变频器节能计算方法
- 格式:doc
- 大小:317.50 KB
- 文档页数:11
变频不是到处可以省电,有不少场合用变频并不一定能省电。
作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。
一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯. 变频器在工频下运行,具有节电功能,是事实。
但是他的前提条件是:第一,大功率并且为风机/泵类负载;第二,装置本身具有节电功能(软件支持);第三,长期连续运行。
这是体现节电效果的三个条件。
除此之外,无所谓节不节电,没有什么意义。
变频节能什么是变频器变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。
PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。
变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。
异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
电动机使用工频电源驱动时,电压下降则电流增加;对于变频器驱动,如果频率下降时电压也下降,那么电流是否增加?频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。
采用变频器运转时,电机的起动电流、起动转矩怎样?采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。
变频器的节能计算方法变频器是一种可调速电力传动设备,被广泛应用于工业生产中。
随着对能源的需求增加以及节能环保意识的增强,如何计算变频器的节能效果,成为了工程师们关注的焦点。
本文将介绍变频器节能计算的方法,以及如何利用变频器实现节能。
首先,变频器的节能计算方法有两种:理论计算法和现场测量法。
理论计算法是指根据产量和负载情况,通过替代常规驱动方案和变频器驱动方案的能耗数据差异进行计算。
具体的计算步骤如下:1.首先,将常规驱动方案和变频器驱动方案的能耗指标进行对比,包括各自的耗电功率、负载率等。
2.然后,计算两种方案的能耗差值,即差额能耗。
3.根据给定的产量和负载情况,计算在实际运行条件下的节能量。
这种方法需要根据实际情况进行参数设定,比较耗时且精确度相对较低。
现场测量法是直接在现场进行的,通过监测不同驱动方案的实际耗电情况,比较两种方案的能耗差异。
具体的计算步骤如下:1.在常规驱动方案和变频器驱动方案下,分别记录电流、电压、功率因数、负载率等参数,并计算实时能耗。
2.比较两种方案的实际能耗,计算能耗差值。
这种方法需要在实际生产过程中进行测试,能够准确反应不同方案的能效差异。
在实际应用中,选用变频器驱动方案可以有效实现节能。
变频器具有以下的节能特点:1.调速功能:变频器可以根据实际负载需求,实现频率、电压的调整,从而实现节能效果。
2.压缩机控制:变频器可应用于空调、冷冻系统等设备中,通过调整压缩机的运行频率,降低能耗。
3.制动能量回馈:变频器可以将制动过程中产生的能量回馈到电网中,减少能量的浪费。
4.负载自适应:变频器能够根据负载情况,自动调整输出功率,实现最佳能效。
在节能方面,变频器的应用主要体现在两个方面:1.优化原有设备:通过安装变频器来替换常规驱动方式,实现设备的节能改造。
2.设备选型:在新设备选型时,优先选择带有变频器驱动的设备,以达到节能的目的。
总结来说,变频器的节能计算方法包括理论计算法和现场测量法,可以通过对比不同驱动方案的能耗差异来计算实际的节能效果。
变频调速节能装置的节能原理1、变频节能由流体力学可知,P(功率)=Q(流量)╳ H(压力),流量Q 与转速N的一次方成正比,压力H与转速N的平方成正比,功率P 与转速N的立方成正比,如果水泵的效率一定,当要求调节流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。
即水泵电机的耗电功率与转速近似成立方比的关系。
例如:一台水泵电机功率为55KW,当转速下降到原转速的4/5时,其耗电量为28.16KW,省电48.8%,当转速下降到原转速的1/2时,其耗电量为6.875KW,省电87.5%.2、功率因数补偿节能无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,由公式P=S╳COSФ,Q=S╳SINФ,其中S-视在功率,P-有功功率,Q-无功功率,COSФ-功率因数,可知COSФ越大,有功功率P越大,普通水泵电机的功率因数在0.6-0.7之间,使用变频调速装置后,由于变频器内部滤波电容的作用,COSФ≈1,从而减少了无功损耗,增加了电网的有功功率。
