电工电子技术基础教材
- 格式:doc
- 大小:6.81 MB
- 文档页数:102
《电工电子技术基础》教案一、教学目标1. 了解电工电子技术的基本概念、原理和应用。
2. 掌握电路的基本组成、分析和设计方法。
3. 熟悉常用电子元器件的特性、选用和应用。
4. 掌握电子电路的安装、调试和维护方法。
5. 培养学生的动手能力、创新意识和团队协作精神。
二、教学内容第一章:电工电子技术概述1.1 电工电子技术的定义和发展历程1.2 电工电子技术的应用领域1.3 电工电子技术的学习方法第二章:电路基本概念与分析方法2.1 电路的基本元素2.2 电路的基本定律2.3 电路的基本分析方法第三章:常用电子元器件3.1 电阻器3.2 电容器3.3 电感器3.4 二极管3.5 晶体管3.6 集成电路第四章:基本电路设计与应用4.1 放大电路4.2 滤波电路4.3 整流电路4.4 振荡电路第五章:电子电路安装与调试5.1 电子电路安装方法5.2 电子电路调试与故障排查5.3 电子电路维护与保养三、教学方法1. 采用讲授与实践相结合的教学模式,使学生掌握基本概念和原理。
2. 通过实验和项目案例,培养学生的动手能力和实际应用能力。
3. 采用小组讨论、问题解答等方式,激发学生的思考和创新意识。
4. 定期进行考核,了解学生的学习进度和掌握情况。
四、教学资源1. 教材:《电工电子技术基础》2. 实验设备:电路实验箱、电子元器件、测试仪器等3. 网络资源:相关课件、视频、案例等五、教学评价1. 平时成绩:课堂表现、作业完成情况、实验报告等2. 考试成绩:期末考试、期中考试等3. 综合评价:实践能力、创新意识、团队协作精神等六、教学安排第六章:交流电路6.1 交流电的基本概念6.2 交流电路的参数6.3 交流电路的分析和设计6.4 交流电路的实际应用第七章:电机与控制7.1 电机的基本原理和结构7.2 电机的运行和控制7.3 常用电机及其应用7.4 电机控制电路的设计与分析第八章:电力电子技术8.1 电力电子器件8.2 电力电子电路的基本拓扑8.3 电力电子电路的设计与应用8.4 电力电子技术的实际应用案例第九章:信号与系统9.1 信号的分类与分析9.2 线性系统的时域分析9.3 线性系统的频域分析9.4 数字信号处理基础第十章:电工电子技术实验与实践10.1 实验目的与要求10.2 实验内容与步骤10.3 实验数据的处理与分析六、教学方法6. 采用案例教学,结合实际应用,使学生更好地理解交流电路、电机与控制、电力电子技术等知识。
《电工电子技术基础》电子教案_电工电子技术课件_第一章教案概述:本教案旨在为学生提供电工电子技术的基本概念、原理和应用。
通过本章的学习,学生将掌握电路的基本组成、电路定律和分析方法。
教学目标:1. 了解电路的基本概念和组成;2. 掌握电路定律和分析方法;3. 能够分析和解决简单的电路问题。
教学内容:1. 电路的基本概念和组成电路的定义电路的元件电路的类型2. 电路定律欧姆定律基尔霍夫电压定律基尔霍夫电流定律3. 电路分析方法串联电路分析并联电路分析混联电路分析教学步骤:1. 导入:通过实例引入电路的概念,激发学生的兴趣。
2. 讲解:介绍电路的基本概念和组成,解释电路定律和分析方法。
3. 演示:通过示例电路图,演示电路定律的应用和电路分析的过程。
4. 练习:学生分组进行电路实验,运用所学的电路定律和分析方法解决问题。
5. 总结:回顾本节课的内容,强调重点和难点。
教学评价:1. 学生能够准确地描述电路的基本概念和组成;2. 学生能够应用电路定律进行电路分析;3. 学生能够解决简单的电路问题。
教学资源:1. 电路图和实验设备;2. 电路定律和分析方法的教材或课件;3. 练习题和解答。
扩展活动:1. 组织学生进行电路设计比赛,提高学生的实际应用能力;2. 邀请相关行业的专业人士进行讲座,拓宽学生的知识视野。
《电工电子技术基础》电子教案_电工电子技术课件_第二章教案概述:本教案主要介绍电子元件的基本原理和特性,包括电阻、电容和电感。
通过本章的学习,学生将能够理解电子元件的工作原理,并掌握它们的符号和特性。
教学目标:1. 了解电阻、电容和电感的基本原理;2. 掌握电子元件的符号和特性;3. 能够分析和解决与电子元件相关的问题。
