中南大学通信原理实验报告实验二 数字调制
- 格式:doc
- 大小:2.39 MB
- 文档页数:8
中南大学《通信原理》实验报告学生姓名指导教师学院专业班级完成时间数字基带信号1、实验名称数字基带信号2、实验目的(1)了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
(2)掌握AMI、HDB3码的编码规则。
(3)掌握从HDB3码信号中提取位同步信号的方法。
(4)掌握集中插入帧同步码时分复用信号的帧结构特点。
(5)了解HDB3(AMI)编译码集成电路CD22103。
3、实验内容(1)用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
(2)用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
(3)用示波器观察HDB3、AMI译码输出波形。
4、基本原理(简写)本实验使用数字信源模块和HDB3编译码模块。
1、数字信源本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。
本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。
帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。
发光二极管亮状态表示1码,熄状态表示0码。
本模块有以下测试点及输入输出点:• CLK 晶振信号测试点• BS-OUT 信源位同步信号输出点/测试点(2个)• FS 信源帧同步信号输出点/测试点• NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个)图1-1中各单元与电路板上元器件对应关系如下:•晶振CRY:晶体;U1:反相器7404•分频器U2:计数器74161;U3:计数器74193;U4:计数器40160 •并行码产生器K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管:左起分别与一帧中的24位代码相对应•八选一U5、U6、U7:8位数据选择器4512•三选一U8:8位数据选择器4512•倒相器U20:非门74HC04•抽样U9:D触发器74HC742. HDB3编译码原理框图如图1-6所示。
第1篇一、实验目的1. 理解通信原理的基本概念和原理。
2. 掌握通信系统中的信号传输、调制解调、信道编码和解码等基本技术。
3. 通过实验验证通信原理在实际系统中的应用,提高实际操作能力。
二、实验内容1. 信号传输实验(1)实验目的:验证信号传输过程中的基本特性,如幅度调制、频率调制、相位调制等。
(2)实验原理:通过改变输入信号的幅度、频率和相位,观察输出信号的相应变化,分析调制和解调过程。
(3)实验步骤:① 设计信号传输系统,包括调制器、传输信道和解调器;② 选择合适的调制方式,如AM、FM、PM等;③ 通过实验验证调制和解调过程,分析输出信号的特性;④ 分析实验结果,总结调制和解调过程中的关键因素。
2. 调制解调实验(1)实验目的:研究调制解调技术在通信系统中的应用,掌握调制解调的基本原理和方法。
(2)实验原理:通过实验验证调制解调过程,分析调制解调器的性能指标,如调制指数、解调误差等。
(3)实验步骤:① 设计调制解调系统,包括调制器、解调器和信道;② 选择合适的调制方式和解调方式,如AM、FM、PM、PSK、QAM等;③ 通过实验验证调制解调过程,分析调制解调器的性能指标;④ 分析实验结果,总结调制解调过程中的关键因素。
3. 信道编码和解码实验(1)实验目的:研究信道编码和解码技术在通信系统中的应用,掌握信道编码和解码的基本原理和方法。
(2)实验原理:通过实验验证信道编码和解码过程,分析编码和解码的性能指标,如误码率、信噪比等。
(3)实验步骤:① 设计信道编码和解码系统,包括编码器、信道和解码器;② 选择合适的信道编码方式,如BCH码、RS码等;③ 通过实验验证信道编码和解码过程,分析编码和解码的性能指标;④ 分析实验结果,总结信道编码和解码过程中的关键因素。
4. 通信系统综合实验(1)实验目的:综合运用通信原理中的各种技术,设计一个简单的通信系统,并验证其性能。
(2)实验原理:将上述实验中的技术综合应用于通信系统,验证系统的整体性能。
实验2 数字频带传输系统实验一、实验目的掌握数字频带传输系统调制解调的仿真过程 掌握数字频带传输系统误码率仿真分析方法二、实验原理数字频带信号通常也称为数字调制信号,其信号频谱通常是带通型的,适合于在带通型信道中传输。
数字调制是将基带数字信号变换成适合带通型信道传输的一种信号处理方式,正如模拟通信一样,可以通过对基带信号的频谱搬移来适应信道特性,也可以采用频率调制、相位调制的方式来达到同样的目的。
1.调制过程 1)2ASK如果将二进制码元“0”对应信号0,“1”对应信号tf A c π2cos ,则2ASK 信号可以写成如下表达式:()()cos2T n s c n s t a g t nT A f tπ⎧⎫=-⎨⎬⎩⎭∑{}1,0∈n a ,()⎩⎨⎧≤≤=其他 0T t 01s t g 。
可以看到,上式是数字基带信号()()∑-=ns n nT t g a t m 经过DSB 调制后形成的信号。
