计算机网络物理层
- 格式:doc
- 大小:38.50 KB
- 文档页数:9
计算机网络物理层
物理层是OSI参考模型的最低层,建立在传输介质基础上,利用物理传输介质为数据链路层提供物理连接,实现比特流的传输。
该层不仅定义了通信设备与传输线缆接口硬件的电气、机械以及功能和规程的特性,还定义了传输通道上的电气信号以及二进制位是如何转换成电流、光信号或者其他物理形式。
物理层是OSI参考模型的最底层,它向下直接与传输介质相连接,向上为数据链路层提供服务。
它为数据链路层实体之间建立必须的物理连接,按顺序传输数据,并进行差错检查。
在发现错误时,向数据链路层提出报告。
物理层协议定义了数据终端设备与通信设备之间的接口。
数据终端设备(DTE)是指数据输入、输出设备和传输控制器或者计算机等数据处理设备,以及通信控制器。
数据通信设备(DCE)是对为用户提供接入点的网络设备的统称,如自动呼叫应答设备、调制解调器等。
DTE的基本功能是产生、处理数据;DCE的基本功能是沿传输介质发送和接收数据。
如图2-5所示,为DTE/DCE接口示意图。
图2-5 DTE/DCE接口示意图
DTE与DCE之间要连接,需要遵循共同的接口标准,即物理层接口协议。
物理层协议规定了标准接口的机械特性、电气特性、功能特性和规程特性,不仅为完成实际通信提供了可靠的保证,而且使不同厂家的产品可相互兼容,设备间可有效交换数据。
计算机网络的工作原理计算机网络是现代信息技术的基础,它使得人与人之间、人与计算机之间能够进行迅速、准确的信息交流。
计算机网络的工作原理是基于一系列协议和技术实现的,接下来将详细介绍计算机网络的工作原理。
一、物理层物理层是计算机网络的最基本的层次,它负责将数据从一个地方传输到另一个地方。
物理层使用不同的电子、光学和无线传输介质来传输数据。
其中,最常见的物理层设备是网线、光纤和无线网卡。
二、数据链路层数据链路层负责管理和组织物理层传输的数据,将其划分为适当的数据帧,并通过物理层进行传输。
数据链路层还处理数据的错误检测和纠正,以确保数据的可靠性。
常见的数据链路层设备有交换机和网桥。
三、网络层网络层负责在计算机网络中进行数据的路由和转发,以确保数据从源地址传输到目标地址。
网络层使用IP地址来标识网络上的设备,并使用路由算法来选择最佳的路径将数据发送到目标地址。
常见的网络层设备包括路由器和三层交换机。
四、传输层传输层提供端到端的可靠数据传输服务。
它通过使用传输协议(如TCP或UDP)来确保数据的可靠传输和完整性。
传输层还负责对数据进行分段和重组,以适应下层网络的传输能力和接收方的接收能力。
五、应用层应用层是计算机网络中最高层,它提供了各种应用程序的接口。
应用层协议定义了数据的格式和交换规则,常见的应用层协议包括HTTP、FTP、SMTP等。
应用层协议与传输层协议进行交互,以实现数据的可靠传输和应用程序的正常运行。
总结:计算机网络的工作原理是由不同层次的协议和设备相互配合实现的。
物理层负责传输数据,数据链路层管理和组织数据,网络层进行数据的路由和转发,传输层提供可靠的数据传输服务,应用层提供各种应用程序的接口。
这些层次之间相互依赖,共同构建起了一个稳定、高效的计算机网络系统。
通过学习计算机网络的工作原理,我们能够更好地理解计算机网络的运作过程,为我们日常的网络使用和网络应用的开发提供有力的支持。
计算机网络的不断发展和创新将为我们的生活和工作带来更多便利和可能性。
计算机网络中的osl名词解释计算机网络中的OSI名词解释引言:计算机网络是当代信息时代的重要组成部分,几乎贯穿了人们的生活和工作。
在网络通信中,为了确保信息的顺利传递,人们需要理解并掌握一些关键的网络术语。
这些术语通过统一的标准来保证网络设备之间的互通性,其中OSI(开放式系统互连)模型是计算机网络中最常用的标准之一。
本文将对OSI模型中的一些关键术语进行解释,以帮助读者更好地理解计算机网络。
1. 物理层(Physical Layer)物理层位于OSI模型的最底层,主要负责在网络节点之间传输数据的物理介质和电信号。
物理层解释了如何以0和1的方式在计算机网络中进行数据传输。
