点到平面的距离计算(人教A版)(含答案)
- 格式:doc
- 大小:732.00 KB
- 文档页数:14
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!高中数学选择性必修第一册必备知识手册2024一轮复习【空间向量与立体几何】1、O 是直线l 上一点,在直线l 上取非零向量a r ,则对于直线l 上任意一点P ,由数乘向量的定义及向量共线的充要条件可知,存在实数l ,使得OP a l =uuu r r 。
我们把与向量a r 平行的非零向量称为直线l 的方向向量。
这样直线l 上任意一点都可以由直线l 上的一点和它的方向向量表示,也就是说,直线可以由其上一点和它的方向向量确定。
2、如果表示向量a r 的有向线段OA uuu r 所在的直线OA 与直线l 平行或重合,那么称向量a r 平行于直线l 。
1.4.2用空间向量研究距离、夹角问题第1课时距离问题学习目标1.理解点到直线、点到平面距离的公式及其推导.2.了解利用空间向量求点到直线、点到平面、直线到直线、直线到平面、平面到平面的距离的基本思想.知识点一点P 到直线l 的距离已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,设向量AP →在直线l 上的投影向量为AQ →=a ,则点P 到直线l 的距离为a 2-(a ·u )2 (如图).知识点二点P 到平面α的距离设平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点,则点P 到平面α的距离为|AP →·n ||n |(如图).思考怎样利用向量方法求直线到直线的距离、直线到平面的距离、平面到平面的距离? 答案两条直线平行,其中一条直线到另一条直线间的距离是其中一条直线上任一点到另一条直线的距离;一条直线和一个平面平行,直线到平面的距离就是这条直线上任一点到这个平面的距离;两个平面平行,平面到平面的距离就是一个平面上任一点到这个平面的距离.1.空间内有三点A (2,1,3),B (0,2,5),C (3,7,0),则点B 到AC 的中点P 的距离为() A.102B .5C.3102D .3 5 答案C2.已知直线l 过点A (1,-1,2),和l 垂直的一个向量为n =(-3,0,4),则P (3,5,0)到l 的距离为()A .5B .14C.145D.45答案C解析∵P A →=(-2,-6,2),P A →·n =(-2,-6,2)·(-3,0,4)=14,|n |=5, ∴点P 到直线l 的距离为d =|P A →·n ||n |=145.3.已知直线l 与平面α相交于点O ,A ∈l ,B 为线段OA 的中点,若点A 到平面α的距离为10,则点B 到平面α的距离为________. 答案54.已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________. 答案103解析点P 到平面α的距离 d =|P A →·n ||n |=|-2-4-4|4+4+1=103.一、点到直线的距离例1如图,在空间直角坐标系中有长方体ABCD -A ′B ′C ′D ′,AB =1,BC =2,AA ′=3,求点B 到直线A ′C 的距离.解因为AB =1,BC =2,AA ′=3,所以A ′(0,0,3),C (1,2,0),B (1,0,0), 所以直线A ′C 的方向向量A ′C ———→=(1,2, -3). 又BC →=(0,2,0),所以BC →在A ′C ———→上的投影长为|BC →·A ′C ———→||A ′C ———→|=414.所以点B 到直线A ′C 的距离d =|BC →|2-⎪⎪⎪⎪⎪⎪⎪⎪BC →·A ′C ———→|A ′C ———→|2=4-1614=2357. 反思感悟用向量法求点到直线的距离的一般步骤 (1)求直线的方向向量.(2)计算所求点与直线上某一点所构成的向量在直线的方向向量上的投影向量的长度. (3)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化. 跟踪训练1已知在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是C 1C ,D 1A 1的中点,求点A 到EF 的距离.解以D 点为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系如图所示,设DA =2,则A (2,0,0),E (0,2,1),F (1,0,2),则EF →=(1,-2,1),F A →=(1,0,-2). |EF →|=12+(-2)2+12=6,F A →·EF →=1×1+0×(-2)+(-2)×1=-1,F A →在EF →上的投影长为|F A →·EF →||EF →|=16.所以点A 到EF 的距离d =|F A →|2-⎝⎛⎭⎫162=296=1746. 二、点到平面的距离与直线到平面的距离例2如图,已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离. 解(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝⎛⎭⎫1,12,0,F ⎝⎛⎭⎫12,1,0. 设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝⎛⎭⎫x +12y ,12x +y ,z , x +y +z =1,PE →=⎝⎛⎭⎫1,12,-1,PF →=⎝⎛⎭⎫12,1,-1, 所以DH →·PE →=x +12y +12⎝⎛⎭⎫12x +y -z =54x +y -z =0. 同理,DH →·PF →=x +54y -z =0,又x +y +z =1,解得x =y =417,z =917. 所以DH →=317(2,2,3),所以|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)连接AC ,则AC ∥EF ,直线AC 到平面PEF 的距离即为点A 到平面PEF 的距离, 平面PEF 的一个法向量为n =(2,2,3), 所求距离为|AE →·n ||n |=117=1717.反思感悟用向量法求点面距的步骤 (1)建系:建立恰当的空间直角坐标系.(2)求点坐标:写出(求出)相关点的坐标.(3)求向量:求出相关向量的坐标(AP →,α内两不共线向量,平面α的法向量n ). (4)求距离d =|AP →·n ||n |.跟踪训练2如图所示,已知四棱柱ABCD -A 1B 1C 1D 1是底面边长为1的正四棱柱.若点C 到平面AB 1D 1的距离为43,求正四棱柱ABCD -A 1B 1C 1D 1的高.解设正四棱柱的高为h (h >0),建立如图所示的空间直角坐标系,有A (0,0,h ),B 1(1,0,0),D 1(0,1,0),C (1,1,h ), 则AB 1—→=(1,0,-h ),AD 1—→=(0,1,-h ),AC →=(1,1,0), 设平面AB 1D 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB 1→=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧x -hz =0,y -hz =0,取z =1,得n =(h ,h ,1),所以点C 到平面AB 1D 1的距离为d =|n ·AC →||n |=h +h +0h 2+h 2+1=43,解得h =2.故正四棱柱ABCD -A 1B 1C 1D 1的高为2.1.已知A (0, 0, 2) ,B (1, 0, 2) ,C (0, 2, 0) ,则点A 到直线BC 的距离为() A.223B .1C.2D.2 2答案A解析∵A (0, 0,2),B (1, 0,2),C (0, 2,0), AB →=(1, 0,0) ,BC →=(-1, 2,-2) , ∴点A 到直线BC 的距离为d =|AB →|2-⎝ ⎛⎭⎪⎫AB →·BC →|BC →|2=1-⎝⎛⎭⎪⎫-132=223. 2.若三棱锥P -ABC 的三条侧棱两两垂直,且满足P A =PB =PC =1,则点P 到平面ABC 的距离是() A.66B.63C.36D.33答案D解析分别以P A ,PB ,PC 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (1,0,0),B (0,1,0),C (0,0,1).可以求得平面ABC 的一个法向量为n =(1,1,1), 则d =|P A →·n ||n |=33.3.已知棱长为1的正方体ABCD -A 1B 1C 1D 1,则平面AB 1C 与平面A 1C 1D 之间的距离为() A.36B.33C.233 D.32答案B解析建立如图所示的空间直角坐标系,则A 1(1,0,0) , C 1(0,1,0) , D (0,0,1) , A (1,0,1) ,所以DA 1—→=(1,0,-1) ,DC 1—→=(0,1,-1) , AD →=(-1,0,0) ,设平面A 1C 1D 的一个法向量为m =(x ,y ,1) , 则⎩⎪⎨⎪⎧m ⊥DA 1→,m ⊥DC 1→,即⎩⎪⎨⎪⎧ x -1=0,y -1=0,解得⎩⎪⎨⎪⎧x =1,y =1,故m =(1,1,1),显然平面AB 1C ∥平面A 1C 1D ,所以平面AB 1C 与平面A 1C 1D 之间的距离d =|AD →·m ||m |=13=33.4.已知直线l 经过点A (2,3,1),且向量n =(1,0,-1)所在直线与l 垂直,则点P (4,3,2)到l 的距离为________. 答案22解析因为P A →=(-2,0,-1),又n 与l 垂直, 所以点P 到l 的距离为|P A →·n ||n |=|-2+1|2=22.5.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,则点A 到平面EFG 的距离为________. 答案33解析建系如图,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),所以AG →=(0,1,0), GE →=(-2,1,1),GF →=(-1,-1,2). 设n =(x ,y ,z )是平面EFG 的法向量,点A 到平面EFG 的距离为d ,则⎩⎪⎨⎪⎧n ·GE →=0,n ·GF →=0,所以⎩⎪⎨⎪⎧-2x +y +z =0,-x -y +2z =0,所以⎩⎪⎨⎪⎧x =z ,y =z ,令z =1,此时n =(1,1,1), 所以d =|AG →·n ||n |=13=33.即点A 到平面EFG 的距离为33.1.知识清单: (1)点到直线的距离.(2)点到平面的距离与直线到平面的距离. 2.方法归纳:数形结合、转化法.3.常见误区:对距离公式理解不到位,在使用时生硬套用.对公式推导过程的理解是应用的基础.。
高一数学必修第二册第八章《立体几何初步》单元练习题卷3(共22题)一、选择题(共10题)1.如图所示为某一平面图形的直观图,则此平面图形可能是( )A.B.C.D.2.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A.B.C.D.3.如图所示,正方体ABCD−A1B1C1D1中,点E,F,G,P,Q分别为棱AB,C1D1,D1A1,D1D,C1C的中点.则下列叙述中正确的是( )A.直线BQ∥平面EFG B.直线A1B∥平面EFGC.平面APC∥平面EFG D.平面A1BQ∥平面EFG4.如图,若Ω是长方体ABCD−A1B1C1D1被平面EFGH截去几何体EB1FHC1G后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( )A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱D.Ω是棱台5.设α,β为两个平面,则α∥β的充要条件是( )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面6.练习1.已知一个正三棱锥的高为3,如图是其底面用斜二测画法所画出的水平放置的直观图,其中OʹBʹ=OʹCʹ=1,则此三棱锥的体积为( )A.√3B.3√3C.√34D.3√347.如图,在正方体ABCD−A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F与平面D1AE的垂线垂直,则下列说法不正确的是( )A.A1F与D1E不可能平行B.A1F与BE是异面直线C.点F的轨迹是一条线段D.三棱锥F−ABD1的体积为定值8.如图,在各棱长均为1的正三棱柱ABC−A1B1C1中,M,N分别为线段A1B,B1C上的动点,且MN∥平面ACC1A1,则这样的MN有( )A.1条B.2条C.3条D.无数条9.有以下结论:①平面是处处平直的面;②平面是无限延展的;③平面的形状是平行四边形;④一个平面的厚度可以是0.001cm.其中正确结论的个数为A.1B.2C.3D.4.给10.如图,正方体ABCD−A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=√33出下列四个结论:① CE⊥BD;② 三棱锥E−BCF的体积为定值;③ △BEF在底面ABCD内的正投影是面积为定值的三角形④ 在平面ABCD内存在无数条与平面DEA1平行的直线其中,正确结论的个数是( )A.1B.2C.3D.4二、填空题(共6题)11.已知l,m,n是互不相同的直线,α,β,γ是三个不同的平面,给出下列命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β= l,β∩γ=m,γ∩α=n,l∥γ,则加m∥n.其中所有真命题的序号为12.直线与平面垂直的性质定理.