其调制框图如图1所示:图1 2ASK 信号调制框图2ASK 信号的功率谱密度为:()()()][42c m c m s f f P f f P A f P ++-=2)2FSK将二进制码元“0”对应载波t f A 12cos π,“1”对应载波t f A 22cos π,则形成2FSK 信号,可以写成如下表达式:()()()()()12cos 2cos 2T n s n n s n nns t a g t nT A f t a g t nT A f t πϕπθ=-++-+∑∑当=n a 时,对应的传输信号频率为1f ;当1=n a 时,对应的传输信号频率为2f 。
上式中,n ϕ、n θ是两个频率波的初相。
2FSK 也可以写成另外的形式如下:()()cos 22T c n s n s t A f t h a g t nT ππ∞=-∞⎛⎫=+- ⎪⎝⎭∑其中,{}1,1-+∈n a ,()2/21f f f c +=,()⎩⎨⎧≤≤=其他 0T t 01s t g ,12f f h -=为频偏。
一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。
三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。
2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。
3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。
4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。
通信原理实验报告班级:组号:06 时间:2015/11/12成员:学号:实验四2ASK调制与解调实验一、实验目的1、了解数字调制与解调的概念。
1、掌握2ASK调制的原理及实现方法。
2、掌握2ASK解调的原理及实现方法。
二、实验内容1、采用数字键控法2ASK调制,观测2ASK调制信号的波形。
2、采用包络检波法2ASK解调。
三、实验仪器1、信号源模块一块2、数字调制模块一块3、数字解调模块一块4、20M双踪示波器一台五、实验步骤(若码型太长,示波器单张图片无法清晰显示,可调整至2~3张图片记录)1、插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的电源开关,对应的发光二极管灯亮,三个模块均开始工作。
(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)2、信号源模块设置(1)“码速率选择”拨码开关设置为8分频,即拨为00000000 00001000。
信号源模块的NRZ码型选择SW01~SW03拨码开关依次设置成本组同学的学号尾数的二进制码,例:陈欢,陈金洪,陈景鹏同学学号尾数是1,2,3,则他们SW01~SW03拨码开关依次设置成0000 0001,0000 0010,0000 0011B。
(2)调节“384K调幅”旋转电位器,使“384K正弦载波”输出幅度为3.6V。
3、2ASK调制(1)实验连线如下:信号源模块数字调制模块NRZ ———————— NRZ输入(数字键控法调制)384K正弦载波————载波1输入(数字键控法调制)(2)数字调制模块“键控调制类型选择”拨码开关拨成1000,即选择2ASK调制方式。
(3)以数字调制模块“NRZ输入”的信号为内触发源,示波器双踪观测“NRZ输入”和“调制输出”测试点波形,并记录图片为图1。
图1图1局部放大图5、2ASK解调(1)以上模块设置和连线均不变,增加连线如下:数字调制模块数字解调模块调制输出(数字键控法调制)——ASK-IN信号源模块数字解调模块BS —————————————ASK-BS(2)示波器双踪两两观测“ASK-IN”、“OUT1”测试点波形,并记录图片为图2 。
计算机与信息工程学院验证性实验报告一、实验目的1、掌握绝对码(AK)、相对码(BK)的概念以及它们之间的关系。
2、掌握用键控法产生2ASK 、2FSK 、2DPSK 信号的方法。
3、掌握BK 与2PSK 信号波形之间的关系、AK 与2DPSK 信号波形之间的关系。
4、了解2ASK 、2FSK 、2DPSK 信号的频谱与数字基带信号频谱之间的关系。
二、实验原理及方法数字调制分为二进制调制和多进制调制,二进制调制是多进制调制的基础。
在HUST TX 系列实验设备中只包含二进制数字调制,多进制调制实验由仿真软件实现,需要仿真软件的读者可以向作者索取,当然也可以使用有关商业软件或自己开发。
本实验使用数字信源模块和数字调制模块。
信源模块向调制模块提供数字基带信号和位定时信号。
调制模块将输入的绝对码AK (NRZ 码)变为相对码BK 、用键控法产生2ASK 、2FSK 、2DPSK 信号。
调制模块内部使用+5V 电源。
数字调制模块的原理方框图如图2.1所示,电原理图如图2.2所示。
图中CLK-IN 接信源模块晶振的输出信号CLK,NRZ-IN(AK)接信源模块的输出信号NRZ-OUT (AK ),BS-IN 接信源模块的输出位定时信号BS-OUT ,它们已在印刷电路板上连通。