3、软启动节能由于电机为直接启动或Y/D启动,启动电流等于(4-7)倍额定电流,这样会对机电设备和供电电网造成严重的冲击,而且还会对电网容量要求过高,启动时产生的大电流和震动时对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。
而使用变频节能装置后,利用变频器的软启动功能将使启动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。
节省了设备的维护费用。
在冶金、化工、电力、市政供水和采矿等行业广泛应用的泵类负载,占整个用电设备能耗的40%左右,电费在自来水厂甚至占制水成本的50%。
这是因为:一方面,设备在设计时,通常都留有一定的余量;另一方面,由于工况的变化,需要泵机输出不同的流量。
随着市场经济的发展和自动化,智能化程度的提高,采用高压变频器对泵类负载进行速度控制,不但对改进工艺、提高产品质量有好处,又是节能和设备经济运行的要求,是可持续发展的必然趋势。
变频器节能原理常识
1、变频节能:
为了确保出产的牢靠性,各种出产机械在计划配用动力驱动时,都留有必定的充裕量。
电机不能在满负荷下工作,除抵达动力驱动恳求外,剩下的力矩添加了有功功率的耗费,构成电能的糟蹋,在压力偏高时,可下降电机的工作速度,使其在恒压的一同节省电能。
当电机转速从N1变到N2时,其电机轴功率(P)的改动联络如下:
P2/P1=(N2/N1)3,由此可见下降电机转速可得到立方级的节能效果。
2、动态调整节能:
活络习气负载改动,供应最大功率电压。
变频调速器在软件上设有5000次/秒的测控输出功用,一贯坚持电机的输出高功率工作。
3、经过变频本身的V/F功用节省用电:
在确保电机输出力矩的状况下,可主动调度V/F曲线。
削减电机的输出力矩,下降输入电流,抵达节能状况。
4、变频自带软主张节能:
在电机全压主张时,因为电机的主张力矩需求,要从电网吸收7倍的电机额外电流,而大的主张电流即糟蹋电力,对电网的电压不坚决危害也很大,添加了线损和变损。
选用软主张后,主张电流可从0--电机额外电流,削减了主张电流对电网的冲击,节省了电费,也削减了主张惯性对设备的大惯量的转速冲击,延伸了设备的运用寿数。
5、跋涉功率因数节能:
电动机由定子绕组和转子绕组经过电磁效果而发作力矩。
绕组因为其感抗效果。
对电网而言,阻抗特性呈理性,电机在工作时吸收许多的无功功率,构成功率因数很低。
选用变频节能调速器后,因为其功用已变为:
AC--DC--AC,在整流滤波后,负载特性发作了改动。
变频调速器对电网的阻抗特性呈阻性,功率因数很高,削减了无功损耗。
变频调速节能量的计算方法
一、变频调速节能量的计算原理:
1、变频调速系统的计算原理:变频调速是一种采用变频器和变速器,可以根据需要进行调速的节能技术。
它的原理是将普通电机的输入电压和
频率调整,从而改变电机的转速。
变频调速可以替代传统调速系统,从而
减小电机的能耗。
由于变频器设置的转速可以根据负载的变化而变化,可
以节省能量,从而有效节能。
2、变频调速节能量的计算原理:变频调速节能量的计算原理采用差
值律。
可以通过比较电机传统调速前后的输出功率,得出变频调速节能量
的总量。
具体的计算步骤如下:
(1)将电机进行传统调速,并测量其负载功率。
(2)将电机安装变频调速装置,将装置设置为同样的转速,并测量
其负载功率。
(3)将上述两次测量的负载功率的差值(即较低值减去较高值),
即为变频调速节能量总量。
二、计算实例
一台普通电机传统调速前,测量其负载功率P1=20kW;将电机安装变
频调速装置,将装置设置为同样的转速,测量其负载功率P2=15kW;按照
变频调速节能量的计算原理,将较低值减去较高值。
变频器节能效率计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]概述在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。
与实际的工况存在较大的可调整空间。
在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。
同时分析变频器在选型、应用中的注意事项。
1变频调速原理三相异步电动机转速公式为:60fn=式中:n-电动机转速,r/min;f-电源频率,Hz;p-电动机对数s-转差率,从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。
变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。
变频工作原理异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz 。