注意:一条直线与一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线到这个平面的距离,如果两个平面平行,那么其中一个平面内的任意一点到另一个平面的距离都相等,我们把它叫做这两个平行平面间的距离.13.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( )(2)平行于同一条直线的两个平面平行.( )(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( )(4)若α∥β,直线a∥α,则a∥β.( )14.直线与平面平行的判定定理15.对角线互相垂直的空间四边形ABCD各边的中点分别为M,N,P,Q,则四边形MNPQ是.16.如图,正方形BCDE的边长为a,已知AB=√3BC,将△ABE沿边BE折起,折起后A点在平面BCDE上的射影为D点,关于翻折后的几何体有如下描述:a3;④ 平面ABC⊥① AB与DE所成角的正切值是√2;② AB∥CE;③ V B−ACE=16平面ADC.其中正确的有.(填写你认为正确的序号)三、解答题(共6题)17.在正方体ABCD−A1B1C1D1中,如图.(1) 求证:平面AB1D1∥平面C1BD;(2) 试找出体对角线A1C与平面AB1D1和平面C1BD的交点E,F,并证明A1E=EF=FC.18.几何中的“平面”有边界吗?用什么图形表示平面?19.如图所示,正四棱台ABCD−A1B1C1D1的上底面是边长为2的正方形,下底面是边长为4的正方形,侧棱长为2,侧面是全等的等腰梯形,求四棱台的表面积.20.如图所示的几何体中,四边形AA1B1B是边长为3的正方形,CC1=2,CC1∥AA1,这个几何体是棱柱吗?若是,指出是几棱柱;若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个侧棱长为2的三棱柱,并指出截去的几何体的特征,在立体图中画出截面.⏜所在平面垂直,M是CD⏜上异于C,21.如图,边长为2的正方形ABCD所在的平面与半圆弧CDD的点.(1) 证明:平面AMD ⊥平面BMC ;(2) 当三棱锥 M −ABC 体积最大时,求面 MAB 与面 MCD 所成二面角的正弦值.22. 如图,在四棱锥 P −ABCD 中,底面 ABCD 为梯形,PD ⊥ 底面 ABCD ,AB ∥CD ,AD ⊥CD ,AD =AB =1,BC =√2.(1) 求证:平面PBD ⊥平面PBC ;(2) 设 H 为 CD 上一点,满足 CH ⃗⃗⃗⃗⃗ =2HD ⃗⃗⃗⃗⃗⃗ ,若直线 PC 与平面 PBD 所成的角的正切值为 √63,求二面角 H −PB −C 的余弦值.答案一、选择题(共10题)1. 【答案】C【知识点】直观图2. 【答案】A【解析】对于B,易知AB∥MQ,则直线AB∥平面MNQ;对于C,易知AB∥MQ,则直线AB∥平面MNQ;对于D,易知AB∥NQ,则直线AB∥平面MNQ.故排除B,C,D,选A.【知识点】直线与平面平行关系的判定3. 【答案】B【解析】过点E,F,G的截面如图所示(H,I分别为AA1,BC的中点),因为A1B∥HE,A1B⊄平面EFG,HE⊂平面EFG,所以A1B∥平面EFG.【知识点】平面与平面平行关系的判定4. 【答案】D【解析】因为EH∥A1D1,A1D1∥B1C1,所以EH∥B1C1,又EH⊄平面BCC1B1,所以EH∥平面BCC1B1,又EH⊂平面EFGH,平面EFGH∩平面BCC1B1=FG,所以EH∥FG,又EH∥B1C1,所以Ω是棱柱,所以A,C正确;因为A1D1⊥平面ABB1A1,EH∥A1D1,所以EH⊥平面ABB1A1,又EF⊂平面ABB1A1,故EH⊥EF,所以B正确.【知识点】棱柱的截面分析、直线与平面平行关系的性质、直线与平面垂直关系的性质5. 【答案】B【解析】对于A,α内有无数条直线与β平行,α∩β或α∥β;对于B,α内有两条相交直线与β平行,α∥β;对于C,α,β平行于同一条直线,α∩β或α∥β;对于D,α,β垂直于同一平面,α∩β或α∥β.【知识点】平面与平面平行关系的判定、充分条件与必要条件6. 【答案】A【解析】由直观图可知:正三棱锥的底面是边长为2的正三角形,所以底面面积为12×2×2×√3 2=√3,所以三棱锥的体积为:13×√3×3=√3.故选:A.【知识点】直观图、棱锥的表面积与体积7. 【答案】A【解析】设平面D1AE与直线BC交于G,连接AG,EG,则G为BC的中点,分别取B1B,B1C1的中点M,N,连接A1M,MN,A1N,如图,因为A1M∥D1E,A1M⊄平面D1AE,D1E⊂平面D1AE,所以A1M∥平面D1AE,同理可得MN∥平面D1AE,又A1M,MN是平面A1MN内的两条相交直线,所以平面A1MN∥平面D1AE,而A1F∥平面D1AE,所以A1F⊂平面A1MN,得点F的轨迹为一条线段,故C正确;并由此可知,当F与M重合时,A1F与D1E平行,故A错误;因为平面A1MN∥平面D1AE,BE和平面D1AE相交,所以A1F与BE是异面直线,故B正确;因为MN∥EG,则点F到平面D1AE的距离为定值,所以三棱锥F−ABD1的体积为定值,故D正确.【知识点】直线与直线的位置关系8. 【答案】D【解析】如图,过线段A1B上任一点M作MH∥AA1,交AB于点H,过点H作HG∥AC 交BC于点G,过点G作CC1的平行线,与CB1一定有交点N,且MN∥平面ACC1A1,则这样的MN有无数条.故选D.【知识点】直线与平面平行关系的判定9. 【答案】B【解析】平面处处平直,无限延展,但是没有大小、形状、厚薄等,因此①②两种说法是正确的,③④两种说法是错误的.【知识点】平面的概念与基本性质10. 【答案】D【解析】因为BD⊥平面ACC1,所以BD⊥CE,故① 正确;因为点C到直线EF的距离是定值,点B到平面CEF的距离也是定值,所以三棱锥B﹣CEF的体积为定值,故② 正确;线段EF在底面上的正投影是线段GH,所以△BEF在底面ABCD内的投影是△BGH.因为线段EF的长是定值,所以线段GH是定值,从而△BGH的面积是定值,故③ 正确;设平面ABCD与平面DEA1的交线为l,则在平面ABCD内与直线l平行的直线有无数条,故④ 对.【知识点】直线与平面垂直关系的性质二、填空题(共6题)11. 【答案】③【解析】① 中α还可能与β相交;②中直线l与m还可能异面;③中结合线面平行的性质可以证得m∥n.【知识点】空间的平行关系12. 【答案】平行【知识点】直线与平面垂直关系的性质13. 【答案】×;×;×;×【知识点】直线与平面平行关系的判定14. 【答案】此平面内一条直线平行【知识点】直线与平面平行关系的判定15. 【答案】矩形【解析】如图所示,因为点M,N,P,Q分别是四条边的中点,AC,所以MN∥AC,且MN=12AC,PQ∥AC,且PQ=12所以MN∥PQ,且MN=PQ,因为四边形MNPQ是平行四边形,又因为AC⊥BD,NP∥BD,所以PQ⊥NP,所以四边形MNPQ是矩形.【知识点】空间中直线与直线平行16. 【答案】①③④【解析】作出折叠后的几何体直观图如图所示:因为A点在平面BCDE上的射影为D点,所以AD⊥平面BCDE.因为BC⊂平面BCDE,所以AD⊥BC.因为四边形BCDE是正方形,所以BC⊥CD,又AD∩CD=D,所以BC⊥平面ADC.又BC⊂平面ABC,所以平面ABC⊥平面ADC,故④正确;因为DE∥BC,所以∠ABC为AB与DE所成的角或其补角,因为BC⊥平面ADC,AC⊂平面ADC,所以BC⊥AC,所以tan∠ABC=ACBC,因为AB=√3BC,BC=a,所以在Rt△ABC中,AC=√AB2−BC2=√2a,所以tan∠ABC=ACBC=√2,故①正确;连接BD,CE,则CE⊥BD,又AD⊥平面BCDE,CE⊂平面BCDE,所以CE⊥AD.又BD∩AD=D,所以CE⊥平面ABD,又AB⊂平面ABD,所以CE⊥AB.故②错误;在Rt△ABE中,AB=√3a,BE=a.所以AE=√2a,又DE=a,AD⊥DE,所以AD=a,所以三棱锥B−ACE的体积V B−ACE=V A−BCE=13S△BCE⋅AD=13×12×a2×a=a36,故③正确.【知识点】直线与平面的位置关系、直线与直线的位置关系三、解答题(共6题)17. 【答案】(1) 因为在正方体ABCD−A1B1C1D1中,AD∥B1C1,AD=B1C1,所以四边形AB1C1D是平行四边形,所以AB1∥C1D.又因为C1D⊂平面C1BD,AB1⊄平面C1BD,所以AB1∥平面C1BD.同理,B1D1∥平面C1BD.又因为AB1∩B1D1=B1,AB1⊂平面AB1D1,B1D1⊂平面AB1D1,所以平面AB1D1∥平面C1BD.(2) 如图,连接A1C1,交B1D1于点O1,连接AO1,与A1C交于点E.又因为AO1⊂平面AB1D1,所以点E也在平面AB1D1内,所以点E就是A1C与平面AB1D1的交点.连接AC,交BD于点O,连接C1O,与A1C交于点F,则点F就是A1C与平面C1BD的交点.下面证明A1E=EF=FC.因为平面A1C1C∩平面AB1D1=EO1,平面A1C1C∩平面C1BD=C1F,平面AB1D1∥平面C1BD,所以EO1∥C1F,在△A1C1F中,O1是A1C1的中点,所以E是A1F的中点,即A1E=EF.同理可证OF∥AE,所以F是CE的中点,即 FC =EF ,所以 A 1E =EF =FC .【知识点】平面与平面平行关系的判定、平面与平面平行关系的性质18. 【答案】没有,平行四边形.【知识点】平面的概念与基本性质19. 【答案】因为正四棱台的上底面是边长为 2 的正方形,下底面是边长为 4 的正方形,所以上底面、下底面的面积分别是 4,16, 因为侧棱长为 2,侧面是全等的等腰梯形, 所以侧面等腰梯形的高为 √4−(4−22)2=√3,所以一个侧面等腰梯形的面积为 12×(2+4)×√3=3√3, 所以四棱台的表面积为 4+16+3√3×4=20+12√3. 【知识点】棱台的表面积与体积20. 【答案】这个几何体不是棱柱,截去的部分是一个四棱锥 C 1−EA 1B 1F ,如图所示.在四边形 ABB 1A 1 中,在 AA 1 上取点 E ,使 AE =2,在 BB 1 上取点 F 使 BF =2,连接 C 1E ,EF ,C 1F ,则过点 C 1,E ,F 的截面将几何体分成两部分,其中一部分是三棱柱 ABC −EFC 1,其侧棱长为 2.截去的部分是一个四棱锥 C 1−EA 1B 1F ,也可以从点 C 截. 【知识点】棱柱的结构特征21. 【答案】(1) 由题设知,平面CMD ⊥平面ABCD ,面CMD ∩面ABCD =CD . 因为 BC ⊥CD ,BC ⊂平面ABCD ,所以 BC ⊥平面CMD , 故 BC ⊥DM .因为 M 为 CD ⏜ 上异于 C ,D 的点,且 DC 为直径, 所以 DM ⊥CM ,又 BC ∩CM =C ,BC ⊂面BCM ,CM ⊂面BCM , 所以 DM ⊥平面BMC ,而 DM ⊂平面AMD ,故 平面AMD ⊥平面BMC .(2) 以 D 为坐标原点,DA⃗⃗⃗⃗⃗ 的方向为 x 轴正方向,建立如图所示的空间直角坐标系 D −xyz . 当三棱锥 M −ABC 体积最大时,M 为 CD⏜ 的中点. 由题设得 D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ⃗⃗⃗⃗⃗⃗ =(−2,1,1),AB⃗⃗⃗⃗⃗ =(0,2,0),DA ⃗⃗⃗⃗⃗ =(2,0,0),设 n ⃗ =(x,y,z ) 是平面 MAB 的法向量,则 {n ⃗ ⋅AM⃗⃗⃗⃗⃗⃗ =0,n ⃗ ⋅AB⃗⃗⃗⃗⃗ =0, 即 {−2x +y +z =0,2y =0.可取 n ⃗ =(1,0,2).DA ⃗⃗⃗⃗⃗ 是平面 MCD 的法向量,所以 cos⟨n ⃗ ,DA ⃗⃗⃗⃗⃗ ⟩=n⃗ ⋅DA ⃗⃗⃗⃗⃗⃗ ∣∣n ⃗ ∣∣∣∣DA⃗⃗⃗⃗⃗⃗ ∣∣=√55,sin⟨n ⃗ ,DA ⃗⃗⃗⃗⃗ ⟩=2√55, 所以面 MAB 与面 MCD 所成二面角的正弦值是 2√55.【知识点】平面与平面垂直关系的判定、二面角、利用向量的坐标运算解决立体几何问题22. 【答案】(1) 因为 AD ⊥CD ,AB ∥CD ,AD =AB =1, 所以 BD =√2. 又 BC =√2,所以 CD =2, 所以 BC ⊥BD . 因为 PD ⊥ 底面 ABCD , 所以 PD ⊥BC , 又 PD ∩BD =D , 所以 BC ⊥平面PBD . 又因为 BC ⊂平面PBC ,所以 平面PBD ⊥平面PBC .(2) 由(Ⅰ)可知 ∠BPC 为 PC 与平面 PBD 所成的角, 所以 tan∠BPC =√63, 所以 PB =√3,PD =1.由 CH ⃗⃗⃗⃗⃗ =2HD ⃗⃗⃗⃗⃗⃗ 及 CD =2 得 CH =43,DH =23. 以点 D 为坐标原点,DA ,DC ,DP 所在的直线分别为 x 轴,y 轴,z 轴建立空间直角坐标系 D −xyz ,则 B (1,1,0),P (0,0,1),C (0,2,0),H (0,23,0). 设平面 HPB 的法向量为 n ⃗ =(x 1,y 1,z 1), 则 {HP ⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =0,HB ⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =0,即 {−23y 1+z 1=0,x 1+13y 1=0.取 y 1=−3,则 n ⃗ =(1,−3,−2). 设平面 PBC 的法向量为 m ⃗⃗ =(x 2,y 2,z 2), 则 {PB ⃗⃗⃗⃗⃗ ⋅m ⃗⃗ =0,BC ⃗⃗⃗⃗⃗ ⋅m ⃗⃗ =0,即 {x 2+y 2−z 2=0,−x 2+y 2=0.取 x 2=1,则 m ⃗⃗ =(1,1,2), 又 cos⟨m ⃗⃗ ,n ⃗ ⟩=m⃗⃗⃗ ⋅n ⃗ ∣∣m ⃗⃗⃗ ∣∣∣∣n ⃗ ∣∣=−√217, 所以二面角 H −PB −C 的余弦值为√217. 【知识点】平面与平面垂直关系的判定、二面角、利用向量的坐标运算解决立体几何问题。
点到平面的距离计算(人教A版)
一、单选题(共9道,每道11分)
1.正四面体的棱长为a,E是AD的中点,则点D到平面BCE的距离为( )