图2.1 数字调制方框图数字调制模块上有以下信号测试点:• CAR2DPSK 和2ASK 的载波信号测试点• BK 相对码测试点• 2DPSK 2DPSK信号测试点,V P-P>0.5V• 2FSK 2FSK信号测试点,V P-P>0.5V• 2ASK 2ASK信号测试点,V P-P>0.5V图2.2 数字调制模块电原理图图2.1中各单元与图2.2中元器件的对应关系如下:•÷2(A)U18B:双D触发器74LS74•÷2(B)U9B:双D触发器74HC74•滤波器A V1:三极管9013,电感L1,电容C7•滤波器B V6:三极管9013,电感L2,电容C2•码变换器U18A:双D触发器74LS74;U19A:异或门74LS86 • 2ASK调制器U22:三路二选一模拟开关4053• 2FSK调制器U22:三路二选一模拟开关4053• 2PSK调制器U21:八选一模拟开关4051•放大器V5:三极管9013•射随器V3:三极管9013数字调制模块将数字信源模块晶振的输出信号CLK 进行2分频、滤波后,得到2ASK 和2DPSK 的载波信号,频率为2.2165MHz 。
通信原理实验实验报告实验名称:通信原理实验实验目的:1. 理解基本的通信原理和通信系统的工作原理;2. 掌握各种调制解调技术以及通信信号的传输方式;3. 熟悉通信系统的基本参数和性能指标。
实验设备和器材:1. 信号发生器2. 采样示波器3. 调制解调器4. 麦克风和扬声器5. 示波器6. 功率分贝计7. 电缆和连接线等实验原理:通信原理主要涉及调制解调、传输媒介、信道编码和解码等方面的内容。
本次实验主要内容为调幅、调频和数字调制解调技术的验证,以及传输信号质量的评估和性能测量。
实验步骤:1. 调幅实验:将信号发生器产生的正弦波信号调幅到载波上,并使用示波器观察调幅波形,记录幅度调制度;2. 调频实验:使用信号发生器产生调制信号,将其调频到载波上,并使用示波器观察调频波形,记录调频的范围和带宽;3. 数字调制实验:使用调制解调器进行数字信号调制解调实验,并观察解调的信号质量,记录解调信号的正确性和误码率;4. 信号质量评估:使用功率分贝计测量信号传输过程中的信噪比和失真程度,并记录测量结果;5. 性能测量:采用示波器和其他测量设备对通信系统的带宽、传输速率等性能指标进行测量,记录测量结果。
实验结果:1. 对于调幅实验,观察到正弦波信号成功调幅到载波上,并记录幅度调制度为X%;2. 对于调频实验,观察到调制信号成功调频到载波上,并记录调频的范围为X Hz,带宽为X Hz;3. 对于数字调制实验,观察到解调后的信号正确性良好,误码率为X%;4. 信号质量评估测量结果显示信噪比为X dB,失真程度为X%;5. 性能测量结果显示通信系统的带宽为X Hz,传输速率为X bps。
实验总结:通过本次实验,我们深入了解了通信原理中的调制解调技术和信号传输方式,并且成功进行了调幅、调频和数字调制解调实验。
通过信号质量评估和性能测量,我们对通信系统的性能指标有了更深入的了解。
在实验过程中,我们还发现了一些问题和改进的空间,例如在数字调制实验中,我们可以进一步优化解调算法,提高解调的正确性。
数字通信原理实验报告专业班级:指导老师:李敏姓名:学号:实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握从HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码时分复用信号的帧结构特点。
5、了解HDB3(AMI)编译码集成电路CD22103。
二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI译码输出波形。
三、实验步骤本实验使用数字信源单元和HDB3编译码单元。
1、熟悉数字信源单元和HDB3编译码单元的工作原理。
接好电源线,打开电源开关。
2、用示波器观察数字信源单元上的各种信号波形。
用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ 码特点。
3、用示波器观察HDB3编译单元的各种波形。
仍用信源单元的FS信号作为示波器的外同步信号。
(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI端)波形和HDB3码(开关K4置于右方HDB3端)波形。
再将K1、K2、K3置为全0,观察全0码对应的AMI码和HDB3码。
中南大学《通信电子线路》实验报告学院信息科学与工程学院题目调制与解调实验学号专业班级姓名指导教师实验一振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。
2.研究已调波与调制信号及载波信号的关系。
3.掌握调幅系数测量与计算的方法。
4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。
二、实验内容:1.调测模拟乘法器MC1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
三、基本原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。
变化的周期与调制信号周期相同。
即振幅变化与调制信号的振幅成正比。
通常称高频信号为载波信号。
本实验中载波是由晶体振荡产生的10MHZ高频信号。
1KHZ的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。
D、V7、V8为差动放大器V5与V6的恒流源。
进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。
图2-1 MC1496内部电路图用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。
器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。