教学内容:1. 电阻电阻的定义和符号电阻的计算和单位电阻的特性2. 电容电容的定义和符号电容的计算和单位电容的特性3. 电感电感的定义和符号电感的计算和单位电感的特性教学步骤:1. 导入:通过日常生活中的例子引入电子元件的概念。
电工电子技术基础教材(第一版)主编:马润渊张奋目录第一章安全用电 (1)第二章直流电路基础 (2)第三章正弦交流电路 (21)第四章三相电路 (27)第五章变压器 (39)第六章电动机 (54)第七章常用半导体 (59)第八章基本放大电路 (65)第九章集成运算放大器 (72)第十章直流稳压电源 (75)第十一章数制与编码 (78)第十二章逻辑代数基础 (81)第十三章门电路和组合逻辑电路 (84)第一章安全用电学习要点:了解电流对人体的危害掌握安全用电的基本知识掌握触点急救的方法1.1 触电方式安全电压:36V和12V两种。
一般情况下可采用36V的安全电压,在非常潮湿的场所或容易大面积触电的场所,如坑道内、锅炉内作业,应采用12V的安全电压。
1.1.1直接触电及其防护直接触电又可分为单相触电和两相触电。
两相触电非常危险,单相触电在电源中性点接地的情况下也是很危险的。
其防护方法主要是对带电导体加绝缘、变电所的带电设备加隔离栅栏或防护罩等设施。
1.1.2间接触电及其防护间接触电主要有跨步电压触电和接触电压触电。
虽然危险程度不如直接触电的情况,但也应尽量避免。
防护的方法是将设备正常时不带电的外露可导电部分接地,并装设接地保护等。
1.2 接地与接零电气设备的保护接地和保护接零是为了防止人体接触绝缘损坏的电气设备所引起的触电事故而采取的有效措施。
1.2.1保护接地电气设备的金属外壳或构架与土壤之间作良好的电气连接称为接地。
可分为工作接地和保护接地两种。
工作接地是为了保证电器设备在正常及事故情况下可靠工作而进行的接地,如三相四线制电源中性点的接地。
保护接地是为了防止电器设备正常运行时,不带电的金属外壳或框架因漏电使人体接触时发生触电事故而进行的接地。
适用于中性点不接地的低压电网。
1.2.2保护接零在中性点接地的电网中,由于单相对地电流较大,保护接地就不能完全避免人体触电的危险,而要采用保护接零。
将电气设备的金属外壳或构架与电网的零线相连接的保护方式叫保护接零。
电工电子技术基础教材(第一版)主编:马润渊张奋目录第一章安全用电 (1)第二章直流电路基础 (2)第三章正弦交流电路 (21)第四章三相电路 (27)第五章变压器 (39)第六章电动机 (54)第七章常用半导体 (59)第八章基本放大电路 (65)第九章集成运算放大器 (72)第十章直流稳压电源 (75)第十一章数制与编码 (78)第十二章逻辑代数基础 (81)第十三章门电路和组合逻辑电路 (84)第一章安全用电学习要点:了解电流对人体的危害掌握安全用电的基本知识掌握触点急救的方法1.1 触电方式安全电压:36V和12V两种。
一般情况下可采用36V的安全电压,在非常潮湿的场所或容易大面积触电的场所,如坑道内、锅炉内作业,应采用12V的安全电压。
1.1.1直接触电及其防护直接触电又可分为单相触电和两相触电。
两相触电非常危险,单相触电在电源中性点接地的情况下也是很危险的。
其防护方法主要是对带电导体加绝缘、变电所的带电设备加隔离栅栏或防护罩等设施。
1.1.2间接触电及其防护间接触电主要有跨步电压触电和接触电压触电。
虽然危险程度不如直接触电的情况,但也应尽量避免。
防护的方法是将设备正常时不带电的外露可导电部分接地,并装设接地保护等。
1.2 接地与接零电气设备的保护接地和保护接零是为了防止人体接触绝缘损坏的电气设备所引起的触电事故而采取的有效措施。
1.2.1保护接地电气设备的金属外壳或构架与土壤之间作良好的电气连接称为接地。
可分为工作接地和保护接地两种。
工作接地是为了保证电器设备在正常及事故情况下可靠工作而进行的接地,如三相四线制电源中性点的接地。
保护接地是为了防止电器设备正常运行时,不带电的金属外壳或框架因漏电使人体接触时发生触电事故而进行的接地。
适用于中性点不接地的低压电网。
1.2.2保护接零在中性点接地的电网中,由于单相对地电流较大,保护接地就不能完全避免人体触电的危险,而要采用保护接零。
将电气设备的金属外壳或构架与电网的零线相连接的保护方式叫保护接零。