A. B.
C. D.
2.在正方体中,,则点A到平面的距离为( )
A. B.
C. D.
3.如图,在棱长为1的正方体中,为中点,则点到平面
的距离为( )
A. B.
C. D.
4.如图,在三棱锥中,底面,,,为的中点,
,则点到平面的距离为( )
A. B.
C. D.
5.如图,在正三棱柱中,,则点C到平面的距离为( )
A. B.
C. D.
6.如图,三棱锥的侧棱两两垂直,且,,则点O到平面的距离为( )
A. B.
C. D.
7.如图,在四面体中,E为BC中点,,,则点E到平面ACD的距离为( )
A. B.
C. D.
8.如图,在正三棱柱中,若,D是的中点,则点到平面的距离为( )
A. B.
C. D.
9.如图,已知四边形ABCD是正方形,平面.分别是的中点,若点到平面的距离为,则点到平面的距离为( )
A. B.
C. D.。
人教A版高一数学必修第二册第八章《立体几何初步》章末练习题卷(共22题)一、选择题(共10题)1.分别在两个平面内的两条直线间的位置关系是( )A.异面B.平行C.相交D.以上都有可能2.下列说法正确的是( )A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行3.截一个几何体,所得各截面都是圆面,则这个几何体一定是( )A.圆柱B.圆锥C.球D.圆台4.下列图形中不一定是平面图形的是( )A.三角形B.菱形C.梯形D.四边相等的四边形5.如图的简单组合体是由组合而成.A.棱柱、棱台B.棱柱、棱锥C.棱锥、棱台D.棱柱、棱柱6.如图所示,观察四个几何体,其中判断正确的是( )A.是棱台B.是圆台C.不是棱柱D.是棱锥7.下面是一些命题的叙述语(A,B表示点,a表示直线α,β表示平面),其中命题和叙述方法都正确的是( )A.若A∈α,B∈α,则AB∈αB.若a∈α,a∈β,则α∩β=aC.若A∈α,a⫋α,则A∈αD.若A∉a,a⫋α,则A∉α8.下列四个命题中真命题是( )A.同垂直于一直线的两条直线互相平行B.底面各边相等,侧面都是矩形的四棱柱是正四棱柱C.过空间任一点与两条异面直线都垂直的直线有且只有一条D.过球面上任意两点的大圆有且只有一个9.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为( )A.1B.2C.3D.410.用符号表示“点A在直线l上,l在平面α内”,正确的是( )A.A∈l,l∉αB.A⊂l,l⊄αC.A⊂l,l∈αD.A∈l,l⊂α二、填空题(共6题)11.几何体体积说明棱柱V棱柱=SℎS为棱柱的 ,ℎ为棱柱的 棱锥V棱锥=13SℎS为棱锥的 ,ℎ为棱锥的 棱台V棱台=13(Sʹ+√SʹS+S)ℎSʹ,S分别为棱台的 ,ℎ为棱台的 12.如果两个球的体积之比为8:27,那么两个球的表面积之比为.13.思考辨析 判断正误棱锥的体积等于底面面积与高之积.14.已知正三棱柱ABC−A1B1C1的各条棱长都相等,M是侧棱BB1的中点,N是棱AB的中点,则∠NMC1的大小是.15.思考辨析,判断正误.如果两条直线同时平行于第三条直线,那么这两条直线互相平行.16.思考辨析,判断正误在斜二测画法中,各条线段的长度都发生了改变.( )三、解答题(共6题)17.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.18.如图是长方体的表面展开图,在这个长方体中:(1) 直线DM与平面ABQP的位置关系是怎样的?(2) 平面DCMN与平面ERFG的位置关系是怎样的?(3) 线段BC的长度是点C到平面APQB的距离吗?19.有4条长为2的线段和2条长为a的线段,用这6条线段作为棱,构成一个三棱锥.问a为何值时,可构成一个最大体积的三棱锥,最大值为多少?20.根据图形用符号表示下列点、直线、平面之间的位置关系.(1) 点P与直线AB;(2) 点C与直线AB;(3) 点M与平面AC;(4) 点A1与平面AC;(5) 直线AB与直线BC;(6) 直线AB与平面AC;(7) 平面A1B与平面AC.21.应用面面平行判断定理应具备哪些条件?22.观察(1),(2),(3)三个图形,说明它们的位置关系有什么不同,并用字母表示各个平面.答案一、选择题(共10题)1. 【答案】D【解析】分别在两个平面的两条直线平行、相交、异面都可能,可将两条直线放在长方体里进行研究.【知识点】直线与直线的位置关系2. 【答案】D【解析】等腰三角形的两底角相等,但在直观图中不相等,故A错误;正方形的直观图是平行四边形,正方形的两邻边相等,但在直观图中不相等,故B,C错误.【知识点】直观图3. 【答案】C【解析】由球的结构特征知该几何体是球.【知识点】球的结构特征4. 【答案】C【知识点】平面的概念与基本性质5. 【答案】B【解析】该简单组合体的上面是一个棱锥,下面是一个棱柱.【知识点】组合体6. 【答案】D【解析】对A,侧棱延长线不交于一点,不符合棱台的定义,所以A错误;对B,上下两个面不平行,不符合圆台的定义,所以B错误;对C,将几何体竖直起来看,符合棱柱的定义,所以C错误;对D,符合棱锥的定义,正确.【知识点】棱台的结构特征、棱锥的结构特征、棱柱的结构特征7. 【答案】C【知识点】平面的概念与基本性质8. 【答案】C【知识点】棱柱的结构特征、直线与直线的位置关系、球的结构特征9. 【答案】B【解析】设两球半径分别为R1,R2,且R1>R2,则4π(R12−R22)=48π,2π(R1+R2)=12π,所以R1−R2=2.【知识点】球的表面积与体积10. 【答案】D【解析】点A在直线l上,表示为A∈l,l在平面α内,表示为l⊂α.【知识点】平面的概念与基本性质二、填空题(共6题)11. 【答案】底面积;高;底面积;高;上、下底面面积;高【知识点】棱锥的表面积与体积、棱柱的表面积与体积、棱台的表面积与体积12. 【答案】4:9【解析】因为V1:V2=8:27=R13:R23,所以R1:R2=2:3,所以S1:S2=R12:R22=4:9.【知识点】球的表面积与体积13. 【答案】×【知识点】棱锥的表面积与体积14. 【答案】90°【解析】通过计算可知NC12=NM2+MC12,故∠NMC1=90∘.如图.【知识点】棱柱的结构特征15. 【答案】√【知识点】空间中直线与直线平行16. 【答案】×【知识点】直观图三、解答题(共6题)17. 【答案】如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.【知识点】组合体18. 【答案】(1) 根据展开图还原长方体,其示意图如图所示, 则 直线DM ∥平面ABQP .(2) 平面 DCMN 垂直于平面 ERFG .(3) 线段 BC 的长度是点 C 到平面 APQB 的距离.【知识点】平面与平面的位置关系、点面距离(线面距离、点线距离、面面距离)、直线与平面的位置关系19. 【答案】构成三棱锥,这 6 条线段作为棱有两种摆放方式.(1)2 条长为 a 的线段放在同一个三角形中.如图所示,不妨设底面 BCD 是一个边长为 2 的正三角形.欲使体积达到最大,必有 BA ⊥底面BCD ,且 BA =2,AC =AD =a =2√2, 此时 V =13×√34×22×2=23√3.(2)2 条长为 a 的线段不在同一个三角形中,此时长为 a 的两条线段必处在三棱锥的对棱,不妨设 AD =BC =a ,BD =CD =AB =AC =2. 取 BC 中点 E ,连接 AE ,DE (见下图).则 AE ⊥BC,DE ⊥BC ⇒BC ⊥平面AED ,V =13S △AED ⋅BC , 在 △AED 中,AE =DE =√4−a 24,AD =a ,S △AED =12a √4−a 24−a 24=12a √4−a 22,所以 V =16a 2√4−a 22=16√a 2a 2(16−2a 2)⋅14,由均值不等式 a 2a 2(16−2a 2)≤(163)3, 等号当且仅当 a 2=163时成立,即 a =43√3, 所以此时 V max =16√(163)3⋅14=1627√3.【知识点】棱锥的表面积与体积20. 【答案】(1) 点P∈直线AB.(2) 点C∉直线AB.(3) 点M∈平面AC.(4) 点A1∉平面AC.(5) 直线AB∩直线BC=点B.(6) 直线AB⊂平面AC.(7) 平面A1B∩平面AC=直线AB.【知识点】点、线、面的位置关系、直线与平面的位置关系、平面与平面的位置关系、直线与直线的位置关系21. 【答案】①平面α内两条相交直线a,b,即a⊂α,b⊂α,a∩b=P.②两条相交直线a,b都与β平行,即a∥β,b∥β.【知识点】平面与平面平行关系的判定22. 【答案】图(1)表示两个相交的半平面;图(2)表示开口向里的两个相交的半平面;图(3)表示开口向外的两个相交的半平面.【知识点】平面的概念与基本性质。
人教版高二上学期期中考试数学试题(一) (本卷满分150分,考试时间120分钟)测试范围:选择性必修第一册:第一章、第二章、第三章一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知两个非零向量)(111z y x a ,,=,)(222z y x b ,,=,则这两个向量在一条直线上的充要条件是( )。
A 、||||b b a a ::= B 、212121z z y y x x == C 、0212121=++z z y y x x D 、存在非零实数k ,使b k a =2.已知焦点在x 轴上的双曲线的焦距为32,焦点到渐近线的距离为2,则双曲线的方程为( )。
A 、1222=-y xB 、1222=-y xC 、1222=-x y D 、1222=-x y3.若直线m my x +=+2与圆012222=+--+y x y x 相交,则实数m 的取值范围为( )。
A 、)(∞+-∞, B 、)0(,-∞ C 、)0(∞+, D 、)0()0(∞+-∞,, 4.点)24(-,P 与圆422=+y x 上任一点连线的中点的轨迹方程是( )。
A 、1)1()2(22=++-y x B 、4)1()2(22=++-y x C 、1)1()2(22=-++y x D 、4)2()4(22=-++y x5.若P 、Q 分别为直线01243=-+y x 与0586=++y x 上任意一点,则||PQ 的最小值为( )。
A 、59 B 、1029 C 、518 D 、5296.已知椭圆C :12222=+b y a x (0>>b a )的左焦点1F ,过点1F 作倾斜角为 30的直线与圆222b y x =+相交的弦长为b 3,则椭圆的离心率为( )。
A 、21 B 、22 C 、43 D 、237.已知点1F 是抛物线C :py x 22=的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F 、2F 为焦点的双曲线上,则双曲线的离心率为( )。