电机定子绕组内部感应电动势为U 1≈U 1=4.44U 1UU 11式中U 1-定子绕组感应电动势,V ;1-气隙磁通,Wb ; U -定子每相绕组匝数;U 1-基波绕组系数。
在变频调速时,如果只降低定子频率U 1,而定子每相电压保持不变,则必然会造成1增大。
由于电机制造时,为提高效率减少损耗,通常在U 1=U U ,U 1=U U 时,电动机主磁路接近饱和,增大1势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低。
若在降低频率的同时降低电压使U 1U 1⁄保持不变则可保持1不变从而避免了主磁路过饱和现象的发生。
这种方式称为恒磁通控制方式。
此时电动机转矩为T =U 1UU 12π(U 2U +UU 22U 2)(U 1U 1)2式中T -电动机转矩,;U 1—电源极对数;U—磁极对数;U—转差率;U2—转子电阻;U2—转子电抗;由于转差率U较小,(U2U⁄)2U22则有T≈U1UU12πU2U(U11)2=UU1U其中U=U1U2πU2(U1 U1)2由此可知:若频率U1保持不变则T∝s;若转矩T不变则s∝1U1⁄;常数由此可知:保持U1U1=⁄常数,最大转矩和最大转矩处的转速降落均等于常数,与频率无关。
变频器节能计算范文变频器是现代工业中广泛应用的一种电力调节设备,它可以根据负载的需求来调整电机的运行速度,并通过调节电机的电压和频率来实现节能的目的。
变频器节能的计算方法主要有两种:理论计算和实际测试。
一、理论计算方法:1.负载调整法:变频器可以根据负载的需求来调整电机的运行速度,实现负载的匹配,从而减少能量的浪费。
通过测量电机的运行电流和负载变化的关系,可以计算出节能量。
具体计算方法如下:节能率=(1-(I1/I2))^2*100%其中,I1是基础负载的电流,I2是变频器调节后的电流。
2.预测模型法:变频器可以通过预测负载的变化来调整电机的运行速度,避免能量的浪费。
通过建立负载变化和能耗的数学模型,可以预测负载变化时的节能量。
具体计算方法如下:节能量= ∫ P(t) dt其中,P(t)是变频器调节后的功率。
二、实际测试方法:1.流量变化法:变频器可以根据流量的需求来调整电机的运行速度,实现流量的匹配,从而减少能量的浪费。
通过测量流量变化和能耗的关系,可以计算出节能量。
具体计算方法如下:节能率=(1-(Q1/Q2))^2*100%其中,Q1是基础流量时的能耗,Q2是变频器调节后的能耗。
2.持续时间法:变频器可以根据工作时间的需求来调整电机的运行速度,避免能量的浪费。
通过测量持续时间和能耗的关系,可以计算出节能量。
具体计算方法如下:节能量= ∫ E(t) dt其中,E(t)是变频器调节后的能耗。
综上所述,变频器节能的计算方法主要包括理论计算和实际测试两种方法。
理论计算方法可以根据负载调整和预测模型来计算节能量,而实际测试方法可以通过流量变化和持续时间来计算节能量。
无论采用哪种方法,变频器的节能计算都需要考虑负载、功率、流量和持续时间等因素,从而得出准确的节能结果。
变频器节能原理
节能原理:
1、变频节能:为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。
电机不能在满负荷下运行,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费,在压力偏高时,可降低电机的运行速度,使其在恒压的同时节约电能。
当电机转速从 N1 变到 N2时,其电机轴功率(P)的变化关系如下:P2
/ P1 = (N2/N1)3 ,由此可见降低电机转速可得到立方级的节能效果。
2、动态调整节能:迅速适应负载变动,供给最大效率电压。
变频调速器在软件上设
有 5000次/秒的测控输出功能,始终保持电机的输出高效率运行。
3、通过变频自身的V/F功能节电:在保证电机输出力矩的情况下,可自动调节V/F曲线。
减少电机的输出力矩,降低输入电流,达到节能状态。
4、变频自带软启动节能:在电机全压启动时,由于电机的启动力矩需要,要从电网吸收 7 倍的电机额定电流,而大的启动电流即浪费电力,对电网的电压波动损害也很大,增加了线损和变损。
采用软启动后,启动电流可从0 -- 电机额定电流,减少了启动电流对电网的冲击,节约了电费,也减少了启动惯性对设备的大惯量的转速冲击,延长了设备的使用寿命。
5、提高功率因数节能:电动机由定子绕组和转子绕组通过电磁作用而产生力矩。
绕组由于其感抗作用。
对电网而言,阻抗特性呈感性,电机在运行时吸收大量的无功功率,造成功率因数很低。
采用变频节能调速器后,由于其性能已变为:AC-- DC --AC,在整流滤波后,负载特性发生了变化。
变频调速器对电网的阻抗特性呈阻性,功率因数很高,减少了无功损耗。