第二章直流电路基础学习要点:了解电路的作用与组成部分;理解电路元件、电路模型的意义;理解电压、电流参考方向的概念;掌握电路中电位的计算;会判断电源和负载。
并理解三种元件的伏安关系。
掌握基尔霍夫定律,会用支路电流法求解简单的电路。
理解电压源、电流源概念,了解电压源、电流源的联接方法,并掌握其等效变换法。
掌握电阻串联、并联电路的特点及分压分流公式,会计算串并联电路中的电压、电流和等效电阻;能求解一些简单的混联电路。
2.1 电路和电路模型2.1.1电路电路是由各种元器件为实现某种应用目的、按一定方式连接而成的整体,其特征是提供了电流流动的通道。
根据电路的作用,电路可分为两类:一类是用于实现电能的传输和转换。
另一类是用于信号处理和传递。
根据电源提供的电流不同电路还可以分为直流电路和交流电路两种。
图2.1 手电筒电路综上所述,电路主要由电源、负载和传输环节等三部分组成,如图2.1所示手电筒电路即为一简单的电路组成;电源是提供电能或信号的设备,负载是消耗电能或输出信号的设备;电源与负载之间通过传输环节相连接,为了保证电路按不同的需要完成工作,在电路中还需加入适当的控制元件,如开关、主令控制器等。
2.1.2电路模型理想电路元件:突出实际电路元件的主要电磁性能,忽略次要因素的元件;把实际电路的本质特征抽象出来所形成的理想化的电路。
即为实际电路的电路模型;用一个或几个理想电路元件构成的模型去模拟一个实际电路,模型中出现的电磁想象与实际电路中的电磁现象十分接近,这个由理想电路元件组成的电路称为电路模型。
如图2.2所示电路为图2.1 图2.2 电路模型手电筒电路的电路模型。
电路的构成:电路是由某些电气设备和元器件按一定方式连接组成。
(1)电源:把其他形式的能转换成电能的装置及向电路提供能量的设备,如干电池、蓄电池、发电机等。
(2)负载:把电能转换成为其它能的装置也就是用电器即各种用电设备,如电灯、电动机、电热器等。
(3)导线:把电源和负载连接成闭合回路,常用的是铜导线和铝导线。
(4)控制和保护装置:用来控制电路的通断、保护电路的安全,使电路能够正常工作,如开关,熔断器、继电器等。
2.2 电路的基本物理量电路中的物理量主要包括电流、电压、电位、电动势以及功率。
2.2.1电流及其参考方向带电质点的定向移动形成电流。
电流的大小等于单位时间内通过导体横截面的电荷量。
电流的实际方向习惯上是指正电荷移动的方向。
电流分为两类:一是大小和方向均不随时间变化,称为恒定电流,简称直流,用I 表示。
二是大小和方向均随时间变化,称为交变电流,简称交流,用i 表示。
对于直流电流,单位时间内通过导体截面的电荷量是恒定不变的,其大小为T QI =(2-1) 对于交流,若在一个无限小的时间间隔dt 内,通过导体横截面的电荷量为dq ,则该瞬间的电流为dt dq i = (2-2) 在国际单位制(SI )中,电流的单位是安培(A )。
在复杂电路中,电流的实际方向有时难以确定。
为了便于分析计算,便引入电流参考方向的概念。
所谓电流的参考方向,就是在分析计算电路时,先任意选定某一方向,作为待求电流的方向,并根据此方向进行分析计算。
若计算结果为正,说明电流的参考方向与实际方向相同;若计算结果为负,说明电流的参考方向与实际方向相反。
图2.3表示了电流的参考方向(图中实线所示)与实际方向(图中虚线所示)之间的关系。
b(a)0>i (b) 0<i图2.3 电流参考方向与实际方向例2.1 如图2.4所示,电流的参考方向已标出,并已知I 1=-1A ,I 2=1A ,试指出电流的实际方向。
解:I 1=-1A<0,则I 1的实际方向与参考方向相反,应由点B 流向点A 。
I 2=1A>0,则I 2的实际方向与参考方向相同,由点B 流向点A 。
1I 2I图2.4 例2.1图2.2.2电压及其参考方向在电路中,电场力把单位正电荷(q )从a 点移到b 点所做的功(W )就称为a 、b 两点间的电压,也称电位差,记dq dw u ab =(2-3)对于直流,则为 Q W U AB = (2-4)电压的单位为伏特(V )。
电压的实际方向规定从高电位指向低电位,其方向可用箭头表示,也可用“+”“-”极性表示,如图2.5所示。
若用双下标表示,如ab U 表示a 指向b 。