一、选择题1.在棱长为2的正四面体ABCD 中,点M 满足()1AM xAB yAC x y AD =+-+-,点N 满足()1BN BA BC λλ=+-,当AM 、BN 最短时,AM MN ⋅=( ) A .43-B .43C .13-D .132.已知()1,1,2P -,()23,1,0P 、()30,1,3P ,则向量12PP 与13PP 的夹角是( ) A .30B .45C .60D .903.在空间若把平行于同一平面且长度相等的所有非零向量的起点放在同一点,则这些向量的终点构成的图形是( ) A .一个球B .一个圆C .半圆D .一个点4.在三棱锥P ABC -中,PA ,AB ,AC 两两垂直,D 为棱PC 上一动点,2PA AC ==,3AB =.当BD 与平面PAC 所成角最大时,AD 与平面PBC 所成角的正弦值为( )A .11 B .211C .311D .4115.平行六面体(底面为平行四边形的四棱柱)1111ABCD A B C D -所有棱长都为1,且1160,45,A AD A AB DAB ︒∠=∠=∠=︒则1BD =( )A .31-B .21-C .32-D .32-6.在如图所示的几何体ABCDEF 中,四边形EDCF 是正方形,ABCD 是等腰梯形,AD DE =,90ADE ∠=,//AB CD ,120ADC ∠=.给出下列三个命题:1:p 平面ABCD ⊥平面EDCF ;2:p 异面直线AF 与BD 所成角的余弦值为34;3:p 直线AF 与平面BDF 5那么,下列命题为真命题的是( ) A .12p p ∧B .13p p ⌝∧C .23p p ∧D .13p p ∧7.棱长为1的正四面体ABCD 中,点E ,F 分别是线段BC ,AD 上的点,且满足13BE BC =,14AF AD =,则AE CF ⋅=( )A .1324-B .12-C .12D .13248.已知()2,1,3a =-,()1,4,2b =--,()7,5,c λ=,若a 、b 、c 三向量共面,则实数λ等于( )A .9B .647C .657D .6679.如图所示,直三棱柱111ABC A B C -的侧棱长为3,底面边长11111A C B C ==,且11190A C B ∠=,D 点在棱1AA 上且12AD DA =,P 点在棱1C C 上,则1PD PB ⋅的最小值为( )A .52B .14-C .14D .52-10.有下列四个命题:①已知1e 和2e 是两个互相垂直的单位向量,a =21e +32e ,1b ke =-42e ,且a ⊥b ,则实数k =6;②已知正四面体O ﹣ABC 的棱长为1,则(OA OB +)•(CA CB +)=1;③已知A (1,1,0),B (0,3,0),C (2,2,3),则向量AC 在AB 上正投影的数5 ④已知1a e =-223e e +,1b e =-+32e +23e ,c =-31e +72e ({1e ,2e ,3e }为空间向量的一个基底),则向量a ,b ,c 不可能共面. 其中正确命题的个数为( ) A .1个B .2个C .3个D .4个11.点P 是棱长为1的正方体1111ABCD A B C D -的底面ABCD 上一点,则1PA PC ⋅的取值范围是( ) A .1[1,]4--B .11[,]24--C .[1,0]-D .1[,0]2-12.如图在一个120︒的二面角的棱上有两点,A B ,线段,AC BD 分别在这个二面角的两个半平面内,且均与棱AB 垂直,若2AB =,1AC =,2BD =,则CD 的长为( ).A .2B .3C .23D .413.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为( )A .8B .4C .2D .1二、填空题14.平行六面体1111ABCD A B C D -中,已知底面四边形ABCD 为正方形,且113A AB A AD π∠=∠=,其中,设1AB AD ==,1AA c =,体对角线12AC=,则c 的值是______.15.平行六面体ABCD ﹣A 1B 1C 1D 1中,棱AB 、AD 、AA 1的长均为1,∠A 1AD =∠A 1AB =∠DAB 3π=,则对角线AC 1的长为_____.16.在长方体1111ABCD A B C D -中,13,3,4AB BC AA ===,则点D 到平面11A D C 的距离是______.17.ABC ∆的三个顶点分别是(1,1,2)A -,(5,6,2)B -,(1,3,1)C -,则AC 边上的高BD 长为__________.18.正四面体ABCD 的棱长为22的球O 过点D ,MN 为球O 的一条直径,则AM AN ⋅的最小值是__________.19.已知()1,1,2AB =-,()1,1,BC z =-,()1,,1BP x y =--.若BP ⊥平面ABC ,则||CP 的最小值为___________.20.在棱长为9的正方体ABCD A B C D ''''-中,点E ,F 分别在棱AB ,DD '上,满足2AE D E DFB F '==,点P 是DD '上一点,且//PB 平面CEF ,则四棱锥P ABCD -外接球的表面积为______.21.若平面α,β的法向量分别为(4,0,3)u =,(1,1,0)v =-,则这两个平面所成的锐角的二面角的余弦值为________.22.已知(2,1,3)a →=-,(4,2,)b x →=-,(1,,2)c x →=-,若a b c →→→⎛⎫+⊥ ⎪⎝⎭,是x =________.23.已知ABC ∆的顶点A ∈平面α,点B ,C 在平面α异侧,且2AB =,3AC =若AB ,AC 与α所成的角分别为3π,6π,则线段BC 长度的取值范围为______.24.在△ABC 中,A (1,﹣1,2),B (2,1,1),C (﹣1,2,3),若向量n 与平面ABC 垂直,且n =15,则n 的坐标为_____.25.在平行六面体1111ABCD A B C D -中,已知1160BAD A AB A AD ∠=∠=∠=︒,14,3,5AD AB AA ===,1AC =__.26.点(1,A 2,1),(3,B 3,2),(1,C λ+4,3),若,AB AC 的夹角为锐角,则λ的取值范围为______.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】根据题意可知M ∈平面BCD ,N ∈直线AC ,根据题意知,当M 为BCD ∆的中心、N 为线段AC 的中点时,AM 、BN 最短,然后利用MC 、MA 表示MN ,利用空间向量数量积的运算律和定义可求出AM MN ⋅的值. 【详解】由共面向量基本定理和共线向量基本定理可知,M ∈平面BCD ,N ∈直线AC , 当AM 、BN 最短时,AM ⊥平面BCD ,BN AC ⊥, 所以,M 为BCD ∆的中心,N 为AC 的中点, 此时,242sin 60MC ==23MC ∴= AM ⊥平面BCD ,MC ⊂平面BCD ,AM MC ∴⊥,222MA AC MC ∴=-== 又()12MN MC MA =+,()2114223AM MN AM MC AM MA MA ∴⋅=⋅+⋅=-=-. 故选:A. 【点睛】本题考查空间向量数量积的计算,同时也涉及了利用共面向量和共线向量来判断四点共面和三点共线,确定动点的位置是解题的关键,考查计算能力,属于中等题.2.D解析:D 【分析】设向量12PP 与13PP 的夹角为θ,计算出向量12PP 与13PP 的坐标,然后由12131213cos PP PP PP PP θ⋅=⋅计算出cos θ的值,可得出θ的值.【详解】设向量12PP 与13PP 的夹角为θ, ()()()123,1,01,1,22,2,2PP =--=-,()()()130,1,31,1,21,2,1PP =--=-,则12131213cos 0PP PP PP PP θ⋅==⋅,所以,90θ=,故选D.【点睛】本题考查空间向量的坐标运算,考查利用向量的坐标计算向量的夹角,考查计算能力,属于中等题.3.B解析:B 【分析】利用共面向量的概念及向量的模即可得答案. 【详解】解:平行于同一平面的所有非零向量是共面向量,把它们的起点放在同一点,则终点在同一平面内,又这些向量的长度相等,则终点到起点的距离为定值.故在空间把平行于同一平面且长度相等的所有非零向量的起点放在同一点,则这些向量的终点构成的图形是一个圆. 故选:B . 【点睛】本题考查方程,关键是理解共面向量的概念,属于基础题.4.C解析:C 【分析】首先利用线面角的定义,可知当D 为PC 的中点时,AD 取得最小值,此时BD 与平面PAC 所成角最大,再以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,利用向量坐标法求线面角的正弦值. 【详解】,AB AC AB PA ⊥⊥,且PA AC A =, AB ∴⊥平面PAC ,易证AB ⊥平面PAC ,则BD 与平面PAC 所成角为ADB ∠,3tan AB ADB AD AD∠==, 当AD 取得最小值时,ADB ∠取得最大值 在等腰Rt PAC ∆中,当D 为PC 的中点时,AD 取得最小值.以A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,则(0,0,0)A ,(3,0,0)B ,(0,2,0)C ,(0,0,2)P ,(0,1,1)D , 则(0,1,1)AD =,(0,2,2)PC=-,(3,2,0)BC =-设平面PBC 的法向量为(,,)n x y z =,则0n PC n BC ⋅=⋅=,即220320y z x y -=⎧⎨-+=⎩令3y =,得(2,3,3)n =.因为311cos ,11222n AD 〈〉==⨯,所以AD 与平面PBC 所成角的正弦值为311. 故选:C 【点睛】关键点点睛:本题重点考查线面角,既考查了几何法求线面角,又考查向量法求线面角,本题关键是确定点D 的位置,首先利用线面角的定义确定点D 的位置,再利用向量法求线面角.5.C解析:C 【分析】由11,BD AD AB AA =-+平方,根据向量的数量积运算法则及性质可求出1||BD . 【详解】 如图:由11,BD AD AB AA =-+2211()BD AD AB AA ∴=-+222111222AB AD AA AB AD AB AA AD AA =++-⋅-⋅+⋅21111211cos 45cos60c 12161os 0︒︒︒-⨯⨯=⨯+++-⨯⨯⨯⨯⨯⨯ 32=-,13||2BD ∴=-故选:C 【点睛】本题主要考查了向量的加法法则、向量数量积运算性质、向量模的计算公式,考查了推理能力与计算能力,属于中档题.6.D解析:D 【分析】利用面面垂直的判定定理可判断命题1p 的真假,利用空间向量法可得判断命题2p 、3p 的真假,再利用复合命题的真假可得出结论. 【详解】90ADE ∠=,AD DE ∴⊥,四边形EDCF 是正方形,则DC DE ⊥,AD DC D ⋂=,DE ∴⊥平面ABCD ,又DE ⊂平面EDCF ,故平面ABCD ⊥平面EDCF ,故1p 为真命题;由已知//DC EF ,DC ⊄平面ABFE ,EF ⊂平面ABFE ,所以//DC 平面ABFE .又DC ⊂平面ABCD ,平面ABCD 平面ABFE AB =,故//AB CD ,又AD DE =,所以AD CD =,令1AD =,则2AB =,60BAD ∠=, 由余弦定理可得2222cos 3BD AB AD AB AD BAD =+-⋅∠=,222AD BD AB ∴+=,AD BD ∴⊥,如图,以D 为原点,以DA 的方向为x 轴正方向,建立空间直角坐标系D xyz -,则()0,0,0D ,()1,0,0A ,13,22F ⎛⎫- ⎪ ⎪⎝⎭,()3,0B , 所以33,,122FA ⎛⎫=-- ⎪ ⎪⎝⎭,()3,0=DB ,13,22DF ⎛⎫=- ⎪ ⎪⎝⎭,所以异面直线AF 与BD 所成角的余弦值为332cos ,423FA DB FA DB FA DB-⋅<>===⨯⋅2p 为假命题; 设平面BDF 的法向量为(),,n x y z =,由00n DB n DF ⎧⋅=⎨⋅=⎩,所以301302x y z ⎧=⎪⎨-+=⎪⎩,取2x =,则0y =,1z =,得()2,0,1n =,cos ,2F FA n FA A n n⋅<>===⨯⋅设直线AF 与平面BDF 所成的角为θ,则sin 5θ=.所以直线AF 与平面BDF ,故3p 为真命题. 所以13p p ∧为真命题,12p p ∧、13p p ⌝∧、23p p ∧均为假命题. 故选:D. 【点睛】本题考查复合命题的真假的判断,涉及面面垂直的判断、异面直线所成角以及线面角的计算,涉及空间向量法的应用,考查推理能力与计算能力,属于中等题.7.A解析:A 【分析】设AB a =,AC b =,AD c =,以这3个向量为空间中的基底,将AE CF ⋅转化为基底的数量积运算,即可得答案. 【详解】设AB a =,AC b =,AD c =, 由题意可得121()333AE AB BE a b a a b =+=+-=+,14CF c b =-, 则211334AE CF a b c b ⎛⎫⎛⎫⋅=+⋅- ⎪ ⎪⎝⎭⎝⎭2121163123a c a b b c b =⋅-⋅+⋅-11211111316232122324=⨯-⨯+⨯-⨯=-. 故选:A. 【点睛】本题考查空间向量基本定理的运用、数量积运算,考查空间想象能力和运算求解能力,求解时注意基底思想的运用.8.C解析:C 【分析】由题知,a 、b 、c 三个向量共面,则存在常数,p q ,使得c pa qb =+,由此能求出结果. 【详解】因为()2,1,3a =-,()1,4,2b =--,()7,5,c λ=,且a 、b 、c 三个向量共面, 所以存在,p q 使得c pa qb =+.所以()()7,5,2,4,32p q p q p q λ=--+- ,所以274532p qq pp qλ-=⎧⎪-=⎨⎪=-⎩,解得331765 ,,32777p q p qλ===-= .