光电成像原理与技术 第一章 绪论
- 格式:ppt
- 大小:56.12 MB
- 文档页数:78
光电成像原理与技术考试要点第一章:1. 试述光电成像技术对视见光谱域的延伸以及所受到的限制。
答:[1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题[2] 收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。
对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的图像分辨力将会很低。
因此实际上己排除了波长较长的电磁波的成像作用。
目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。
除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。
通常把这个短波限确定在X射线(Roentgen射线与y射线(Gamma射线波段。
这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。
2. 光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制?答:[1]应用:(1人眼的视觉特性(2各种辐射源及目标、背景特性(3大气光学特性对辐射传输的影响(4成像光学系统(5光辐射探测器及致冷器(6信号的电子学处理(7图像的显示[2]突破了人眼的限制:(1可以拓展人眼对不可见辐射的接受能力(2可以拓展人眼对微弱光图像的探测能力(3可以捕捉人眼无法分辨的细节(4可以将超快速现象存储下来3. 光电成像器件可分为哪两大类?各有什么特点?答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。
器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像.4. 什么是变像管?什么是像增强器?试比较二者的异同。
答:[1]变像管:接收非可见辐射图像,如红外变像管等,特点是入射图像和出射图像的光谱不同。
[2]像增强器:接收微弱可见光辐射图像,如带有微通道板的像增强器等,特点是入射图像极其微弱,经过器件内部电子图像能量增强后通过荧光屏输出人眼能够正常观看的光学图像。
光电成像原理与技术答案【篇一:光电成像原理与技术总复习】t>一、重要术语光电成像技术、像管、变像管、像增强器、摄像管(器)、明适(响)应、暗适(响)应、人眼的绝对视觉阈、人眼的阈值对比度、人眼的光谱灵敏度(光谱光视效率)、人眼的分辨率、图像的信噪比、凝视、凝视中心、瞥见时间、瞥见孔径、辐射度量、辐射功率、辐射强度、辐亮度、辐照度、辐射出照度、光度量、光能、光能密度、光通量、光亮度、光出射度,照度,发光强度,光亮度;坎(凯)德拉、流明、勒克司、视见函数、朗伯辐射体、气溶胶粒子、云、雾、霾、霭、大气消光、大气散射、大气吸收、大气能见度(能见距离)、大气透明度、电子透镜、光电子图像、亮度增益、等效背景照度、畸变、像管分辨力(率)、正(负)电子亲(素)和势、负电子亲和势、光电发射的极限、电流密度、mcp的饱和电流密度、荧光、磷光、表面态、微光夜视仪、照明系统的光强分布、成像系统的极限分辨力、选通技术、靶、惰性(上升惰性、衰减惰性)、摄像管的分辨力、动态范围、靶网、居里温度、热释电靶的单畴化、ccd的开启电压、ccd的转移效率、界面态“胖0”工作模式、光注入、电注入。