显然ba ab U U -=。
值得注意的是电压总是针对两点而言。
RRa b a bu u图2.5 电压参考方向的设定和电流的参考方向一样,也需设定电压的参考方向。
电压的参考方向也是任意选定的,当参考方向与实际方向相同时,电压值为正;反之,电压值则为负。
例2.2 如图2.6所示,电压的参考方向已标出,并已知U 1=1V ,U 2=-1V ,试指出电压的实际方向。
解:U 1=1V>0,则U 1的实际方向与参考方向相同,由A 指向B 。
U 2=-1V<0,则U 2的实际方向与参考方向相反,应由A 指向B 。
B 1U 2U A A B图2.6 例2.2图2.2.3 电位在电路中任选一点作为参考点,则电路中某一点与参考点之间的电压称为该点的电位。
电位用符号V 或v 表示。
例如A 点的电位记为A V 或A v 。
显然,AO A V V =,AO A v v =。
电位的单位是伏特(V )。
电路中的参考点可任意选定。
当电路中有接地点时,则以地为参考点。
若没有接地点时,则选择较多导线的汇集点为参考点。
在电子线路中,通常以设备外壳为参考点。
参考点用符号“⊥”表示。
有了电位的概念后,电压也可用电位来表示,即 B A ABBA AB v v u V V U -=-= ⎭⎬⎫ (2-5)因此,电压也称为电位差。
还需指出,电路中任意两点间的电压与参考点的选择无关。
即对于不同的参考点,虽然各点的电位不同,但任意两点间的电压始终不变。
例2.3 图2.7所示的电路中,已知各元件的电压为:U 1=10V ,U 2=5V ,U 3=8V ,U 4=-23V 。
若分别选B 点与C 点为参考点,试求电路中各点的电位。
解:选B 点为参考点 ,则B V =0V101-=-==U U V AB A图2.7 例2.3图V 52===U U V CB CV 135823=+=+==U U U V DB D选C 点为参考点,则0=C VV 1551021-=--=--==U U U V AC A或V 1582334-=+-=+==U U U V AC AV 525-=-==U U V BCV 83===U U V DC D2.2.4 电动势电源力把单位正电荷由低电位点B 经电源内部移到高电位点A 克服电场力所做的功,称为电源的电动势。
电动势用E 或e 表示,即dq dw e QWE ==⎭⎬⎫ (2-6) 电动势的单位也是伏特(V )。
电动势与电压的实际方向不同,电动势的方向是从低电位指向高电位,即由“—”极指向“+”极,而电压的方向则从高电位指向低电位,即由“+”极指向“—”极。
此外,电动势只存在于电源的内部。
2.2.5功率单位时间内电场力或电源力所做的功,称为功率,用P 或p 表示。
即dt dw p TWP ==⎭⎬⎫ (2-7)若已知元件的电压和电流,功率的表达式则为ui p UI P ==⎭⎬⎫ (2-8)功率的单位是瓦特(W )。
当电流、电压为关联参考方向时,式(2-8)表示元件消耗能量。
若计算结果为正,说明电路确实消耗功率,为耗能元件。
若计算结果为负,说明电路实际产生功率,为供能元件。
当电流、电压为非关联参考方向时,则式(2-8)表示元件产生能量。
若计算结果为正,说明电路确实产生功率,为供能元件。
若计算结果为负,说明电路实际消耗功率,为耗能元件。
例2.4 (1)在图2.8(a)中,若电流均为2A ,U 1=1V ,U 2=—1V ,求该两元件消耗或产生的功率。
(2)在图2.8(b )中,若元件产生的功率为4W ,求电流I 。
(a) (b) 图2.8 例2.4图解:(1)对图2.8(a ),电流、电压为关联参考方向,元件消耗的功率为I U P 1==1×2=2W>0表明元件消耗功率,为负载。
对图2.8(b ),电流、电压为非关联参考方向,元件产生的功率为I U P 2==(-1)×2=-2W<0表明元件消耗功率,为负载。
(2)因图2.8(b )中电流、电压为非关联参考方向,且是产生功率,故I U P 2==4W 41442-=-==U I A负号表示电流的实际方向与参考方向相反。
2.3 电路的工作状态电路在不同的工作条件下,会处于不同的状态,并具有不同的特点。
电路的工作状态有三种:开路状态、负载状态和短路状态。