通信原理实验报告一、实验目的1、熟悉信号源实验模块提供的信号类别;2、加深对PCM编码过程的理解;3、掌握2ASK、2FSK的调制、解调原理;二、4.通过观察噪声对信道的影响, 比较理想信道与随机信道的区别, 加深对随机信道的理解。
三、实验器材实验模块---信号源双踪示波器模拟信号数字化模块数字调制模块信道模拟模块数字解调模块连接线三、实验原理测试工具---示波器:(1)示波器的输入功能区: 从通道1和通道2输入2、(2)示波器的测量功能区: QuickMeas光标调节和快速测量, 可以测量电压和频率;auto-scale自动触发扫描;在左上角的按钮可以调节扫描时间;在右上角的按钮可以调节水平位置。
3、(3)示波器的控制功能区, Run/Stop可以暂停便于得出波形4、模拟信号数字化(PCM编码)脉冲编码调制(PCM)简称为脉码调制, 它是一种将模拟语音信号变换成数字信号的编码方式。
PCM的原理框图:PCM主要包括抽样、量化与编码三个过程。
抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。
(1)、采样: 利用奈奎斯特定律, fs 2fb,(fs是采样频率, fb是信号的截止频率), 满足这个不等式关系信号才不会重叠, 以致信号不能还原。
(2)、量化: 模拟信号的量化分为均匀量化和非均匀量化。
本实验模块中所用到的PCM编码芯片TP3067是采用近似于A律函数规律的13折线(A=87.6)的压扩特性压扩特性来进行编码的。
A律13折线:(3)、编码所谓编码就是把量化后的信号变换成代码, 其相反的过程称为译码。
当然, 这里的编码和译码与差错控制编码和译码是完全不同的, 前者是属于信源编码的范畴。
本实验采用大规模集成电路TP3067对语音信号进行PCM编、解码。
PCM电路原理图:3.2ASK 调制原理将载波在二进制基带信号1或0的控制下通或断, 即用载波幅度的有无来代表信号中的“1”或者是“0”, 这样就可以得到2ASK 信号, 这种二进制振幅键控方式称为通—断键控(OOK )。
电子信息与自动化学院《通信原理》实验报告学号:姓名:实验名称:硬件实验二 PSK调制解调实验成绩:一、实验目的1.掌握PSK调制解调的工作原理及性能要求;2.进行PSK调制、解调实验,掌握相干解调原理和载波同步方法;3.理解PSK相位模糊的成因,思考解决办法。
二、实验仪器1.RZ9681实验平台2.实验模块:•主控模块•基带信号产生与码型变换模块-A2•信道编码与频带调制模块-A4•纠错译码与频带解调模块-A53.100M双通道示波器4.信号连接线5.PC机(二次开发)三、实验原理1、PSK调制原理2PSK(二进制相移键控,Phase Shift Keying)信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传“0”和传“1”。
图3.3.3 1 2PSK调制信号波形PSK调制由“信道编码与频带调制-A4”模块完成,该模块基于FPGA和DA芯片,采用软件无线电的方式实现频带调制。
图3.3.3.2 PSK调制电路原理框图硬件实验二PSK调制解调实验报告姓名:学号:上图中,基带数据和时钟,通过4P5和4P6两个铆孔输入到FPGA中,FPGA软件完成PSK的调制后,再经DA数模转换即可输出相位键控信号,调制后的信号从4P9输出。
2、PSK解调原理实验中2PSK信号的解调采用相干解调法,首先要从调制信号中提取相干载波,在实验中采用数字costas环提取相干载波,二相PSK(DPSK)解调器采用数字科斯塔斯环(Constas 环)解调,其原理如下图所示。
图3.3.3.3 数字科斯塔斯特环原理图设已调信号表达式为(A1为调制信号的幅值),经过乘法器与载波信号A2(A2为载波的幅值)相乘,得:可知,相乘后包括二倍频分量和分量(为时间的函数)。
因此,需经低通滤波器除去高频成分,得到包含基带信号的低频信号,然后同向端和正交端两路信号相乘,其差值作为环路滤波器的输入,然后控制VCO载波频率和相位,得到和调制信号同频同相的本地载波。
第1篇一、实验目的本次实验旨在通过一系列的通信原理实验,使学生深入理解并掌握通信系统的基本概念、原理和关键技术。
通过实验操作,培养学生动手能力、分析问题和解决问题的能力,同时增强对通信理论知识的实际应用能力。
二、实验内容1. 信号与系统基础实验- 信号波形观察与分析- 信号的时域与频域分析- 系统的时域与频域响应2. 模拟通信原理实验- 模拟调制与解调实验(如AM、FM、PM)- 信道特性分析- 噪声对通信系统的影响3. 数字通信原理实验- 数字调制与解调实验(如2ASK、2FSK、2PSK、QAM)- 数字基带传输与复用- 数字信号处理技术4. 现代通信技术实验- TCP/IP协议栈原理与实现- 无线通信技术(如Wi-Fi、蓝牙)- 物联网通信技术(如ZigBee)5. 通信系统设计实验- 基于MATLAB的通信系统仿真- 通信系统性能分析与优化三、实验步骤1. 实验准备- 熟悉实验原理和实验设备- 编写实验报告提纲- 准备实验数据和分析工具2. 实验操作- 按照实验步骤进行操作,记录实验数据 - 分析实验现象,总结实验规律- 对实验结果进行误差分析3. 实验报告撰写- 实验目的与背景- 实验原理与步骤- 实验结果与分析- 实验结论与讨论- 实验心得与体会四、实验报告格式1. 封面- 实验报告题目- 学生姓名、学号、班级- 指导教师姓名、职称- 实验日期2. 目录- 实验报告各部分标题及页码3. 正文- 实验目的与背景- 实验原理与步骤- 实验结果与分析- 实验结论与讨论- 实验心得与体会4. 参考文献- 列出实验过程中参考的书籍、论文、网络资源等五、实验报告撰写要求1. 实验报告内容完整、结构清晰、逻辑严谨2. 实验原理阐述准确,实验步骤描述详细3. 实验数据真实可靠,分析结论具有说服力4. 实验报告格式规范,语言表达流畅六、实验报告评价标准1. 实验原理掌握程度2. 实验操作熟练程度3. 实验数据分析能力4. 实验报告撰写质量5. 实验心得体会通过本次通信原理实验,学生将能够全面了解通信系统的基本原理和关键技术,提高实际应用能力,为今后从事通信领域的工作打下坚实基础。