二、几个重要的效应1. 光电转换效应(内/外)2. 热释电能转换效率(应)3. 三环效应4. mcp的电阻效应/充电效应三、几个重要定律1. 朗伯余弦2. 基尔霍夫3. 黑体辐射(共4个)4. 波盖尔15. 斯托列托夫6. 爱因斯坦四、重要结构及其工作原理、特点1. 直视型光电成像器件的基本结构、工作原理2. 非直视型(电视型)光电成像器件的基本结构、工作原理3. 人眼的结构及其图像形成过程4. 大气层的基本构成、结构特点5. 像管的结构及其成像的物理过程6. 光阴极实现辐射图像光电转换的物理过程(光电发射过程)7. 电子光学系统的基本结构及其成像过程8. 荧光屏的结构及其发光过程9. 光谱纤维面板的结构及其成像原理10. 微通道板(mcp的结构及其电子图像的倍增原理)11. 主动红外成像系统结构及其成像过程12. 夜视成像系统结构及其成像过程13. 摄像管的结构及其工作原理14. 光电导摄像管的结构及其工作原理15. 热释电摄像管的结构及其工作原理16. 电子枪的结构及其工作原理17. mos电容器的结构及其电荷存储原理、18. ccd的结构及其电荷传输原理19. 埋沟ccd(bccd)的结构及其工作原理220. 线阵ccd的结构及其成像原理五、关键器件、系统的性能参数1. 表征光电成像器件的性能参数2. 大气辐射传输过程中,影响光电成像系统的因素3. 表征像管的性能参数4. 表征mcp的性能参数5. 微光成像系统的性能影响因素6. 摄像管的主要性能参数7. 热释电靶的主要性能参数8. 表征ccd的物理性能参数六、其他1. 辐射源的辐射能量所集中的波段2. mcp的自饱和特性3. 像管的直流高压电源的要求4. 受激辐射可见光的条件5. 计算第三章、第四章题型及分值分布:1. 术语解释(15分)2. 选择题(20分)3. 简述题(35分)4. 计算题(30分)各章习题:3第一章(29页):4、5、6、7第二章(53页):6、9第三章(84页):2、3、8、9、13、14第四章(106页):1、6第五章(209页):1、3、4、8、10第六章(244页):1、3、5、24、26第七章(295页):1、2、5、6、7、10、12、16、18第八章(366页):1、2、4、6、7整理by:??/???4【篇二:《光电成像原理与技术》教学大纲】英文名称:principle and technology of photoelectric imaging学分:3.5 学时:56(理论学时:56)先修课程:半导体物理、电动力学、应用光学、物理光学一、目的与任务本课程为电子科学与技术专业(光电子方向)的专业教育必修课程。
光电成像原理与技术答案【篇一:光电成像原理与技术总复习】t>一、重要术语光电成像技术、像管、变像管、像增强器、摄像管(器)、明适(响)应、暗适(响)应、人眼的绝对视觉阈、人眼的阈值对比度、人眼的光谱灵敏度(光谱光视效率)、人眼的分辨率、图像的信噪比、凝视、凝视中心、瞥见时间、瞥见孔径、辐射度量、辐射功率、辐射强度、辐亮度、辐照度、辐射出照度、光度量、光能、光能密度、光通量、光亮度、光出射度,照度,发光强度,光亮度;坎(凯)德拉、流明、勒克司、视见函数、朗伯辐射体、气溶胶粒子、云、雾、霾、霭、大气消光、大气散射、大气吸收、大气能见度(能见距离)、大气透明度、电子透镜、光电子图像、亮度增益、等效背景照度、畸变、像管分辨力(率)、正(负)电子亲(素)和势、负电子亲和势、光电发射的极限、电流密度、mcp的饱和电流密度、荧光、磷光、表面态、微光夜视仪、照明系统的光强分布、成像系统的极限分辨力、选通技术、靶、惰性(上升惰性、衰减惰性)、摄像管的分辨力、动态范围、靶网、居里温度、热释电靶的单畴化、ccd的开启电压、ccd的转移效率、界面态“胖0”工作模式、光注入、电注入。
二、几个重要的效应1. 光电转换效应(内/外)2. 热释电能转换效率(应)3. 三环效应4. mcp的电阻效应/充电效应三、几个重要定律1. 朗伯余弦2. 基尔霍夫3. 黑体辐射(共4个)4. 波盖尔15. 斯托列托夫6. 爱因斯坦四、重要结构及其工作原理、特点1. 直视型光电成像器件的基本结构、工作原理2. 非直视型(电视型)光电成像器件的基本结构、工作原理3. 人眼的结构及其图像形成过程4. 大气层的基本构成、结构特点5. 像管的结构及其成像的物理过程6. 光阴极实现辐射图像光电转换的物理过程(光电发射过程)7. 电子光学系统的基本结构及其成像过程8. 