故选:C.【点睛】本题主要考查空间向量共面定理求参数,还运用到向量的坐标运算.9.B解析:B【分析】由题易知1,,AC BC CC两两垂直,以C为坐标原点,建立如图所示的空间直角坐标系,设()03PC a a=≤≤,可知()0,0,P a,进而可得1,PD PB的坐标,然后求得1PD PB⋅的表达式,求出最小值即可.【详解】由题意可知,1,,AC BC CC两两垂直,以C为坐标原点,建立如图所示的空间直角坐标系,则()10,1,3B,()1,0,2D,设()03PC a a=≤≤,则()0,0,P a,所以()1,0,2P aD=-,()10,1,3aPB=-,则()()2151002324a a aPD PB⎛⎫=++--=--⎪⎝⋅⎭,当52a=时,1PD PB⋅取得最小值14-.故选:B.【点睛】本题考查两个向量的数量积的应用,考查向量的坐标运算,考查学生的计算求解能力,属于中档题.10.C解析:C 【分析】利用向量的基本概念逐一进行判断,即可得出结论. 【详解】 解:①a =21e +32e ,1b ke =-42e ,且a b ⊥,2212121122(23)(4)2()(38)12()2120a b e e ke e k e k e e e k ∴=+-=+--=-=,解得6k =,所以①正确.②()()OA OB CA CB OA CA OA CB OB CA OB CB ++=+++11cos6011cos9011cos9011cos60001=⨯⨯︒+⨯⨯︒+⨯⨯︒+⨯⨯︒++=,所以②正确.③(1,1,3)AC =,(1,2,0)AB =-,向量AC 在AB 上正投影1||(1)20AC AB AB ⨯===-++③正确. ④假设向量a ,b ,c 共面,则a xb yc =+, 所以123123122(32)(37)e e e x e e e y e e -+=-+++-+, 1231232(3)(37)2e e e x y e x y e xe -+=--+++,所以13x y =--,237x y -=+,12x =, 得12x =,12y , 所以向量a ,b ,c 共面,所以④不正确. 即正确的有3个, 故选:C . 【点睛】本题考查向量的基本概念,向量垂直,共面,正投影等,属于中档题.11.D解析:D 【分析】以点D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,以1DD 所在的直线为z 轴,建立空间直角坐标系,写出各点坐标,同时设点P 的坐标为(,,)x y z ,其中01,01,1x y z ≤≤≤≤=,用坐标运算计算出1PA PC ⋅,配方后可得其最大值和最小值,即得其取值范围. 【详解】以点D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,以1DD 所在的直线为z 轴,建立空间直角坐标系,如图所示;则点1(1,0,0),(0,1,1)A C 设点P 的坐标为(,,)x y z ,由题意可得 01,01,1x y z ≤≤≤≤=,1(1,,1),(,1,0)PA x y PC x y ∴=---=--22221111(1)(1)0222PA PC x x y y x x y y x y ⎛⎫⎛⎫∴⋅=----+=-+-=-+-- ⎪ ⎪⎝⎭⎝⎭, 由二次函数的性质可得,当12x y ==时1PA PC ⋅取得最小值为12-;当0x =或1,且0y =或1时,1PA PC ⋅取得最大值为0, 则1PA PC ⋅的取值范围是1,02⎡⎤-⎢⎥⎣⎦故选D .【点睛】本题考查空间向量的数量积运算,解题方法量建立空间直角坐标系,引入坐标后,把向量的数量积用坐标表示出来,然后利用函数的性质求得最大值和最小值.12.B解析:B 【分析】由CD CA AB BD =++,两边平方后展开整理,即可求得2CD ,则CD 的长可求. 【详解】 解:CD CA AB BD =++,∴2222222CD CA AB BD CA AB CA BD AB BD =+++++,CA AB ⊥,BD AB ⊥,∴0CA AB =,0BD AB =,()1||||cos 1801201212CA BD CA BD =︒-︒=⨯⨯=.∴2124219CD =+++⨯=,||3CD ∴=,故选:B . 【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.13.D【分析】根据平面向量运算法则可知2i i AB AP AB AB BP ⋅=+⋅,由线面垂直性质可知0i AB BP ⋅=,从而得到21i AB AP AB ⋅==,进而得到结果. 【详解】()2i i i AB AP AB AB BP AB AB BP ⋅=⋅+=+⋅AB ⊥平面286BP P P i AB BP ∴⊥ 0i AB BP ∴⋅= 21i AB AP AB ∴⋅== 则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为1个 故选:D 【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想.二、填空题14.【分析】根据平方得到计算得到答案【详解】故解得故答案为:【点睛】本题考查了平行六面体的棱长意在考查学生的计算能力和空间想象能力解析:1【分析】根据11AC AB AD AA =+-,平方得到2224c c +-=,计算得到答案. 【详解】11AC AB AD AA =+-, 故2222211111222AC AB AD AA AB AD AA AB AD AA AB AD AA =+-=+++⋅-⋅-⋅2224c c =+-=,解得1c =.1. 【点睛】本题考查了平行六面体的棱长,意在考查学生的计算能力和空间想象能力.15.【分析】由题知:再给式子平方即可求出的长度【详解】如图由题意可知所以所以故答案为:【点睛】本题主要考查利用向量法求线段长度解题时要认真审题注意向量法的合理应用属于中档题【分析】由题知:11AC AB AD AA =++,再给式子平方即可求出1AC 的长度如图,由题意可知,111AC AB AD CC AB AD AA =++=++,所以1221())(AC AB AD AA =++ 222111222AB AD AA AB AD AB AA AD AA +=++++1112(cos 60cos 60cos 60)6+++++==.所以16AC =.故答案为:6 【点睛】本题主要考查利用向量法求线段长度,解题时要认真审题,注意向量法的合理应用.属于中档题.16.【分析】以为原点为轴为轴为轴建立空间直角坐标系利用向量法能求出点到平面的距离【详解】以为原点为轴为轴为轴建立空间直角坐标系设平面的法向量则即取得∴点到平面的距离:故答案为【点睛】空间中点到平面的距离 解析:125【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出点D 到平面11A D C 的距离. 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,(0,0,0)D ,1(3,0,4)A ,1(0,0,4)D ,(0,3,0)C ,1(0,0,4)D D =-,11(3,0,0)D A =,1(0,3,4)DC =-, 设平面11A D C 的法向量(,,)n x y z =,则11100n D A n D C ⎧⋅=⎪⎨⋅=⎪⎩即30340x y z =⎧⎨-=⎩,取4y =,得(0,4,3)n =,∴点D 到平面11A D C 的距离:112||5D D n d n ⋅==. 故答案为125. 【点睛】空间中点到平面的距离的计算,应该通过作出垂足把距离放置在可解的平面图形中计算,注意在平面图形中利用解三角形的方法(如正弦定理、余弦定理等)来求线段的长度、面积等.我们也可以利用空间向量来求,把点到平面的距离问题转化为直线的方向向量在平面的法向量上的投影问题.17.5【解析】分析:设则的坐标利用求得即可得到即可求解的长度详解:设则所以因为所以解得所以所以点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加减或数乘运算(2)解析:5 【解析】分析:设AD AC λ=,则,OD BD 的坐标,利用BD AC ⊥,求得45λ=-,即可得到 912(4,,)55BD =-,即可求解BD 的长度. 详解:设AD λAC =,则()()()OD OA λAC 1,1,2λ0,4,31,14λ,23λ=+=-+-=-+-,所以()BD OD OB 4,54λ,3λ=-=-+-,因为BD AC ⊥, 所以()BD AC 0454λ9λ0⋅=+++=,解得4λ5=-, 所以912BD 4,,55⎛⎫=- ⎪⎝⎭,所以(22912BD 5⎫⎛⎫=-=.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.18.【解析】很明显当四点共面时数量积能取得最值由题意可知:则是以点D 为顶点的直角三角形且:当向量反向时取得最小值: 解析:4-【解析】很明显当,,,O D M N 四点共面时数量积能取得最值,由题意可知:OD OM ON ==,则MDN △是以点D 为顶点的直角三角形,且:()()()2420,AM AN AD DM AD DN ADAD DM DN DM DN AD DO ⋅=+⋅+=+⋅++⋅=+⋅+当向量,AD DO 反向时,AM AN ⋅取得最小值:4224-⨯=-19.【分析】利用平面得到两个向量垂直从而利用坐标运算得到之间的关系然后再利用模的坐标表示求解最值即可【详解】因为平面都在平面内所以所以又因为所以解得所以所以所以的最小值为故答案为:【点睛】方法点睛:解答【分析】利用BP ⊥平面ABC ,得到两个向量垂直,从而利用坐标运算得到y ,x ,z 之间的关系,然后再利用模的坐标表示求解最值即可. 【详解】因为BP ⊥平面ABC ,,AB BC 都在平面ABC 内, 所以,BP AB BP BC ⊥⊥, 所以,BP AB BP BC ⊥⊥,又因为()1,1,2AB =-,()1,1,BC z =-,()1,,1BP x y =--, 所以(1)20(1)0BP AB x y BP BC x y z ⎧⋅=-++=⎨⋅=---=⎩,解得1y x =--,2x z =所以(2,1,1)CP BP BC x y z =-=-+--, 所以2222||(2)(1)(1)CP x y z =-+++--()()()222212x x x =-+-+--2655x =+,所以||CP【点睛】方法点睛:解答立体几何中的最值问题一般有两种方法:一是几何意义,特别是用平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用配方法、三角函数有界法、函数单调性法以及均值不等式法求解.20.【分析】以为原点分别为轴建立空间直角坐标系设由平面可得P 点的坐标根据四棱锥的特点可得外接球的直径可得答案【详解】以为原点分别为轴建立空间直角坐标系由则设设平面的法向量为则即不妨令则得因为平面所以即解 解析:178π【分析】以D 为原点,DA ,DC ,DD '分别为,,x y z 轴建立空间直角坐标系,设(0,0,)P t ,由//PB 平面CEF 可得P 点的坐标,根据四棱锥P ABCD -的特点可得外接球的直径可得答案.【详解】以D 为原点,DA ,DC ,DD '分别为,,x y z 轴建立空间直角坐标系,(0,0,0)D ,由2AE D E DFB F'==,则(9,6,0),(0,9,0)E C ,(0,0,3)F ,(9,9,0)B ,设(0,0,)P t ,∴()9,3,0EC =-, ()0,9,3CF =-,()9,9,PB t =-设平面FEC 的法向量为(),,n x y z =,则·0·0n EC n CF ⎧=⎨=⎩,即930930x y y z -+=⎧⎨-+=⎩,不妨令3z =,则11,3y x ==,得1,1,33n ⎛⎫= ⎪⎝⎭,因为//PB 平面CEF ,所以0PB n ⋅=,即1919303t ⨯+⨯-=,解得4t =,所以(0,0,4)P ,由PD ⊥平面ABCD ,且底面是正方形, 所以四棱锥P ABCD -外接球的直径就是PB , 由()9,9,4PB =-,得229916178PB =++=,所以外接球的表面积241782PB S ππ⎛⎫⎪== ⎪⎝⎭. 