常见的物理介质包括光纤、铜缆和无线电波等。
物理层的主要功能是将数据从一个节点传输到另一个节点,它负责将数字数据转换为适合物理介质传输的信号,并确保数据能够正确地从发送方传输到接收方。
2. 数据链路层(Data Link Layer)数据链路层位于OSI模型的第二层,主要负责在直接相连的两个节点之间传输数据。
它使用帧(Frame)的方式将数据分割为较小的块,并添加额外的控制信息来保证数据的可靠传输。
数据链路层还可以检测和纠正传输中出现的错误,确保数据的完整性。
常见的协议包括以太网、无线局域网(WiFi)和帧中继等。
3. 网络层(Network Layer)网络层位于OSI模型的第三层,主要负责在不同网络之间进行数据的传输和路由。
它使用IP(Internet Protocol)地址对数据进行寻址,并将数据传送到目标网络。
网络层将数据分割为分组(Packet),并负责选择最佳的路径将数据发送到目标节点。
网络层的重要协议包括IP协议和路由协议。
4. 传输层(Transport Layer)传输层位于OSI模型的第四层,主要负责在源节点和目标节点之间建立可靠的端到端连接,并提供数据的可靠性和完整性。
传输层使用端口号将数据传递给应用层,并使用TCP(Transmission Control Protocol)和UDP(User Datagram Protocol)等协议来管理数据的传输。
OSI七层模型的定义和各层功能随着网络技术的不断发展,我们的生活已经离不开网络了。
而OSI七层模型是计算机网络体系结构的实质标准,它将计算机网络协议的通信功能分为七层,每一层都有着独特的功能和作用。
下面,我将以此为主题,深入探讨OSI七层模型的定义和各层功能。
1. 第一层:物理层在OSI七层模型中,物理层是最底层的一层,它主要负责传输比特流(Bit Flow)。
物理层的功能包括数据传输方式、电压标准、传输介质等。
如果物理层存在问题,整个网络都无法正常工作。
2. 第二层:数据链路层数据链路层负责对物理层传输的数据进行拆分,然后以帧的形式传输。
它的功能包括数据帧的封装、透明传输、差错检测和纠正等。
数据链路层是网络通信的基础,能够确保数据的可靠传输。
3. 第三层:网络层网络层的主要功能是为数据包选择合适的路由和进行转发。
它负责处理数据包的分组、寻址、路由选择和逻辑传输等。
网络层的存在让不同的网络之间能够互联互通,实现数据的全球传输。
4. 第四层:传输层传输层的功能是在网络中为两个端系统之间的数据传输提供可靠的连接。
它通过TCP、UDP等协议实现数据的可靠传输、分节与重组、流量控制、差错检测和纠正等。
5. 第五层:会话层会话层负责建立、管理和结束会话。
它的功能包括让在网络中的不同应用之间建立会话、同步数据传输和管理数据交换等。
6. 第六层:表示层表示层的作用是把数据转换成能被接收方识别的格式,然后进行数据的加密、压缩和解压缩等。
7. 第七层:应用层应用层是OSI模型中的最顶层,它为用户提供网络服务,包括文件传输、电流信箱、文件共享等。
应用层是用户与网络的接口,用户的各种应用软件通过应用层与网络进行通信。
OSI七层模型是计算机网络体系结构的基本标准,它将通信协议的功能划分为七层以便管理和开发。
每一层都有独特的功能和作用,共同构成了完整的网络通信体系。
只有了解并理解这些层次的功能,我们才能更好地利用网络资源,提高网络效率。
计算机网络的网络层次结构
计算机网络的网络层次结构是指将计算机网络中的各种设备和
协议划分为不同的层次,以实现数据传输和通信的有效性和可靠性。
1. 物理层
物理层是网络层次结构的最底层,主要负责传输原始比特流。
它涉及硬件设备,例如网线、光纤和网络接口卡。
物理层的功能包
括数据传输的编码和解码,数据的传输速率控制,以及物理连接的
建立和维护。
2. 数据链路层
数据链路层位于物理层之上,负责将原始比特流划分为帧,并
提供基本的错误检测和纠正功能。
数据链路层主要解决点对点直连
的通信问题,确保数据在物理链路上的可靠传输。
3. 网络层
网络层是计算机网络中最重要的层次之一。
它负责为数据包选