高压变频器节能计算高压变频器节能计算摘要:降低厂用电率,降低发电成本,提高上网电能的竞争力,已成为各火电厂努力追求的经济目标。
近几年电网的负荷峰谷差越来越大,频繁的调峰任务使部分辅机仍然运行在工频状态下,造成大量电能流失。
本文着重介绍了高压变频器的工作原理及实际运行情况的详细节能分析,使我们对其节能效果以及典型风机水泵节能计算有了更进一步认识。
因此得出结论高压变频调速技术的日趋成熟,在电力系统中广泛应用,节能效果明显。
关键词:调速高压变频器功率单元IGBT节电率一、引言众所周知,高压电动机的应用极为广泛,它是工矿企业中的主要动力,在冶金、钢铁、化工、电力、水处理等行业的大、中型厂矿中,用于拖动风机、泵类、压缩机及各种大型机械。
其消耗的能源占电动机总能耗的70%以上,而且绝大部分都有调速的要求,由于高压电机调速方法落后,浪费大量能源而且机械寿命降低。
上世纪90年代,由于变频调速技术在低压电动机应用得非常成功,人们开始研究高压电动机变频技术的应用,设计了高-高电压源型变频技术方案。
该方案采用多电平电路型式(CMSL),由若干个低压PWM 变频功率单元,以输出电压串联方式(功率单元为三相输入、单相输出)来实现直接高压输出的方法。
经过我厂多方调研、比较,最后选择同利德华福电气技术合作。
本文将从HARSVERT-A系列高压变频器的工作原理及实际运行状况两方面分析豫新发电厂引风机、凝结水泵的节能情况。
二、高压变频器的工作原理(一)变频器的结构:现以6kV五级单元串联多电平的高压变频器为例。
1.系统主回路:部是由十五个相同的功率单元模块构成,每五个模块为一组,分别对应高压回路的三相,单元供电由干式移相变压器进行供电,原理如图1。
图1:变频器的结构2.功率单元构成:功率单元是一种单相桥式变换器,由输入干式变压器的副边绕组供电。
经整流、滤波后由4个IGBT以PWM方法进行控制(如图2所示),产生设定的频率波形。
变频器中所有的功率单元,电路的拓扑结构相同,实行模块化的设计,控制通过光纤发送至单元控制板。
ABB变频器节能效果显著
ABB变频器具有高效自动节能的优势,在恒压变频供水设备中运用广泛,它的主要作用是改变水泵的转速,保证管网压力保持恒定,使之恒压供水。
ABB变频器的节能效果非常显著,下面我们一起来看看:
ABB变频器参数设置
由于本系统比较简单变频器设置不复杂。
9901=1中文、9902=6PID应用宏、9905=电机额定电压、9906=电机额定电流、9907=电机额定频率、9908=电机额定转速、9909=电机额定功率、4010=19内部、4011=供水压力、4016=1AI1。
恒压变频供水设备ABB变频器节能效果
流量基本公式:Q∝NH∝N2KW=Q*H∝N3
以上Q代表流量,N代表转速,H代表扬程,KW代表轴功率。
例如:将供电频率由50HZ降为45HZ,
则P45/P50=(45/50)3=0.729,即P45=0.729P50;
将供电频率由50HZ降为40HZ,
则P40/P50=(40/50)3=0.512,即P40=0.512P50。
供水设备第一品牌,博海主营产品:无负压变频供水设备、恒压变频供水设备、箱式无负压变频供水设备、管道静音式变频供水设备。
本文章由四川博海供水设备有限公司提供,四川博海专业供水十五年,打造二次供水第一品牌。
变频不是到处可以省电,有不少场合用变频并不一定能省电。
作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。
一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯. 变频器在工频下运行,具有节电功能,是事实。
但是他的前提条件是:第一,大功率并且为风机/泵类负载;第二,装置本身具有节电功能(软件支持);第三,长期连续运行。
这是体现节电效果的三个条件。
除此之外,无所谓节不节电,没有什么意义。
变频节能什么是变频器变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。
PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。
变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。
异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
电动机使用工频电源驱动时,电压下降则电流增加;对于变频器驱动,如果频率下降时电压也下降,那么电流是否增加?频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。
采用变频器运转时,电机的起动电流、起动转矩怎样?采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。