通信原理实验报告一、实验目的。
本次实验旨在通过实际操作,加深对通信原理相关知识的理解,掌握调制解调技术的基本原理和实验操作方法,提高学生对通信原理的实际应用能力。
二、实验仪器和设备。
本次实验所需的仪器和设备包括信号发生器、示波器、频谱分析仪、调制解调实验箱等。
三、实验原理。
1. 调制原理。
在通信中,为了将模拟信号传输到远距离,需要将模拟信号转换成数字信号,这就需要用到调制技术。
调制是指将要传输的模拟信号(基带信号)变换成符合载波特性的信号,以便于在信道中传输。
常见的调制方式包括调幅调制(AM)、调频调制(FM)和调相调制(PM)等。
2. 解调原理。
解调是指将调制后的信号还原成原始的模拟信号的过程。
解调技术是调制技术的逆过程,主要包括信号检测、解调器和滤波器等。
四、实验步骤。
1. 调幅调制实验。
(1)将信号发生器的正弦波信号作为调制信号,载波信号为高频正弦波信号。
(2)连接示波器,观察调制前后的信号波形变化。
(3)调节信号发生器的频率和幅度,观察调制信号的变化。
2. 调频调制实验。
(1)将信号发生器的正弦波信号作为调制信号,载波信号为高频正弦波信号。
(2)连接示波器和频谱分析仪,观察调频调制的信号波形和频谱特性。
3. 解调实验。
(1)将调幅调制和调频调制的信号输入到解调器中,观察解调后的信号波形和频谱特性。
(2)调节解调器参数,观察解调效果的变化。
五、实验结果分析。
通过本次实验,我们对调制解调技术有了更深入的了解。
在调幅调制实验中,我们观察到了调制前后信号波形的变化,了解了调幅调制的基本原理。
在调频调制实验中,我们通过观察频谱特性,掌握了调频调制的实验操作方法。
在解调实验中,我们调节解调器参数,观察到了解调效果的变化,加深了对解调原理的理解。
六、实验总结。
通过本次实验,我们对通信原理中的调制解调技术有了更深入的认识,掌握了实验操作方法,提高了实际操作能力。
在今后的学习和工作中,我们将更加注重理论与实践相结合,不断提高自己的专业能力。
一、实验目的1. 理解通信系统的基本组成和工作原理。
2. 掌握信号调制与解调的基本方法。
3. 熟悉MATLAB在通信系统仿真中的应用。
4. 分析通信系统性能,评估信号传输质量。
二、实验原理通信系统通常由信源、信道、信宿和传输介质组成。
信源产生待传输的信息,信道负责传输信号,信宿接收并处理信号,传输介质是信号传输的物理通道。
本实验主要研究以下通信原理:1. 模拟调制与解调:包括调幅(AM)、调频(FM)和调相(PM)。
2. 数字调制与解调:包括幅度键控(ASK)、频率键控(FSK)和相位键控(PSK)。
3. 信号频谱分析:利用傅里叶变换分析信号频谱,了解信号带宽和能量分布。
三、实验内容1. 模拟调制与解调:(1)使用MATLAB生成模拟信号,如正弦波、方波等。
(2)进行调幅、调频和调相调制,观察调制后的信号波形。
(3)对调制信号进行解调,恢复原始信号。
(4)分析调制和解调过程中的信号质量。
2. 数字调制与解调:(1)使用MATLAB生成数字信号,如二进制序列。
(2)进行ASK、FSK和PSK调制,观察调制后的信号波形。
(3)对调制信号进行解调,恢复原始数字信号。
(4)分析调制和解调过程中的信号质量。
3. 信号频谱分析:(1)对模拟和数字信号进行傅里叶变换,观察信号频谱。
(2)分析信号带宽和能量分布,评估信号传输质量。
四、实验步骤1. 模拟调制与解调:(1)在MATLAB中生成模拟信号,如正弦波、方波等。
(2)进行调幅调制,观察调制后的信号波形。
(3)对调幅信号进行解调,恢复原始信号。
(4)重复步骤2和3,进行调频和调相调制与解调。
2. 数字调制与解调:(1)在MATLAB中生成数字信号,如二进制序列。
(2)进行ASK调制,观察调制后的信号波形。
(3)对ASK信号进行解调,恢复原始数字信号。
(4)重复步骤2和3,进行FSK和PSK调制与解调。
3. 信号频谱分析:(1)对模拟和数字信号进行傅里叶变换,观察信号频谱。
中南大学通信原理课程设计报告学院:信息科学与工程学院电子信息班级:通信 20121212 学号: 2012121212姓名: 123321 指导老师:肯定是咋们铁道学院的老师了你完成时间: 2012年2月12号 12点12分12秒目录一、《硬件实验》1、实验三《模拟锁相环与载波同步》 (4)2、实验五《数字锁相环与位同步》 (9)3、实验六《帧同步》 (15)4、实验七《时分复用数字基带通信系统》 (18)二、《软件设计实验》1、实验目的 (23)2、实验基本要求 (23)3、实验原理分析 (23)4、仿真程序代码及分析 (26)5、波形图结果显示 (30)6、心得体会 (33)7、参考文献 (33)《一》硬件实验实验三:模拟锁相环与载波同步一、实验目的1. 掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。