故答案为:178π.【点睛】本题考查了四棱锥外接球的表面积的求法,关键点是建立空间直角坐标系,确定球的半径,考查了学生的空间想象力和计算能力.21.【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可【详解】解:两个平面的法向量分别为则这两个平面所成的锐二面角的大小是这两个平面所成的锐二面角的余弦值为故答案为:【点睛】本题考查空间二面【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可. 【详解】解:两个平面α,β的法向量分别为(4,0,3)u →=,(1,1,0)v →=-, 则这两个平面所成的锐二面角的大小是θ,2cos a ba bθ→→→→===这两个平面所成的锐二面角的余弦值为5.故答案为:5. 【点睛】本题考查空间二面角的求法,空间向量的数量积的应用,考查计算能力.22.-4【分析】由题可知可得运用向量数量积的坐标运算即可求出【详解】解:根据题意得解得:故答案为:【点睛】本题考查空间向量垂直的数量积关系运用空间向量数量积的坐标运算考查计算能力解析:-4 【分析】由题可知,a b c →→→⎛⎫+⊥ ⎪⎝⎭,可得0a b c →→→⎛⎫+= ⎪⎝⎭,运用向量数量积的坐标运算,即可求出x . 【详解】解:根据题意得, ()2,1,3a b x →→+=-+a b c →→→⎛⎫+⊥ ⎪⎝⎭, ∴22(3)0a b c x x →→→⎛⎫+=--++= ⎪⎝⎭, 解得:4x =-. 故答案为:4-. 【点睛】本题考查空间向量垂直的数量积关系,运用空间向量数量积的坐标运算,考查计算能力.23.【分析】由题意画出图形分别过作底面的垂线垂足分别为根据可知线段长度的最大值或最小值取决于的长度而即可分别求出的最小值与最大值【详解】如图所示:分别过作底面的垂线垂足分别为由已知可得∵而∴当所在平面与解析:7,13⎡⎤⎣⎦【分析】由题意画出图形,分别过,B C 作底面的垂线,垂足分别为1B ,1C , 根据()222111111274BC BB B C C CB C =++=+可知,线段BC 长度的最大值或最小值取决于11B C 的长度,而111111AB AC B C AB AC -≤≤+,即可分别求出BC 的最小值与最大值. 【详解】如图所示:分别过,B C 作底面的垂线,垂足分别为1B ,1C . 由已知可得,13BB =13CC =11AB =,132AC =. ∵1111BC BB BC C C=++, ()22222221111111111111132723344BC BB B C C CBB B C C C BB C C B C B C =++=+++⋅=+++=+而111111AB AC B C AB AC -≤≤+,∴当AB ,AC 所在平面与α垂直,且,B C 在底面上的射影1B ,1C ,在A 点同侧时,BC 长度最小,此时111131122B C AB AC =-=-=,BC 2127724⎛⎫+= ⎪⎝⎭当AB ,AC 所在平面与α垂直,且,B C 在底面上的射影1B ,1C ,在A 点异侧时,BC长度最大,此时111135122B C AB AC =+=+=,BC 25271324⎛⎫+= ⎪⎝⎭. ∴线段BC 长度的取值范围为7,13⎡⎣.故答案为:.【点睛】本题主要考查直线与平面所成的角的定义以及应用,向量数量积的应用,意在考查学生的直观想象能力,逻辑推理能力和数学运算能力,属于中档题.24.(57)或(﹣5﹣7)【分析】求出23设向量与平面垂直列出方程组能求出结果【详解】∵在△ABC 中A (1﹣12)B (211)C (﹣123)∴(12﹣1)(﹣231)设∵向量与平面ABC 垂直∴解得∵∴1解析:n =(,n =(﹣,,﹣ 【分析】求出(1AB =,2,1)-,(2AC =-,3,1),设(n x =,y ,)z ,向量n 与平面ABC 垂直,15n =,列出方程组能求出结果. 【详解】∵在△ABC 中,A (1,﹣1,2),B (2,1,1),C (﹣1,2,3), ∴AB =(1,2,﹣1),AC =(﹣2,3,1), 设(),,n x y z =∵向量n 与平面ABC 垂直, ∴20230n AB x y z n AC x y z ⎧⋅=+-=⎨⋅=-++=⎩,解得57x yz y=⎧⎨=⎩,∵15n =,∴=15,解得3y =,x = 73z =或y =x =- z =-∴(53,n =或(53,n =--. 【点睛】本题考查向量的坐标的求法,考查向量与平面垂直、向量的模等基础知识,考查运算求解能力,属于中档题.25.【分析】先由空间向量的基本定理将向量用一组基底表示再利用向量数量积的性质计算即可【详解】∵六面体ABCD ﹣A1B1C1D1是平行六面体∵=++∴=(++)2=+++2+2+2又∵∠BAD=∠A1AB【分析】先由空间向量的基本定理,将向量1AC 用一组基底1AA AD AB ,,表示,再利用向量数量积的性质22a a =,计算1AC 即可 【详解】∵六面体ABCD ﹣A 1B 1C 1D 1是平行六面体,∵1AC =1AA +AD +AB ∴21AC =(1AA +AD +AB )2=21AA +2AB +2AD +21AA AD ⋅+21AA AB⋅+2AB AD ⋅ 又∵∠BAD=∠A 1AB=∠A 1AD=60°,AD=4,AB=3,AA 1=5,∴21AC =16+9+25+2×5×4×cos60°+2×5×3×cos60°+2×3×4×cos60°=97 ∴197AC =【点睛】本题考察了空间向量的基本定理,向量数量积运算的意义即运算性质,解题时要特别注意空间向量与平面向量的异同 26.【分析】根据的夹角为锐角可得且不能同向共线解出即可得出【详解】12的夹角为锐角且不能同向共线解得则的取值范围为故答案为【点睛】本题主要考查了向量夹角公式向量共线定理考查了推理能力与计算能力属于中档题 解析:()()2,44,∞-⋃+【分析】 根据,AB AC 的夹角为锐角,可得0AB AC ⋅>,且不能同向共线.解出即可得出.【详解】(2,AB =1,1),(,AC λ=2,2),,AB AC 的夹角为锐角,2220AB AC λ∴⋅=++>,且不能同向共线.解得2λ>-,4λ≠.则λ的取值范围为()()2,44,∞-⋃+.故答案为()()2,44,∞-⋃+.【点睛】本题主要考查了向量夹角公式、向量共线定理,考查了推理能力与计算能力,属于中档题.。
立体几何中的向量方法测试(人教A版)一、单选题(共8道,每道12分)1.如图,四边形ABCD为正方形,PD⊥平面ABCD,,,则直线与平面所成角的正弦值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:用空间向量求直线与平面所成的角2.如图,正四棱柱ABCD-A1B1C1D1的体积为,高为,则点到平面的距离为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:用空间向量求点到平面的距离3.如图,平面平面,△是边长为的等边三角形,△为直角三角形,,,则二面角的正弦值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:用空间向量求二面角4.如图,直三棱柱ABC-A1B1C1,∠BAC=90°,,点M,N分别为和的中点.(1)直线与平面所成的角为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:用空间向量求直线与平面所成的角5.(上接第4题)(2)点到平面的距离为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:用空间向量求点到平面的距离6.如图,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ=2,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD.(1)直线EF与平面PCD的距离为( )A. B. C. D.答案:A解题思路:试题难度:三颗星知识点:用空间向量求点到平面的距离7.(上接第6题)(2)直线与平面QEF所成角的正弦值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:用空间向量求直线与平面所成的角8.(上接第7题)(3)二面角的余弦值为( )A. B. C. D.答案:D解题思路:试题难度:三颗星知识点:用空间向量求平面间的夹角。
§7向量应用举例7、1点到直线的距离公式7、2向量的应用举例,)1、问题导航(1)已知直线l的方向向量(M,N)或法向量(A,B),如何设l的方程?(2)向量可以解决哪些常见的几何问题?(3)向量可以解决哪些物理问题?2、例题导读P102例1、通过本例学习,学会利用点到直线的距离公式计算点到直线的距离、试一试:教材P102练习T1,T2,T3您会不?P102例2、通过本例学习,学会利用向量方法解答平面几何问题的方法步骤、试一试:教材P104习题2-7 B组T1您会不?P103例3,例4、通过此两例学习,学会利用向量方法解答物理中位移、力等问题、试一试:教材P104习题2-7 A组T3,B组T2您会不?1、直线l:Ax+By+C=0的法向量(1)与直线的方向向量垂直的向量称为该直线的法向量、(2)若直线l的方向向量v=(B,-A),则直线l的法向量n=(A,B)、(3)与直线l的法向量n同向的单位向量n0=错误!=错误!、2、点到直线的距离公式点M(x0,y0)到直线l:Ax+By+C=0的距离d=错误!、3、用向量解决平面几何中的问题(1)证明线段平行或相等,可以用向量的数乘、平行向量定理、(2)证明线段垂直,可以用向量数量积运算、(3)利用向量数量积运算,可以求线段的长度、夹角及平面图形的面积、4、用向量解决解析几何中的问题解析几何就是在平面直角坐标系内研究图形的性质,这类问题大多适用于向量的坐标运算,建立适当的平面直角坐标系,设出向量的坐标,将几何问题转化为向量的线性运算或数量积的运算、5、向量在物理中的应用向量有着丰富的物理背景,向量的物理背景就是位移、力、速度等,向量数量积的物理背景就是力所做的功,因此,利用向量可以解决一些物理问题、用向量法解决物理问题时,要作出相应的几何图形,以帮助我们建立数学模型、向量在物理中的应用,如求力的合成与分解,力做功等,实际上就是把物理问题转化为向量问题,然后通过向量运算解决向量问题,最后再用获得的结果解释物理现象、1、判断正误、(正确的打“√",错误的打“×")(1)求力F1与F2的合力可按照向量加法的三角形法则求解、()(2)若△ABC为直角三角形,则有错误!·错误!=0、()(3)若向量错误!∥错误!,则AB∥CD、()解析:(1)正确、物理中的力既有大小又有方向,所以力可以瞧作向量,F1,F2的合力可按照向量加法的三角形法则求解、(2)错误、因为△ABC为直角三角形,角A并不一定就是直角,有可能就是角B或角C 为直角、(3)错误、向量错误!∥错误!时,直线AB∥CD或AB,CD重合、答案:(1)√(2)×(3)×2、已知A,B,C,D四点的坐标分别为(1,0),(4,3),(2,4),(0,2),则此四边形为()A、梯形B、菱形C、矩形D、正方形解析:选A、错误!=(3,3),错误!=(-2,-2),所以错误!=-错误!错误!,错误!与错误!共线,但|错误!|≠|错误!|,故此四边形为梯形、3、两个大小相等的共点力F1,F2,当它们间的夹角为90°时合力大小为20 N,则当它们的夹角为120°时,合力的大小为________N、解析:根据题意,当F1,F2夹角为90°时,|F1|2+|F2|2=202,因为|F1|=|F2|,所以|F1|=|F2|=102,则当F1,F2夹角为120°时,它们的合力大小为|错误!|=10错误!、答案:10错误!4、在△ABC中,若C=90°,AC=BC=4,则错误!·错误!=________、解析:因为C=90°,AC=BC=4,所以△ABC为等腰直角三角形,所以BA=42,∠ABC=45°,所以错误!·错误!=16、答案:161、对直线l:Ax+By+C=0的方向向量及法向量的两点说明(1)设P1(x1,y1),P2(x2,y2)为直线上不重合的两点,则错误!=(x2-x1,y2-y1)及其共线的向量λ错误!均为直线的方向向量、显然当x1≠x2时,向量错误!与错误!共线,因此向量错误!=错误!