节能计算1. 离心式风机1.1 不考虑压力,调节风量时的能耗比较流量(%)功率%叶片调节液力偶合器变频调速挡板调节图1 风机各调节方式的能耗-流量曲线上述均为百分比,100%流量为风机的额定流量,100%功率为工频额定工况运行时消耗功率(即电机输入功率= 风机额定轴功率/电机效率,电机效率一般为93-96%,额定功率较大者效率较高)。
变频调速时的节能量即为两种调节方式的能耗差值(百分比乘额定消耗功率)。
需要了解的参数:电机:型号、额定功率P N、额定电流I N、额定电压U N、额定功率因数COSΦN、额定转速风机:型号、特性曲线、额定流量Q N、额定全压H N、额定轴功率N N、额定转速运行工况:现有调节方式、实际需求流量Q、运行电压U、运行电流I(或实际消耗功率P)计算步骤:●电机额定效率ηN = P N/(1.732I N U N COSΦN)式(1-1)●额定消耗功率P IN = N N /ηN 式(1-2)●根据Q/Q N*100%从图1查出变频调速时的节约功率百分比,乘上P IN即为变频运行时的节约功率△P。
●△P 乘上运行时间(小时)即为节约电度数。
1.2 不考虑流量,仅调节压力假设采用变频调速后,不考虑风阻的变化,将压力从工频运行时的H1下调到H2。
需要了解的参数:电机:型号、额定功率P N、额定电流I N、额定电压U N、额定功率因数COSΦN、额定转速风机:型号、特性曲线、额定流量Q N、额定全压H N、额定轴功率N N、额定转速运行工况:工频运行压力H1、实际需求压力H2、运行电压U、运行电流I(或实际消耗功率P)计算:●计算工频运行时的消耗功率P●计算变频运行时的消耗功率P1=(H2/H1)1.5 *P/0.96式(1-3)●节约功率△P = P – P1●△P 乘上运行时间(小时)即为节约电度数。
运行功率的几种计算方式:●装有功率表:直接查表●装有电度表:P = 电度数(度)/记录时间(小时)●仅知道电流I和电压U:(1-COS2ΦN)I4NP = √3 U ×I2 -————————√(2I N-I)2式(1-4)2. 离心式水泵2. 1 当不考虑压力,仅调节流量时阀门调节功率%流量(%)变频调速图2 水泵不同调节方式的能耗-流量曲线上述均为百分比,100%流量为水泵的额定流量,100%功率为工频额定工况运行时消耗功率(即电机输入功率 = 水泵额定轴功率/电机效率)。
变频调速节能量的计算方法据统计,全世界的用电量中约有60%是通过来消耗的。
因为考虑起动、过载、平安系统等缘由,高效的电动机常常在低效状态下运行,采纳变频器对沟通异步电动机举行调速控制,可使电动机重新回到高效的运行状态,这样可节约大量的电能。
生产机械中电动机的负载种类千差万别,为便于分析讨论,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能举行估算。
所谓估算,即在变频器投运前,对用法了变频器后的节能效果举行的计算预测。
变频器一旦投运后,用电工仪表测量系统的节能量更为精确。
现假定,电动机系统在用法变频器调速前后的功率因数基本相同,且变频器的效率为95%。
在设计过程中过多考虑建设前,后长久工艺要求的差异,使裕量过大。
如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分离为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长久运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。
生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板举行节流调整,则增强了管路系统的阻尼,造成电能的铺张;对于恒转矩负载常用电磁调速器﹑液力耦合器举行调整,这两种调速方式效率较低,而且,转速越低,效率也越低。
因为电机的的大小随负载的轻重而转变,也即电机消耗的功率也是随负载的大小而转变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。
本文介绍用以下的公式来举行节能的估算。
二、节能的估算1、风机、泵类平方转矩负载的变频调速节能风机、泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。
采纳电动机变频调速来调整流量,比用挡板﹑阀门之类来调整,可节电20%~第1页共6页。
变频调速节能量的计算方法一﹑概述据统计,全世界的用电量中约有60%是通过电动机来消耗的。
由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。