2. 掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。
3. 了解相干载波相位模糊现象产生的原因。
二、实验内容1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程。
2. 观察环路的捕捉带和同步带。
3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。
三、基本原理通信系统中常用平方环或同相正交环(科斯塔斯环)从2DPSK信号中提取相干载波。
本实验系统的载波同步提取模块用平方环,原理方框图如图3-1所示,电原理图如图3-2所示(见附录)。
模块内部使用+5V、+12V、-12V电压,所需的2DPSK输入信号已在实验电路板上与数字调制单元2DPSK输出信号连在一起。
下面介绍模拟锁相环原理及平方环载波同步原理。
锁相环由鉴相器(PD)、环路滤波器(LF)及压控振荡器(VCO)组成,如图3-3所示。
图3-3 锁相环方框图模拟锁相环中,PD是一个模拟乘法器,LF是一个有源或无源低通滤波器。
锁相环路是一个相位负反馈系统,PD检测ui(t)与uo(t)之间的相位误差并进行运算形成误差电压ud(t),LF用来滤除乘法器输出的高频分量(包括和频及其他的高频噪声)形成控制电压uc(t),在uc(t)的作用下、uo(t)的相位向ui(t)的相位靠近。
通信原理实验二实验二:调制与解调一、实验目的1. 理解调制与解调的基本概念;2. 掌握调幅(AM)、调频(FM)以及解调的原理;3. 实现AM、FM的信号调制与解调。
二、实验原理1. 调制原理调制是指在通信过程中将信息信号调制到载波上,以便传输的过程。
调制是将信息信号的某些特征参数随时间变化的过程。
1.1 调幅(AM)调制调幅是指通过改变载波的振幅来传输信息的一种调制方式。
调幅信号能够改变载波的背景亮度,使其随着信息信号的变化而变化。
1.2 调频(FM)调制调频是通过改变载波的频率来传输信息的一种调制方式。
调频信号能够改变载波的频率,使其频率随着信息信号的变化而变化。
2. 解调原理解调是指将调制信号中的信息还原出来的过程。
解调过程是调制的逆过程。
2.1 调幅(AM)解调调幅解调是从调幅信号中还原出原始信号的过程。
调幅信号在传输过程中会叠加一定的噪声,因此解调时需要采取一定的处理方法,如包络检波、同步检波等。
2.2 调频(FM)解调调频解调是从调频信号中还原出原始信号的过程。
调频信号在传输过程中对噪声具有较好的抵抗能力,因此解调过程较为简单,常采用频率鉴别解调等方法。
三、实验内容1. 实现AM调制与解调2. 实现FM调制与解调四、实验步骤1. 搭建AM调制电路,将音频信号与载波信号进行调制;2. 实现AM解调,将调制后的信号还原为音频信号;3. 搭建FM调制电路,将音频信号与载波信号进行调制;4. 实现FM解调,将调制后的信号还原为音频信号;5. 测试与观测调制与解调过程中的信号波形变化。
五、实验数据记录与分析(根据实际实验情况填写数据并进行相应的分析)六、实验总结通过本次实验,我们学习了调制与解调的原理,并实际搭建电路进行了AM和FM的调制与解调。
通过观测信号波形变化,我们加深了对调制与解调过程的理解,并掌握了相关的实验操作技巧。
本次实验对我们理解通信原理中的调制与解调起到了很好的辅助作用。
通信原理实验大全完整版实验一:模拟调制与解调技术实验实验目的:通过实验研究模拟调制与解调技术的基本原理和方法。
实验内容:1.了解调制与解调的基本概念和分类。
2.设计并搭建模拟调制与解调电路。
3.调整调制与解调电路的参数,并观察输出信号的变化。
4.分析调制与解调电路中各部分的功能和作用。
实验二:数字调制与解调技术实验实验目的:通过实验研究数字调制与解调技术的基本原理和方法。
实验内容:1.了解数字调制与解调的基本原理和方法。
2.设计并搭建数字调制与解调电路。
3.分析调制与解调电路的输出信号特征,并与理论结果进行对比。
4.探究数字调制与解调电路的性能和应用。
实验三:信道编码与解码技术实验实验目的:通过实验研究信道编码与解码技术的基本原理和方法。
实验内容:1.了解信道编码与解码的基本原理和方法。
2.设计并搭建信道编码与解码电路。
3.分析信道编码与解码电路的性能指标,并进行优化调整。
4.探究信道编码与解码的应用场景和工程实践。
实验四:多址技术实验实验目的:通过实验研究多址技术的基本原理和方法。
实验内容:1.了解多址技术的基本原理和分类。
2.设计并搭建多址技术的实验电路。
3.分析多址技术的性能指标,并进行性能测试。
4.探究多址技术在通信系统中的应用和发展趋势。
实验五:传输系统性能分析实验实验目的:通过实验研究传输系统的性能分析方法和技术。
实验内容:1.了解传输系统的基本要素和性能指标。
2.设计并搭建传输系统实验电路。
3.测试传输系统的性能指标,并进行结果分析。
4.优化传输系统的性能,并与理论结果进行对比。
实验六:射频通信系统实验实验目的:通过实验研究射频通信系统的基本原理和方法。
实验内容:1.了解射频通信系统的基本要素和原理。
2.设计并搭建射频通信系统实验电路。
3.测试射频通信系统的性能指标,并进行结果分析。
4.优化射频通信系统的性能,并探究其在无线通信领域的应用。
实验七:光纤通信实验实验目的:通过实验研究光纤通信的基本原理和方法。