择和设置最合适的路径以进行跨网络的传输。
网络层协议有IP
(Internet Protocol),它通过将数据包封装在各自的数据报中,使
得数据能够在不同网络之间传输。
4. 传输层
传输层负责在源主机和目标主机之间提供可靠的数据传输。
传
输层的主要协议是传输控制协议(TCP),它使用错误检测和重新
发送机制确保数据的完整性和可靠性。
5. 应用层
网络层次结构的设计和实现可以简化网络的管理和维护,提高
网络的可靠性和性能。
通过将不同的功能划分到不同的层次,网络
设备和协议可以更加独立地进行开发和升级。
总结:
计算机网络的网络层次结构包括物理层、数据链路层、网络层、传输层和应用层。
每个层次都有各自的功能和协议,以实现数据传
输和通信的可靠性和效率。
什么是计算机网络物理层常见的计算机网络物理层技术有哪些计算机网络物理层是计算机网络体系结构中的基础层次,其主要功能是提供各种物理传输介质上的数据传输和接收。
物理层通过电气信号、电磁波、光信号等方式,将数据从发送方传输到接收方,并确保数据的可靠传输。
本文将介绍计算机网络物理层的基本概念以及常见的物理层技术。
一、计算机网络物理层的基本概念计算机网络物理层是计算机网络体系结构中的最底层,它直接与各种物理传输介质进行数据传输和接收。
物理层的主要任务包括编码、调制解调、传输介质选择以及物理连接等。
1. 编码编码是指将数字信号转换为模拟信号或数字信号的过程。
传输的数据在计算机中以二进制形式表示,而大多数物理传输介质是通过模拟信号传输的,因此需要进行编码转换。
常见的编码方式有非归零编码、曼彻斯特编码、差分曼彻斯特编码等。
2. 调制解调调制解调是物理层中常见的一项技术,它将数字信号转换为适合传输的模拟信号。
发送方通过调制将数字信号转换为模拟信号,接收方通过解调将模拟信号转换为数字信号。
调制解调的常见方式有频移键控调制(FSK)、相位键控调制(PSK)、振幅键控调制(ASK)等。
3. 传输介质选择传输介质是指计算机网络中用于数据传输的物理媒介,常见的传输介质包括双绞线、同轴电缆、光纤等。
选择适合的传输介质对于物理层的性能和数据传输速率至关重要。
4. 物理连接物理连接是指将计算机网络中的各个节点通过传输介质进行连接的过程。
物理连接可以通过直接连接、交换机、集线器等实现。
物理连接的稳定性对于数据传输的可靠性和网络性能有着重要的影响。
二、常见的计算机网络物理层技术计算机网络物理层涉及到多种技术,下面将介绍一些常见的物理层技术。
1. 以太网以太网是一种常见的局域网技术,它使用双绞线或光纤作为传输介质,通过载波侦听多路访问/冲突检测(CSMA/CD)协议进行数据传输。
以太网具有数据传输速率快、成本低廉等特点,广泛应用于局域网和广域网。
计算机网络原理物理层的基本概念
物理层为传输二进制比特流数据而建立、连接、释放物理连接提供机械的、电气的、功能的、规程性的特性。
这种物理连接可以通过中继系统,每次都在物理层内进行二进制比特流数据的编码传输。
这种物理连接允许进行全双工或者半双工的二进制比特传输的通信方式。
物理层服务数据单元(即二制比特流)的传输可通过同步方式进行。
物理层向上毗邻数据链路层,向下直接与传输介质相连接。
它起着数据链路层和传输介质之间的逻辑接口作用。
通信子网分为点到点通信线路通信子网与广播信道通信子网:广域网主要采用点到点通信线路;局域网与城域网一般采用广播信道。
由于技术上存在较大的差异,因此在物理层和数据链路层协议上出现了两个分支,一类是基于点-点通信线路,另一类是基于广播信道。
物理层考虑的是如何在传输媒体上传输数据比特流,而不是传输媒体或物理设备本身。
物理层的主要任务是确定与传输媒体的接口的4个特性:
●机械特性接口的形状、尺寸、引线数目、排列顺序等。
●电气特性接口电缆上各线的电压范围。
●功能特性指明某条线上某一电平的电压代表何种意义。
●规程特性指明各种可能事件的出现顺序。
计算机网络的结构组成计算机网络已经成为了当今社会不可或缺的一部分,它为人们的生活提供了许多便利。
计算机网络的发展离不开一个稳定、安全和高效的网络结构。