生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能进行估算。
所谓估算,即在变频器投运前,对使用了变频器后的节能效果进行的计算预测。
变频器一旦投运后,用电工仪表测量系统的节能量更为准确。
现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。
在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。
如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。
生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。
由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。
本文介绍用以下的公式来进行节能的估算。
二、节能的估算1﹑风机﹑泵类平方转矩负载的变频调速节能风机﹑泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。
采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电20%~50%,如果平均按30%计算,节省的电量为全国总用电量的9%,这将产生巨大的社会效益和经济效益。
变频调速节能量的计算方法时间:2009-12-16 09:26:19 来源:工控网作者:杜俊明一、概述据统计,全世界的用电量中约有60%是通过电动机来消耗的。
由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。
生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能进行估算。
所谓估算,即在变频器投运前,对使用了变频器后的节能效果进行的计算预测。
变频器一旦投运后,用电工仪表测量系统的节能量更为准确。
现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。
在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。
如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。
生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。
由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。
本文介绍用以下的公式来进行节能的估算。
二、节能的估算1、风机、泵类平方转矩负载的变频调速节能风机、泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。
采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电20%~50%,如果平均按30%计算,节省的电量为全国总用电量的9%,这将产生巨大的社会效益和经济效益。
现有一台250KW风机,现采用星--三角起动运行,工作电流太约在360A左右,如果改成变频器,一个小时能节多少电,太概多长时间能收回成本.变频器节能计算方法例如:当从50Hz降至45Hz得公式:P45/P50=45(3次方)/50(3次方)P45=0.729P50(2)当从50Hz降至45Hz得已知:单台冷却器在工频耗电功率为250KW/h。
(3)∵P45=0.729P50=0.729×250=182.28 KW/h(4)单台电机节能:250-182.25=67.75 KW/h;为原耗电量节约为67.75/250×100%=27.1%(5)年节能:250kw×24h×30d×12m×27.1%=585360KW;按1KW/h电费0.45元计算年节约共计585360×0.45=263412元。
2. 公式:P45/P50=45(3次方)/50(3次方)P45=0.729P50我想知道这个叫什么公式,这个公式怎么来的?公式:P45/P50=45(3次方)/50(3次方)这个公式是由风机工作特性决定的,由于风机是二次方负载,轴功率与转速的三次方成正比。
风机水泵类负载使用高压变频器节能计算风机水泵工作特性风机水泵特性:H=H0-(H0-1)*Q2H-扬程Q-流量H0-流量为0 时的扬程管网阻力:R=KQ2R-管网阻力K-管网阻尼系数Q-流量注:上述变量均采用标么值,以额定值为基准,数值为1 表示实际值等于额定值风机水泵轴功率P:P= KpQH/ηbP-轴功率Q-流量;H-压力;ηb-风机水泵效率;Kp-计算常数;流量、压力、功率与转速的关系:Q1/Q2 = n1/n2; H1/H2 =(n1/n2)2; P1/P2 =(n1/n2)3■变阀控制变阀调节就是利用改变管道阀门的开度,来调节泵与风机的流量。