通信原理实验报告实验目的,通过本次实验,掌握数字通信原理的基本知识,了解数字信号的调制与解调原理,掌握数字通信系统的基本结构和工作原理。
实验仪器,数字信号发生器、示波器、频谱分析仪、数字通信系统实验箱等。
实验原理,数字通信是利用数字信号进行信息传输的通信方式。
在数字通信中,数字信号经过调制器调制成模拟信号,通过信道传输到接收端,再经过解调器解调为数字信号,最终恢复原始信号。
本次实验主要涉及到的调制方式有ASK、FSK和PSK。
实验步骤:1. 连接实验仪器,首先将数字信号发生器连接到示波器和频谱分析仪上,然后将示波器连接到数字通信系统实验箱的发送端,频谱分析仪连接到接收端。
2. 设置数字信号发生器,根据实验要求,设置数字信号发生器的频率、幅度和波形。
3. 进行调制实验,依次进行ASK、FSK和PSK的调制实验,观察发送端的波形和频谱,并记录相关数据。
4. 进行解调实验,将接收端连接到示波器上,依次进行ASK、FSK和PSK的解调实验,观察接收端的波形和频谱,并记录相关数据。
5. 数据分析,根据实验数据,分析不同调制方式的特点和性能,比较它们的优缺点。
实验结果:经过实验,我们得到了不同调制方式的波形和频谱图,通过数据分析,我们得出了以下结论:1. ASK调制适用于带宽较窄的通信系统,但抗干扰能力较差。
2. FSK调制适用于抗干扰能力要求较高的通信系统,但带宽较宽。
3. PSK调制适用于对频谱利用率要求较高的通信系统。
结论,本次实验通过实际操作,加深了对数字通信原理的理解,掌握了数字信号的调制与解调原理,对数字通信系统的基本结构和工作原理有了更深入的认识。
实验总结,数字通信技术是现代通信领域的重要组成部分,通过本次实验,我们对数字通信原理有了更加深入的了解,这对我们今后的学习和工作都具有重要意义。
通过本次实验,我们不仅学到了理论知识,还掌握了实际操作的技能,这对我们今后的学习和工作都具有重要意义。
希望在今后的实验中,我们能够继续努力,不断提高自己的实验能力,为今后的科研工作打下坚实的基础。
中南大学
《通信原理》
实验报告
学生姓名
学生学号
学院信息科学与工程学院
专业班级
完成时间
实验二数字调制
一、实验目的
1、掌握绝对码、相对码概念及它们之间的变换关系。
2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。
3、掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。
4、了解2ASK、2FSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。
二、实验内容
1、用示波器观察绝对码波形、相对码波形。
2、用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。
3、用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。
三、基本原理
本实验用到数字信源模块和数字调制模块。
信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。
调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2ASK、2FSK、2DPSK信号。
调制模块内部只用+5V电压。
数字调制单元的原理方框图如图2-1所示,电原理图如图2-2所示(见附录)。
图2-1 数字调制方框图
本单元有以下测试点及输入输出点:
• CAR 2DPSK信号载波测试点
• BK 相对码测试点
>0.5V • 2DPSK 2DPSK信号测试点/输出点,V
P-P
>0.5V • 2FSK 2FSK信号测试点/输出点,V
P-P
>0.5V
• 2ASK 2ASK信号测试点,V
P-P
用2-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对应关系如下:
•÷2(A)U8:双D触发器74LS74
•÷2(B)U9:双D触发器74LS74
•滤波器A V6:三极管9013,调谐回路
•滤波器B V1:三极管9013,调谐回路
•码变换U18:双D触发器74LS74;U19:异或门74LS86 • 2ASK调制U22:三路二选一模拟开关4053
• 2FSK调制U22:三路二选一模拟开关4053
• 2PSK调制U21:八选一模拟开关4051
•放大器V5:三极管9013
•射随器V3:三极管9013
将晶振信号进行2分频、滤波后,得到2ASK的载频2.2165MHZ。
放大器的发射极和集电极输出两个频率相等、相位相反的信号,这两个信号就是2PSK、2DPSK的两个载波,2FSK信号的两个载波频率分别为晶振频率的1/2和1/4,也是通过分频和滤波得到的。
下面重点介绍2PSK、2DPSK。
2PSK、2DPSK波形与信息代码的关系如图2-3所示。
图2-3 2PSK、2DPSK波形
图中假设码元宽度等于载波周期的1.5倍。
2PSK信号的相位与信息代码的关系是:前后码元相异时,2PSK信号相位变化180︒,相同时2PSK信号相位不变,
可简称为“异变同不变”。
2DPSK 信号的相位与信息代码的关系是:码元为“1”时,2DPSK 信号的相位变化180 。
码元为“0”时,2DPSK 信号的相位不变,可简称为“1变0不变”。
应该说明的是,此处所说的相位变或不变,是指将本码元内信号的初相与上一码元内信号的末相进行比较,而不是将相邻码元信号的初相进行比较。