本文将介绍计算机网络的结构组成,并探讨其中的每个组成部分。
一、物理层物理层是计算机网络中最基础的一层。
它主要负责传输比特流(0和1)的信号以及数据的物理连接。
在网络中,物理层通过电缆、光纤、无线信号等传输媒介将数据从一个地方传输到另一个地方。
物理层的主要设备包括集线器、中继器和传输介质等。
二、数据链路层数据链路层负责将物理层传输的比特流组织为数据帧,并通过校验和纠错等技术确保数据的可靠传输。
此外,数据链路层还负责网络节点之间的数据链路管理和数据帧的流控制等任务。
典型的数据链路层设备包括网桥和交换机。
三、网络层网络层是计算机网络中的核心层,它负责将数据从源节点传输到目的节点。
网络层通过路由选择算法确定最佳路径,并将数据划分为数据包进行传输。
网络层还可以实现数据的拥塞控制和分组的重组等功能。
路由器是网络层的主要设备。
四、传输层传输层负责在源节点和目的节点之间提供端到端的可靠通信。
它通过将数据划分为数据段并为每个数据段编号,以便在网络中的不同路径上进行传输。
传输层还可以实现流量控制和拥塞控制等功能。
传输层的典型协议包括TCP(传输控制协议)和UDP(用户数据报协议)。
五、会话层会话层负责在网络中的不同节点之间建立、维护和终止会话。
它提供了建立连接、数据传输和关闭连接的功能。
会话层还可以处理多个应用程序之间的并发会话。
在OSI模型中,会话层通常与传输层一起合并。
六、表示层表示层负责将数据转换为计算机可识别的格式,并提供数据加密和解密等功能。
它还可以处理数据的压缩和解压缩。
表示层可以确保数据在源节点和目的节点之间的正确解释和传递。
七、应用层应用层是计算机网络中最高层的一层,它直接为用户提供网络服务。
应用层包括各种应用程序,例如电子邮件、文件传输和远程登录等。
计算机网络中的物理层技术简介在计算机网络中,物理层是网络体系结构的第一层,负责将数据转化为电信号在物理媒介上进行传输。
物理层的主要任务是提供透明的传输介质,确保数据能够有效地在发送和接收设备之间传输。
本文将对计算机网络中的物理层技术进行简要介绍。
1. 物理层的作用物理层负责传输bit流,实现数据的传输和接收。
它主要涉及以下方面:a. 媒介传输物理层通过物理媒介来传输数据,如电线、光纤等。
这些媒介具有不同的传输性能和成本特征,比如传输速率、传输距离、抗干扰能力等。
物理层需要根据实际需求选择合适的媒介。
b. 时钟同步数据在物理层进行传输时,需要保持发送和接收设备之间的时钟同步,以确保数据能够顺利地传输和接收。
物理层通过使用特定的时钟同步方法来实现这一功能。
c. 纠错与检测物理层需要处理传输过程中的误码问题,以保证数据传输的可靠性。
常见的纠错和检测技术包括奇偶校验、循环冗余校验(CRC)等。
2. 物理层技术在计算机网络中,物理层使用了各种技术来实现数据的传输和接收。
下面介绍几种常见的物理层技术:a. 传输介质传输介质是数据传输的媒介,包括电线、光纤等。
其中,电线分为双绞线和同轴电缆。
双绞线广泛应用于局域网(LAN)中,而同轴电缆主要用于传输视频信号。
光纤则具有更高的传输速率和抗干扰能力,被广泛应用于广域网(WAN)和高速局域网。
b. 编码技术编码技术用于在物理层将数据转化为电信号,在发送设备和接收设备之间进行传输。
常见的编码技术有非归零制(NRZ)、曼彻斯特编码、4B/5B编码等。
c. 调制技术调制技术将数字信号转化为模拟信号,以便在媒介中进行传输。
调制技术包括频移键控(FSK)、相移键控(PSK)、振幅键控(ASK)等。
调制技术可以提高信号的传输速率和抗干扰能力。
d. 多路复用技术多路复用技术允许多个信号通过单个传输介质进行传输。
常见的多路复用技术包括时分复用(TDM)、频分复用(FDM)、波分复用(WDM)等。
计算机网络的结构组成计算机网络是由一组相互连接的计算机和设备组成,通过数据传输和共享资源,实现信息交流和协作的系统。
它具有复杂的结构组成,涉及多个层次和组件。
本文将介绍计算机网络的结构组成,包括物理层、数据链路层、网络层、传输层和应用层。
一、物理层物理层是计算机网络的最底层,负责传输数据的物理介质和信号。