变阀调节时,泵或风机的功率基本不变,泵或风机的性能曲线不变,而管道阻力特性曲线发生变化,泵或风机的性能曲线与新的管道阻力特性曲线的交点处就是新的工作点。
变频调节能量的计算方法
首先,我们来计算输入能量。
输入电能是指变频器从电网中获得的能量,也称为电源能量。
要计算输入能量,需要知道变频器的输入电压和电流。
输入能量的计算公式为:
输入能量=输入电压×输入电流×时间
输入电流可以通过变频器的额定电流和负载状态来确定。
因此,可以通过测量输入电压和输入电流,并将其乘以操作时间来计算输入能量。
接下来,我们来计算输出能量。
输出能量是指变频器传递给负载的能量,也称为有效功率。
输出能量的计算需要知道变频器的输出电压和输出电流。
输出能量的计算公式为:
输出能量=输出电压×输出电流×时间
输出电流可以通过变频器的负载状态和额定电流来确定。
因此,可以通过测量输出电压和输出电流,并将其乘以操作时间来计算输出能量。
最后,我们来计算调节能量。
调节能量是指变频器在调节负载工作状态时传递给负载的能量,它是输入能量和输出能量之间的差值。
调节能量的计算公式为:
调节能量=输入能量-输出能量
调节能量表征了变频器在控制负载工作状态期间消耗的能量,它可以用来评估变频器的效率和节能性能。
需要注意的是,在实际的应用中,为了准确计算能量,还需要考虑一些其他因素,如变频器的功率因数、损耗和效率等。
此外,变频器的输入
电压和输出电压可能会随着时间的变化而改变,因此,需要根据实际情况动态调整计算方法。
总结起来,变频调节能量的计算方法包括计算输入能量、计算输出能量和计算调节能量。
这些计算方法可以帮助评估变频器的效率和性能,并为变频器应用提供参考。
变频调速节能量的计算方法
一﹑概述
据统计,全世界的用电量中约有60%是通过电动机来消耗的。
由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。
生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能进行估算。
所谓估算,即在变频器投运前,对使用了变频器后的节能效果进行的计算预测。
变频器一旦投运后,用电工仪表测量系统的节能量更为准确。
现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。
在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。
如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。
生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。
由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。
本文介绍用以下的公式来进行节能的估算。
二、节能的估算
1﹑风机﹑泵类平方转矩负载的变频调速节能风机﹑泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。
采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电
20%~50%,如果平均按30%计算,节省的电量为全国总用电量的9%,这将产生巨大的社会效益和经济效益。
生产中,对风机﹑水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大。
如果用变频器对风机﹑泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。
节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即:
能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即:
节省的功率与系统调速前后的速
差成正比,速差越大,节能越显著。
恒转矩负载变频调速一般都用于满足工艺需要的调速,不用变频调速就得采用其他方式调速,如调压调速﹑电磁调速﹑绕线式电机转子串电阻调速等。
由于这些调速是耗能的低效调速方式,使用高效调速方式的变频调速后,可节省因调速消耗
的转差功率,节能率也是很观的。
3、电磁调速系统
电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器的激磁电流来实现调速。
转差离合器的本身的损耗是由主动部分的风阻、磨擦损耗及从动部分的机械磨擦损所产生的。