(B,-A)为直线l的方向向量,由共线向量的特征可知(B,-A)为直线l的方向向量、(2)结合法向量的定义可知,向量(A,B)与(B,-A)垂直,从而向量(A,B)为直线l 的法向量、2、向量法在几何证明与计算中的几个主要应用(1)A、B、C三点共线的证法只需证错误!=λ错误!或错误!=(x1,y1),错误!=(x2,y2)满足x1y2-x2y1=0、(2)证明AB⊥AC的方法只需证错误!·错误!=0、(3)求A、B两点间距离的方法可把错误!表示成λa+μb或者求坐标(x,y),然后利用向量的运算求解、(4)求∠AOB的方法利用数量积定义的变形cos∠AOB=错误!、3、向量在物理中应用时应注意的三个问题(1)把物理问题转化为数学问题,也就就是将物理量之间的关系抽象成数学模型、(2)利用建立起来的数学模型解释与回答相关的物理现象、(3)在解决具体问题时,要明确与掌握用向量方法研究物理问题的相关知识:①力、速度、加速度与位移都就是向量;②力、速度、加速度与位移的合成与分解就就是向量的加、减法;③动量m v就是数乘向量;④功就是力F与在力F的作用下物体所产生的位移s的数量积、向量在解析几何中的应用(1)经过点A(-1,2),且平行于向量a=(3,2)的直线方程就是________、(2)已知圆C:(x-3)2+(y-3)2=4及点A(1,1),M就是圆C上的任一点,点N在线段MA的延长线上,且错误!=2错误!,求点N的轨迹方程、[解](1)在直线上任取一点P(x,y),则错误!=(x+1,y-2),由错误!∥a,得(x+1)×2-(y-2)×3=0,即2x-3y+8=0、故填2x-3y+8=0、(2)设N(x,y),M(x0,y0)、因为错误!=2错误!,所以(1-x0,1-y0)=2(x-1,y-1),所以错误!即错误!又因为点M(x0,y0)在圆C:(x-3)2+(y-3)2=4上,所以(x0-3)2+(y0-3)2=4,所以(2x)2+(2y)2=4,即x2+y2=1,所以点N的轨迹方程为x2+y2=1、将本例(1)中的“平行于向量”改为“法向量为”结果如何?解:由法向量a=(3,2),设直线的方程为3x+2y+c=0,又A(-1,2)在直线上,所以3×(-1)+2×2+c=0,得c=-1,即3x+2y-1=0、方法归纳向量在解析几何中的应用问题向量与解析几何的综合就是高考的热点、主要题型有:(1)向量的概念、运算、性质、几何意义与解析几何问题结合、(2)将向量作为描述问题或解决问题的工具、(3)以向量坐标运算为工具,考查直线与曲线相交、轨迹等问题、1、(1)已知两点A(3,2),B(-1,4)到直线mx+y+3=0的距离相等,则m=________、(2)已知点P(-3,0),点A在y轴上,点Q在x轴的正半轴上,点M在直线AQ上,满足错误!·错误!=0,错误!=-错误!错误!、当点A在y轴上移动时,求动点M的轨迹方程、解:(1)由已知得直线的一个法向量为n=(m,1),其单位向量为n0=错误!=错误!(m,1),在直线上任取一点P(0,-3),则错误!=(-3,-5),错误!=(1,-7)、依题意有|错误!·n0|=|错误!·n0|,即错误!=错误!,解得m=错误!或m=-6、故填错误!或-6、(2)设点M(x,y)为轨迹上的任一点,设A(0,b),Q(a,0)(a>0),则错误!=(x,y -b),错误!=(a-x,-y)、因为错误!=-错误!错误!,所以(x,y-b)=-错误!(a-x,-y)、所以a=错误!,b=-错误!,即A错误!,Q错误!、错误!=错误!,错误!=错误!、因为错误!·错误!=0,所以3x-错误!y2=0、即所求轨迹方程为y2=4x(x>0)、向量在平面几何中的应用如图正三角形ABC中,D、E分别就是AB、BC上的一个三等分点,且AE、CD交于点P、求证:BP⊥DC、(链接教材P100例2)[证明]设错误!=λ错误!,并设三角形ABC的边长为a,则有:错误!=错误!+错误!=λ错误!+错误!错误!=λ错误!+错误!错误!=错误!(2λ+1)错误!-λ错误!、又错误!=错误!-错误!错误!,错误!∥错误!,所以错误!(2λ+1)错误!-λ错误!=k错误!-错误!k错误!,于就是有错误!解得λ=错误!、所以错误!=错误!错误!、所以错误!=错误!+错误!=错误!错误!+错误!错误!,错误!=错误!错误!-错误!、所以错误!·错误!=错误!·错误!=错误!a2-错误!a2-错误!a2cos 60°=0、所以由向量垂直的等价条件知BP⊥DC、方法归纳用向量解决平面几何问题的两种常见思路(1)向量的线性运算法错误!―→错误!―→利用向量的线性运算或数量积找相应关系―→错误!(2)向量的坐标运算法建立适当的平面直角坐标系―→错误!―→错误!―→错误!2、(1)如图,在▱ABCD中,E,F在对角线BD上,且BE=FD,则四边形AECF的形状就是________、(2)如图所示,在平行四边形ABCD中,BC=2BA,∠ABC=60°,作AE⊥BD交BC于点E,求BE∶EC的值、解:(1)由已知可设错误!=错误!=a,错误!=错误!=b,故错误!=错误!+错误!=a +b,错误!=错误!+错误!=b+a,又a+b=b+a,则错误!=错误!,即AE,FC平行且相等,故四边形AECF就是平行四边形、故填平行四边形、(2)法一:设错误!=a,错误!=b,|a|=1,|b|=2,则a·b=|a||b|cos 60°=1,错误!=a+b、设错误!=λ错误!=λb,则错误!=错误!-错误!=λb-a、由AE⊥BD,得错误!·错误!=0,即(λb-a)·(a+b)=0,解得λ=错误!,所以BE∶EC=错误!∶错误!=2∶3、法二:以B为坐标原点,BC所在直线为x轴建立平面直角坐标系,设B(0,0),C(2,0),则A错误!,D错误!、设E(m,0),则错误!=错误!,错误!=错误!,由AE⊥BD,得错误!·错误!=0,即错误!(m-错误!)-错误!×错误!=0,解得m=错误!,所以BE∶EC=错误!∶错误!=2∶3、向量在物理中的应用一个物体受到同一平面内三个力F1,F2,F3的作用,沿北偏东45°的方向移动了8 m、已知|F1|=2 N,方向为北偏东30°,|F2|=4 N,方向为北偏东60°,|F3|=6 N,方向为北偏西30°,求这三个力的合力F所做的功、(链接教材P103例4)[解]以三个力的作用点为原点,正东方向为x轴正半轴,正北方向为y轴正半轴建立平面直角坐标系,如图所示、由已知可得F 1=(1,错误!),F 2=(2错误!,2),F 3=(-3,3错误!)、所以F =F 1+F 2+F 3=(2错误!-2,4错误!+2)、又位移s =(4错误!,4错误!),所以F ·s =(23-2)×4错误!+(4错误!+2)×4错误!=24错误!(J)、故这三个力的合力F 所做的功就是24错误! J 、方法归纳利用向量解决物理问题的思路及注意问题(1)向量在物理中的应用,实际上就是把物理问题转化为向量问题,然后通过向量运算解决向量问题,最后用所获得的结果解释物理现象、(2)在用向量法解决物理问题时,应作出相应图形,以帮助建立数学模型,分析解题思路、(3)注意问题:①如何把物理问题转化为数学问题,也就就是将物理之间的关系抽象成数学模型;②如何利用建立起来的数学模型解释与回答相关的物理现象、3、(1)一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态、已知F 1,F 2成60°角,且F 1,F 2的大小分别为2与4,则F 3的大小为( )A 、6B 、2C 、2错误!D 、2错误!(2)点P 在平面上做匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位)、设开始时点P 0的坐标为(-10,10),则5秒后点P 的坐标为( )A 、(-2,4)B 、(-30,25)C 、(10,-5)D 、(5,-10)(3)已知两恒力F 1=(3,4)、F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),试求:①F 1、F 2分别对质点所做的功;②F 1,F 2的合力F 对质点所做的功、解:(1)选D 、因为力F 就是一个向量,由向量加法的平行四边形法则知F 3的大小等于以F 1,F 2为邻边的平行四边形的对角线的长,故|F 3|2=|F 1|2+|F 2|2+2|F 1||F 2|·cos 60°=4+16+8=28,所以|F 3|=2错误!、(2)选C 、由题意知,P 0P ,→=5v =(20,-15),设点P 的坐标为(x ,y ),则错误!解得点P 的坐标为(10,-5)、(3)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s ,错误!=(7,0)-(20,15)=(-13,-15)、①W 1=F 1·错误!=(3,4)·(-13,-15)=3×(-13)+4×(-15)=-99(J ),W 2=F 2·错误!=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(J )、②W =F ·错误!=(F 1+F 2)·错误!=[(3,4)+(6,-5)]·(-13,-15)=(9,-1)·(-13,-15)=9×(-13)+(-1)×(-15)=-117+15=-102(J )、易错警示 向量在几何应用中的误区在△ABC 中,已知向量错误!与错误!满足错误!·错误!=0且错误!=错误!,则△ABC 的形状为________、[解析] 因为向量错误!,错误!分别表示与向量错误!,错误!同向的单位向量,所以以错误!,错误!为邻边的平行四边形就是菱形、根据平行四边形法则作错误!=错误!+错误!(如图所示),则AD 就是∠BAC 的平分线、因为非零向量满足错误!·错误!=0,所以∠BAC 的平分线AD 垂直于BC ,所以AB =AC ,又cos ∠BAC =错误!=错误!,且∠BAC ∈(0,π),所以∠BAC =错误!,所以△ABC 为等边三角形、[答案] 等边三角形[错因与防范] (1)解答本题常会给出错误的答案为“直角三角形”,原因在于未能正确分析挖掘题设中的条件,直接根据数量积为零,就判断△ABC 为直角三角形、(2)为杜绝上述可能发生的错误,应该:①注意知识的积累向量线性运算与数量积的几何意义就是解决向量问题的依据,如本例中错误!,错误!的含义,邻边相等的平行四边形就是菱形,菱形的对角线平分对角、②树立数形结合意识推导图形的形状时要以题目条件为依据全面进行推导,回答应力求准确,如本例求解时,以图形辅助解题,较为形象直观、4、(1)设A 1,A 2,A 3,A 4就是平面直角坐标系中两两不同的四点,若错误!=λ错误!(λ∈R ),错误!=μ错误!(μ∈R ),且错误!+错误!=2,则称A 3,A 4调与分割A 1,A 2、已知平面上的点C ,D 调与分割点A ,B ,则下面说法正确的就是( )A 、C 可能就是线段AB 的中点B 、D 可能就是线段AB 的中点C 、C 、D 可能同时在线段AB 上D 、C 、D 不可能同时在线段AB 的延长线上(2)设O 为△ABC 所在平面上一点,动点P 满足错误!=错误!+λ错误!,λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( )A 、重心B 、垂心C 、外心D 、内心解析:(1)选D 、因为C ,D 调与分割点A ,B ,所以错误!=λ错误!,错误!=μ错误!,且错误!+错误!=2(*),不妨设A (0,0),B (1,0),则C (λ,0),D (μ,0),对A ,若C 为AB 的中点,则错误!=错误!错误!,即λ=错误!,将其代入(*)式,得错误!=0,这就是无意义的,故A 错误;对B ,若D 为AB 的中点,则μ=错误!,同理得错误!=0,故B 错误;对C ,要使C ,D 同时在线段AB 上,则0<λ<1,且0<μ<1,所以错误!>1,错误!>1,所以错误!+错误!>2,这与错误!+错误!=2矛盾;故C 错误;显然D 正确、(2)选C 、设线段BC 的中点为D ,则错误!=错误!、所以错误!=错误!+λ 错误!=错误!+λ 错误!,所以OP →-错误!=λ 错误!=错误!,所以错误!·错误!=λ 错误!·错误!=λ 错误!=λ 错误!=λ(-|错误!|+|错误!|)=0,所以DP ⊥BC ,即点P 一定在线段BC 的垂直平分线上,即动点P 的轨迹一定通过△ABC 的外心、1、已知直线x +3y +9=0,则直线的一个法向量为( )A 、a =(1,3)B 、a =(3,1)C 、a =(3,-1)D 、a =(-3,-1)解析:选A 、直线Ax +By +C =0的法向量可以为(A ,B )、2、在△ABC 中,若错误!