荧光屏的结构及其发光过程9. 光谱纤维面板的结构及其成像原理10. 微通道板(mcp的结构及其电子图像的倍增原理)11. 主动红外成像系统结构及其成像过程12. 夜视成像系统结构及其成像过程13. 摄像管的结构及其工作原理14. 光电导摄像管的结构及其工作原理15. 热释电摄像管的结构及其工作原理16. 电子枪的结构及其工作原理17. mos电容器的结构及其电荷存储原理、18. ccd的结构及其电荷传输原理19. 埋沟ccd(bccd)的结构及其工作原理220. 线阵ccd的结构及其成像原理五、关键器件、系统的性能参数1. 表征光电成像器件的性能参数2. 大气辐射传输过程中,影响光电成像系统的因素3. 表征像管的性能参数4. 表征mcp的性能参数5. 微光成像系统的性能影响因素6. 摄像管的主要性能参数7. 热释电靶的主要性能参数8. 表征ccd的物理性能参数六、其他1. 辐射源的辐射能量所集中的波段2. mcp的自饱和特性3. 像管的直流高压电源的要求4. 受激辐射可见光的条件5. 计算第三章、第四章题型及分值分布:1. 术语解释(15分)2. 选择题(20分)3. 简述题(35分)4. 计算题(30分)各章习题:3第一章(29页):4、5、6、7第二章(53页):6、9第三章(84页):2、3、8、9、13、14第四章(106页):1、6第五章(209页):1、3、4、8、10第六章(244页):1、3、5、24、26第七章(295页):1、2、5、6、7、10、12、16、18第八章(366页):1、2、4、6、7整理by:??/???4【篇二:《光电成像原理与技术》教学大纲】英文名称:principle and technology of photoelectric imaging学分:3.5 学时:56(理论学时:56)先修课程:半导体物理、电动力学、应用光学、物理光学一、目的与任务本课程为电子科学与技术专业(光电子方向)的专业教育必修课程。
第一章_光电成像技术概论光电成像技术是指利用光电转换技术,将物体表面反射、散射、透射的光线转化为电信号,再经过信号处理、显示等环节,最终形成清晰可见的物体图像的一种技术手段。
光电成像技术广泛应用于军事、安防、医疗、工业等领域,对于实现目标检测、监控与控制、医学影像、工业检测等方面起着重要作用。
它通过将光信号转化为电信号,能够大大提高物体探测和识别的灵敏度和准确性,并且能够在远距离和恶劣环境条件下工作。
光电成像技术的基本原理是利用光电转换器件将可见光信号转化为电信号。
常见的光电转换器件包括光电二极管、CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)等。
其中,CCD和CMOS是最为常见和重要的光电转换器件。
CCD(Charge-Coupled Device)是一种利用电荷耦合来传输和存储电荷的器件。
它由若干个微小的感光单元组成,每个感光单元可以将光信号转化为电荷信号,并将其存储在感光单元中。
随后,通过移位寄存器的操作,将电荷信号逐个传递到输出端,最终形成整个图像。
CCD具有高灵敏度、低噪声等优点,被广泛应用于照相机、摄像机等成像设备中。
除了光电转换器件,光电成像技术还需要配备适当的光源。
常见的光源包括白炽灯、荧光灯、激光等。
光源的选择要根据不同的应用需求,如照明要求、环境条件等进行合理选择。
光电成像技术不仅仅局限于可见光范围,还可以应用于红外、紫外、X射线等不同波段的成像。
例如,红外光电成像技术可以实现夜视、隐蔽目标探测、热成像等功能;X射线成像技术可以应用于医学影像、安全检查等领域。
总结起来,光电成像技术是利用光电转换器件将物体表面反射、散射、透射的光信号转化为电信号,再经过信号处理和显示等环节,最终形成清晰可见的图像的一种技术手段。
它在军事、安防、医疗、工业等领域有着广泛的应用,并且能够应用于多种波段的成像。
随着科技的不断进步和需求的增加,光电成像技术也将不断发展和完善,为人们的生活和工作带来更多的便利和安全。