如果考虑这些损耗与转差离合器的激磁功率相平衡,且忽略不计的话,转差离合器的输入、输出功率可由下式计算:
电动机轴输出功率
式中:T2—转差离合器的输出转矩
n2 –-转差离合器的输出轴转速
电动机的输出功率,即为转差离合器的输入功率。
对于恒转矩负载,T= T1 = T2=常数,所以,转差离合器的效率:
电磁调速电机为鼠笼式电机,由于输入功率和转矩均保持不变,鼠笼式电机的功率保持不变。
损耗以有功的形式表达出来,损耗功率通过转差离合器涡流发热并由电枢上的风叶散发出去。
由损耗功率公式(10)可以清楚看到,电磁调速电机的转速越低,浪费能源越大,然而生产机械的转速通常不在最大转速下运行,变频调速是一种改变旋转磁场同步速度的方法,是不耗能的高效调速方式,因此改用变频调速的方式会有非常好的节能效果,节省的能量直接可用(10)式计算。
4、液力偶合器调速系统
液力偶合器是通过控制工作腔内工作油液的动量矩变化,来传递电动机能量,电动机通过液力偶合器的输入轴拖动其主动工作轮,对工作油进行加速,被加速的工作油再带动液力偶合器的从动工作涡轮,把能量传递到输出轴和负载。
液力偶合器有调速型和限矩型之分,前者用于电气传动的调速,后者用于电机的起动,系统中的液力偶合器在电机起动时起缓冲作用。
由于液力偶合器的结构与电磁转差离合器类似,仿照电磁调速器效率的计算方法,可得:
同样,用(12)式可计算将液力耦合器调速改造为变频调速后的节能量。
5、绕线式电机串电阻调速系统
绕线式电机最常用改变转子电路的串接电阻的方法调速,随着转子串接电阻的增大,不但可以方便地改变电机的正向转速,在位能负载时,还可使电机反向旋转和改变电机的反向转速,因此这种调速方式在起重﹑冶金行业应用较多。
对于绕线式电机,无论在起动、制动还是调速中,采用转子串电阻方式均会带来电能损耗。
这种损耗随着转速的降低,转差率S的增大而增大,另外,随着串接电阻的增大,机械特性变软,难以达到调速的静态指标。
绕线式电机输入的电磁功率为:
当我们进行变频节能改造时,投入和收益是必须认真考虑的,收益就涉及到节能量的计算,变频器未投运之前,计算节能量是比较困难的,往往希望有一种简单实用的计算方法来进行节能的预测,有了以上的计算式计算节能量,投入和收益也
就一目了然了。
例1:有一电机4极Pe=55KW,驱动风机,风机的实际风量Q与额定风量之比Q/QN为0.8,现采用变频器调速,求节电率。
由(2)式
节电率为36%。
三﹑变频调速节能与系统功率因数的关系
前已假定电动机系统在使用变频器调速前后的功率因数基本相同,这样在计算节能时可不考虑系统功率因数的影响。
实际上,在变频器投入前后,其功率因数可能是不同的,因此,计算的节能量是否考虑变频器调速前后的功率因数的变化呢?
用电度表进行计量检测实际
的节能量时,电度表测量的就是电动机系统消耗的有功功率。
若原电动机系统的功率因数较低,在使用变频器后以50Hz频率恒速运行,这时功率因数有所提高。
功率因数提高后,电动机的运行状态并没有改变,电动机消耗的有功功率和无功功率也没有改变。
变频器中的滤波电容与电动机进行无功能量交换,因此变频器实际输入电流减小,从而减小了电网与变频器之间的线损和供电变压器的铜耗,同时减小了无功电流上串电网。
因此计算节能时,应考虑提高功率因数后的节能。
提高功率因数后,配电系统电流的下降率为:
配电系统的电流下降率和配电系统的损耗下降率都是对单台电动机补偿前后电流和损耗而言,不是指配电系统电流和损耗的实际变化。
下面举一个典型的事例。
从配电房的电度表实测的结果还是节能,且节能在15%以上。
从本例看,如果单纯提高功率因数,无须使用变频器,只需用电力电容进行就地补偿,但倘若还要满足工艺调速的需要,使用变频器调速节能是最佳的节能方法,这时的节能量应是线路上的能耗与变频调速节能之和。
如果原电动机系统的功率因数较高,变频器投入后功率因数变化不大,可不考虑功率因数变化后线损的影响,就用本文中的(1)~(14)进行计算节能。
四﹑变频调速节能计算时需考虑变频器的效率
GB12668定义变频器为转换电能并能改变频率的电能转换装置。
能量转换过程中必然伴随着损耗。
在变频器内部,逆变器功率器件的开关损耗最大,其余是电子元器件的热损耗和风机损耗,变频器的效率一般为95%-96%,因此在计算变频调速节能时要将变频器的4%-5%的损耗考虑在内。
如考虑了变频器的损耗本文例1中计算的节能率,就不是36%,而应该为31%-32%,这样的计算结果与实际节能率更为接近。
五﹑结束语
一般情况下,变频器用于50Hz调速控制。
不管是平方转矩特性负载,还是恒
转矩特性负载,调速才能节能,不调速在工频下运行是没有节能效果的。
有时系统功率因数很低,使用变频器后也有节能效果,这不是变频调速节能,而是补偿功率因数带来的节能。
.
本文所述的对变频调速节能计算方法有极好的实用性如有侵权请联系告知删除,感谢你们的配合!
精品。