·错误!+|错误!|2=0,则△ABC 的形状就是( )A 、锐角三角形B 、等腰三角形C 、直角三角形D 、钝角三角形解析:选C 、因为AB →·错误!+|错误!|2=0,所以错误!·错误!+错误!2=0,即错误!·(错误!+错误!)=0、所以错误!·错误!=0,所以错误!⊥错误!,即AB ⊥AC 、所以A =90°、所以△ABC 就是直角三角形、3、一只鹰正以与水平方向成30°角的方向向下飞行,直扑猎物,太阳光从头上直照下来,鹰在地面上的影子的速度就是40 m/s ,则鹰的飞行速率为( )A 、错误! m/sB 、错误! m/sC 、错误! m/sD 、错误! m/s解析:选C 、设鹰的飞行速度为v 1,鹰在地面上的影子的速度为v 2,则v 2=40 m/s ,因为鹰的运动方向就是与水平方向成30°角向下,故|v 1|=错误!=错误!(m/s ),故选C 、, [学生用书单独成册])[A 、基础达标]错误!一个人骑自行车行驶速度为v 1,风速为v 2,则逆风行驶的速度的大小为( )A 、v 1-v 2B 、v 1+v 2C 、|v 1|-|v 2|D 、错误!解析:选C 、根据速度的合成可知、错误!若错误!=(2,2),错误!=(-2,3)分别表示F 1,F 2,则|F 1+F 2|为( )A 、(0,5)B 、25C 、2错误!D 、5解析:选D 、因为F 1+F 2=(0,5),所以|F 1+F 2|=错误!=5、3、过点A (2,3)且垂直于向量a =(2,1)的直线方程为( )A 、2x +y -7=0B 、2x +y +7=0C 、x -2y +4=0D 、x -2y -4=0解析:选A 、设所求直线上任一点P (x ,y ),则错误!⊥a 、又因为错误!=(x -2,y -3),所以2(x -2)+(y -3)=0,即所求的直线方程为2x +y -7=0、错误!若A i (i =1,2,3,4,…,n)就是△AOB 所在平面内的点,且错误!·错误!=错误!·错误!、给出下列说法:①|错误!|=|错误!|=…=|错误!|=|错误!|;②|错误!|的最小值一定就是|错误!|;③点A 、A i 在一条直线上、其中正确的个数就是( )A 、0B 、1C 、2D 、3解析:选B 、由错误!·错误!=错误!·错误!,可得(错误!-错误!)·错误!=0,即错误!·错误!=0,所以错误!⊥错误!,即点A i 在边OB 过点A 的垂线上、故三个命题中,只有③正确,故选B 、5、已知△ABC 中,A(2,-1),B(3,2),C(-3,-1),BC 边上的高为AD ,则错误!等于( )A 、(-1,2)B 、(1,-2)C 、(1,2)D 、(-1,-2)解析:选A 、设D (x ,y ),则错误!=(x -2,y +1),错误!=(x -3,y -2),错误!=(-6,-3)、因为错误!⊥错误!,错误!∥错误!、所以错误!解得错误!所以错误!=(-1,2)、错误!已知三个力F 1=(3,4),F 2=(2,-5),F 3=(x ,y ),满足F 1+F 2+F 3=0,若F 1与F 2的合力为F ,则合力F 与力F 1夹角的余弦值为________、解析:因为F 1+F 2+F 3=0,F 1+F 2=F ,所以F =-F 3,因为F 3的坐标为(-5,1),所以F =-F 3=(5,-1),设合力F 与力F 1的夹角为θ,则cos θ=错误!=错误!=错误!、答案:错误!错误!已知直线的方向向量为a =(3,1),且过点A (-2,1),则直线方程为____________、 解析:由题意知,直线的斜率为错误!,设直线方程为x -3y +c =0,把(-2,1)代入得c =5,故所求直线方程为x -3y +5=0、答案:x -3y +5=08、已知|a |=错误!,|b |=4,|c |=2错误!,且a +b +c =0,则a ·b +b ·c +c ·a =________、解析:(a +b +c )2=|a |2+|b |2+|c |2+2(a ·c +b ·c +a ·b )=0,所以a ·b +b ·c +c ·a =-错误!、答案:-错误!9、在△ABC 中,错误!·错误!=|错误!-错误!|=6,M 为BC 边的中点,求中线AM 的长、解:因为|错误!-错误!|=6,所以(错误!-错误!)2=36、即错误!2+错误!2-2错误!·错误!=36、又因为错误!·错误!=6,所以错误!2+错误!2=48、又因为错误!=错误!(错误!+错误!),所以AM →2=错误!(错误!2+错误!2+2错误!·错误!)=错误!×(48+12)=15,所以|错误!|=错误!,即中线AM 的长为错误!、10、已知点A (-1,0),B (0,1),点P (x ,y )为直线y =x -1上的一个动点、(1)求证:∠APB 恒为锐角;(2)若四边形ABPQ 为菱形,求错误!·错误!的值、解:(1)证明:因为点P (x ,y )在直线y =x -1上,所以点P (x ,x -1),所以错误!=(-1-x ,1-x ),错误!=(-x ,2-x ),所以错误!·错误!=2x 2-2x +2=2(x 2-x +1)=2错误!>0,所以cos ∠APB =错误!>0,若A ,P ,B 三点在一条直线上,则错误!∥错误!,得到(x +1)(x -2)-(x -1)x =0,方程无解,所以∠APB ≠0,所以∠APB 恒为锐角、(2)因为四边形ABPQ 为菱形,所以|错误!|=|错误!|,即错误!=错误!,化简得到x 2-2x +1=0,所以x =1,所以P (1,0),设Q (a ,b ),因为错误!=错误!,所以(a -1,b )=(-1,-1),所以错误!所以错误!·错误!=(0,-2)·(1,-1)=2、[B 、能力提升]1、水平面上的物体受到力F 1,F 2的作用,F 1水平向右,F 2与水平向右方向的夹角为θ,物体在运动过程中,力F 1与F 2的合力所做的功为W ,若物体一直沿水平地面运动,则力F 2对物体做功的大小为( )A 、错误!WB 、错误!WC 、错误!WD 、错误!W解析:选D 、设物体的位移就是s ,根据题意有(|F 1|+|F 2|·cos θ)|s |=W ,即|s |=错误!,所以力F 2对物体做功的大小为错误!W 、2、记max{x ,y }=错误!min {x ,y }=错误!设a ,b 为平面向量,则( )A 、min{|a +b |,|a -b |}≤min {|a |,|b |}B 、min {|a +b|,|a -b |}≥min{|a |,|b |}C 、max{|a +b|2,|a -b |2}≤|a|2+|b|2D 、max{|a +b |2,|a -b |2}≥|a|2+|b|2解析:选D 、对于min {|a +b|,|a -b |}与min {|a |,|b|},相当于平行四边形的对角线长度的较小者与两邻边长的较小者比较,它们的大小关系不确定,因此A ,B 均错,而|a +b |,|a -b |中的较大者与|a |,|b |可构成非锐角三角形的三边,因此有max {|a +b |2,|a -b|2}≥|a |2+|b|2、3、已知△ABC 的面积为10,P 就是△ABC 所在平面上的一点,满足P A ,→+错误!+2错误!=3错误!,则△ABP 的面积为________、解析:由错误!+错误!+2错误!=3错误!,得错误!+错误!+2错误!=3(错误!-错误!),所以4错误!+2(错误!-错误!)=0,所以2错误!=错误!,由此可得P A 与CB 平行且|CB |=2|P A |,故△ABP 的面积为△ABC 的面积的一半,故△ABP 的面积为5、答案:54、在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|错误!|=1,则|错误!+错误!+错误!|的最大值就是________、解析:设D (x ,y ),由|错误!|=1,得(x -3)2+y 2=1,向量错误!+错误!+错误!=(x -1,y +错误!),故|错误!+错误!+错误!|=错误!的最大值为圆(x -3)2+y 2=1上的动点到点(1,-错误!)距离的最大值,其最大值为圆(x -3)2+y 2=1的圆心(3,0)到点(1,-错误!)的距离加上圆的半径,即错误!+1=1+错误!、答案:1+错误!5、在平面直角坐标系xOy 中,已知向量AB →=(6,1),错误!=(x ,y ),错误!=(-2,-3),且错误!∥错误!、(1)求x 与y 间的关系;(2)若错误!⊥错误!,求x 与y 的值及四边形ABCD 的面积、解:(1)由题意得错误!=错误!+错误!+错误!=(x +4,y -2),错误!=(x ,y ), 因为错误!∥错误!,所以(x +4)y -(y -2)x =0,即x +2y =0、①(2)由题意得错误!=错误!+错误!=(x +6,y +1),错误!=错误!+错误!=(x -2,y -3),因为错误!⊥错误!,所以错误!·错误!=0,即(x +6)(x -2)+(y +1)(y -3)=0,即x 2+y 2+4x -2y -15=0,②由①②得错误!或错误!当错误!时,错误!=(8,0),错误!=(0,-4),则S 四边形ABCD =错误!|错误!||错误!|=16,当错误!时,错误!=(0,4),错误!=(-8,0),则S 四边形ABCD =错误!|错误!||错误!|=16,综上错误!或错误!四边形ABCD 的面积为16、6、(选做题)已知e 1=(1,0),e 2=(0,1),现有动点P 从P 0(-1,2)开始,沿着与向量e 1+e 2相同的方向做匀速直线运动,速度为|e 1+e 2|;另一动点Q 从Q 0(-2,-1)开始,沿着与向量3e 1+2e 2相同的方向做匀速直线运动,速度为|3e 1+2e 2|,设P 、Q 在t =0 s 时分别在P0、Q0处,问当错误!⊥错误!时所需的时间为多少?解:e1+e2=(1,1),|e1+e2|=2,其单位向量为错误!;3e1+2e2=(3,2),|3e1+2e2|=错误!,其单位向量为错误!、依题意,|错误!|=错误!t,|错误!|=错误!t,所以错误!=|错误!|错误!=(t,t),错误!=|错误!|错误!=(3t,2t),由P0(-1,2),Q0(-2,-1),得P(t-1,t+2),Q(3t-2,2t-1),所以错误!=(-1,-3),错误!=(2t-1,t-3),因为错误!⊥错误!,所以错误!·错误!=0,即2t-1+3t-9=0,解得t=2、即当错误!⊥错误!时所需的时间为2 s、。
点到平面的距离计算(人教A版)
一、单选题(共9道,每道11分)
1.正四面体的棱长为a,E是AD的中点,则点D到平面BCE的距离为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
2.在正方体中,,则点A到平面的距离为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
3.如图,在棱长为1的正方体中,为中点,则点到平面的距离为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
4.如图,在三棱锥中,底面,,,为的中点,
,则点到平面的距离为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
5.如图,在正三棱柱中,,则点C到平面的距离为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
6.如图,三棱锥的侧棱两两垂直,且,,则
点O到平面的距离为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
7.如图,在四面体中,E为BC中点,,,则点E到平面ACD的距离为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
8.如图,在正三棱柱中,若,D是的中点,则点到平面的距离为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:空间中点到面的距离
9.如图,已知四边形ABCD是正方形,平面.分别是的中点,若点到平面的距离为,则点到平面的距离为( )
A. B. C. D.
答案:A
解题思路:
试题难度:三颗星知识点:空间中点到面的距离。