实际工程中,2PSK 或2DPSK 信号载波频率与码速率之间可能是整数倍关系也可能是非整数倍关系。
但不管是那种关系,上述结论总是成立的。
本单元用码变换——2PSK 调制方法产生2DPSK 信号,原理框图及波形图如图2-4所示。
相对于绝对码AK 、2PSK 调制器的输出就是2DPSK 信号,相对于相对码、2PSK 调制器的输出是2PSK 信号。
图中设码元宽度等于载波周期,已调信号的相位变化与AK 、BK 的关系当然也是符合上述规律的,即对于AK 来说是“1变0不变”关系,对于BK 来说是“异变同不变”关系,由AK 到BK 的变换也符合“1变0不变”规律。
图2-4中调制后的信号波形也可能具有相反的相位,BK 也可能具有相反的序列即00100,这取决于载波的参考相位以及异或门电路的初始状态。
2DPSK 通信系统可以克服上述2PSK 系统的相位模糊现象,故实际通信中采用2DPSK 而不用2PSK (多进制下亦如此,采用多进制差分相位调制MDPSK ),此问题将在数字解调实验中再详细介绍。
+
2PSK 调制
2DPSK(AK)
2PSK(BK)
T S
A K
B K
B K -1
图2-4 2DPSK 调制器
2PSK 信号的时域表达式为
S(t)= m(t)Cos ωc t
式中m(t)为双极性不归零码BNRZ ,当“0”、“1”等概时m(t)中无直流分量,S(t)中无载频分量,2DPSK 信号的频谱与2PSK 相同。
2ASK 信号的时域表达式与2PSK 相同,但m(t)为单极性不归零码NRZ ,NRZ 中有直流分量,故2ASK 信号中有载频分量。
2FSK 信号(相位不连续2FSK )可看成是AK 与AK 调制不同载频信号形成的两个2ASK 信号相加。
时域表达式为
t t m t t m t S c c 21cos )(cos )()(ωω+=
式中m(t)为NRZ 码。
图2-5 2ASK 、2PSK (2DPSK )、2FSK 信号功率谱
设码元宽度为T S ,f S =1/T S 在数值上等于码速率,2ASK 、2PSK (2DPSK )、2FSK 的功率谱密度如图2-5所示。
可见,2ASK 、2PSK (2DPSK )的功率谱是数字基带信号m(t)功率谱的线性搬移,故常称2ASK 、2PSK (2DPSK )为线性调制信号。
多进制的MASK 、MPSK (MDPSK )、MFSK 信号的功率谱与二进制信号功率谱类似。
本实验系统中m(t)是一个周期信号,故m(t)有离散谱,因而2ASK 、2PSK (2DPSK )、2FSK 也具有离散谱。
四、实验步骤
本实验使用数字信源单元及数字调制单元。
1、熟悉数字调制单元的工作原理。
接通电源,打开实验箱电源开关。
将数字调制单元单刀双掷开关K7置于左方N (NRZ )端。
2、用数字信源单元的FS 信号作为示波器的外同步信号,示波器CH1接信源单元的(NRZ-OUT)AK (即调制器的输入),CH2接数字调制单元的BK ,信源单元
的K
1、K
2
、K
3
置于任意状态(非全0),观察AK、BK波形,总结绝对码至相对码
变换规律以及从相对码至绝对码的变换规律。
3、示波器CH1接2DPSK,CH2分别接AK及BK,观察并总结2DPSK信号相位变化与绝对码的关系以及2DPSK信号相位变化与相对码的关系(此关系即是2PSK 信号相位变化与信源代码的关系)。
注意:2DPSK信号的幅度比较小,要调节示波器的幅度旋钮,而且信号本身幅度可能不一致,但这并不影响信息的正确传输。
2DPSK AK 2DPSK BK
4、示波器CH1接AK、CH2依次接2FSK和2ASK;观察这两个信号与AK的关系(注意“1”码与“0”码对应的2FSK信号幅度可能不相等,这对传输信息是没有影响的)。
AK 2FSK AK SASK
5、用频谱议观察AK、2ASK、2FSK、2DPSK信号频谱(条件不具备时不进行
此项观察)。
条件不具备
五、实验报告要求
1、设绝对码为全1、全0或1001 1010,求相对码。
绝对码全为1时,相对码为:1010 1010
绝对码全为0时,相对码为:0000 0000
绝对码为1001 1010时,相对码为:1110 1100
2、设相对码为全1、全0或1001 1010,求绝对码。
相对码全为1时,绝对码为:1000 0000
相对码全为0时,绝对码为:0000 0000
相对码为1001 1010时,绝对码为:1101 0111
3、设信息代码为1001 1010,假定载频分别为码元速率的1倍和1.5倍,画出2DPSK及2PSK信号波形。
4、总结绝对码至相对码的变换规律、相对码至绝对码的变换规律并设计一个由相对码至绝对码的变换电路。
规律:相对码的码反变换规则为“比较相对码本码元与前一码元电位相同绝对码为0,否则为1”,反变化与之相反。
5、总结2DPSK信号的相位变化与信息代码(即绝对码)之间的关系以及2DPSK信号的相位变化与相对码之间的关系(即2PSK的相位变化与信息代码之间的关系)。
2DPSK 信号的相位变化与绝对码(信息代码)之间的关系是:“1 变0 不变”,即“1”码对应的2DPSK 信号的初相相对于前一码元内2DPSK 信号的末相变化180º,“0”码对应的2DPSK 信号的初相与前一码元内2DPSK 信号的末相同。
2PSK 信号的相位变化与相对码(信息代码)之间的关系是:“异变同不变”,即当前码元与前一码元相异时则当前码元内2PSK 信号的初相相对于前一码元
内2PSK 信号的末相变化180º。
相同时则码元内2PSK 信号的初相相对于前一码元内2PSK 信号的末相无变化。