意:通常解题时应先用文字式运算,求得结果的文字表达式后,再代入数据进行计算,得出最后的结果㊂ʌ例题1.5ɔ 如图1.3.1所示,在离水面高度h 的岸边上,有人用绳子拉船靠岸㊂船位于离岸的水平距离s 处㊂当人以v 0的匀速率收绳时,试求船的速度和加速度㊂ʌ解ɔ 本题要求췍和a ,但船的运动方程未知,因此须先根据已知条件,建立坐标后写出船的运动方程,然后根据定义求췍和a ㊂以人的收绳点为坐标原点,建立坐标系如图1.3.1所Ң10大学物理学习指导示,则船的位置矢量即运动方程为r =x i -h j式中h 是常量,x 随时间而变㊂根据速度和加速度的定义得췍=d r d t =d xd ti a =d 2r d t 2=d 2xd t2i 根据题意,人的收绳速率为v 0=-d r d t =-d d t x 2+h 2=-x x 2+h 2d x dt 这里因r =|r |随时间减小,所以d r d t<0,而v 0>0㊂由上式得v x =d x d t =-v 0x 2+h 2x所以船的速度为췍=-v 0s 2+h 2si 而a x =d v x d t =d d t -v 0x 2+h 2æèçöø÷x =d d x -v 0x 2+h 2æèçöø÷xd x dt =-h 2v 20x 3所以船的加速度为a =-h 2v 20x3i当船在x =s 处的速度和加速度为췍=-v 0s 2+h 2si a =-h 2v 20s3i讨论:(1)췍和a 的方向均沿x 轴负向,所以船向岸边作加速运动㊂(2)由a 的表达式,h 和v 0不变,s 随时间减小,|a |随时间增大,所以船作变加速运动㊂(3)船的速率v >v 0(人的收绳速率),这是严格按速度的定义求得的㊂显然v 不等于v 0在水平方向的分量㊂图 1.3.2ʌ例题1.6ɔ 一石子从倾角为α=30ʎ的斜面上的O 点抛出㊂已知初速度v 0=9.8m /s ,췍0与水平面的夹角θ=30ʎ,如图1.3.2所示㊂若忽略空气阻力,试求:(1)石子落到斜面上的B 点离O 点的距离l ;(2)石子所到达的最大高度;(3)t =1.5s 时石子的速度㊁切向加速度和法向加速度㊂ʌ解ɔ (1)石子的运动可看作水平方向的匀速直线运动和竖直方向的加速度为g 的匀变速直线运动的叠加㊂今以O 点为原点,建立坐标如图,则石子的加速度分量为。