它定义了数据在传输介质上的电气、力学和功能特性,主要包括传输介质、传输速率、连接器和编码规范等。
在计算机网络中,常见的物理层设备包括网线、中继器、集线器和光纤等。
二、数据链路层数据链路层建立在物理层之上,负责在物理层提供的传输介质上建立可靠的数据链路。
它将原始的比特流划分为较小的数据帧,并在帧之间添加控制信息,用于错误检测和纠正。
数据链路层还负责介质访问控制、流量控制和传输优先级等功能。
典型的数据链路协议包括以太网和无线局域网等。
三、网络层网络层负责在不同网络之间进行数据路由和转发,实现端到端的数据传输。
它通过控制数据包的转发和路由算法,将数据从源主机传输到目标主机。
网络层还提供了多种服务,如差错检测、拥塞控制和网络地址转换等。
常见的网络层协议有IP协议和路由协议等。
四、传输层传输层提供了可靠的端到端数据传输服务。
它负责将数据流分割为较小的数据段,并为每个数据段添加序列号和检验和等信息,保证数据的完整性和正确性。
传输层还提供了流量控制和拥塞控制机制,确保网络资源的有效利用。
典型的传输层协议有TCP和UDP等。
五、应用层应用层是计算机网络的最高层,提供了用户与网络服务之间的接口。
它实现了各种特定的网络应用,如电子邮件、文件传输、网页浏览和远程登录等。
应用层协议定义了数据格式和通信规则,使得不同设备和平台上的应用程序能够互相通信。
常见的应用层协议有HTTP、SMTP和FTP等。
综上所述,计算机网络的结构组成包括物理层、数据链路层、网络层、传输层和应用层。
这些层次之间通过协议和接口进行通信和交互,共同实现了计算机网络的功能和服务。
物理层1、信道:信号的传输媒质,可分为有线信道和无线信道。
有线信道包括双绞线、同轴电缆、光纤等。
2、信号:运载消息的工具,是消息的载体。
从广义上讲,它包含光信号、声信号、电信号等。
3、信道带宽:限定允许通过该信道的信号下限频率和上限频率。
4、码元:在数字通信中常常用时间间隔相同的符号来表示一位二进制数字,这样的时间间隔内的信号称为二进制码元,而这个间隔被称为码元长度。
1码元可以携带1或多个比特的信息量。
5、波特率:单位时间内载波参数变化的次数,或单位时间内载波调制状态改变次数,其单位为波特,可被理解为单位时间内传输码元符号的个数,通过不同的调制方法可以在一个码元上负载多个比特信息。
6、比特率:是数字信号的传输速率,即单位时间内传输的二进制代码的有效位数,其单位为每秒比特数。
7、信源与信宿:信源与信宿可简单地理解为信息的发送者和信息的接受者。
信息传播的过程一般可描述为:信源→信道→信宿。
在计算机网络中,网络上的任何一台计算机都可以成为信源,也可以成为信宿。
8、编码与调制:用数字信号承载数字或模拟数据称为编码;用模拟信号承载数字或模拟数据称为调制。
(1)模拟信号使用模拟信道传送:有时候模拟数据可以在模拟信道上直接传送,但在网络数据传送中这并不常用,人们仍然会将模拟数据调制出来,然后再通过模拟信道发送。
调制的目的是将模拟信号调制到高频载波信号上以便于远距离传输。
目前,存在的调制方式主要有调幅(Amplitude Modulation,AM)、调频(Frequency Modulation,FM)及调相(Phase Modulation,PM)。
(2)模拟信号使用数字信道传送:使模拟信号在数字信道上传送,首先要将模拟信号转换为数字信号,这个转换的过程就是数字化的过程,数字化的过程主要包括采样和量化两步。
常见的将模拟信号编码到数字信道传送的方法主要有:脉冲幅度调制(Pulse Amplitude Modulation,PAM)、脉冲编码调制(Pulse Code Modulation,PCM)、差分脉冲编码调制(Differential PCM,DPCM)和增量脉码调制方式(Delta Modulation,DM)。
计算机网络中的物理层协议计算机网络的物理层是网络通信的最底层,负责将数据以电信号的形式从发送方传输到接收方。
为了确保数据的可靠传输和通信的稳定性,物理层需要使用一系列的协议。
本文将介绍几种常见的物理层协议,并分析其特点及在计算机网络中的应用。
一、以太网协议以太网协议是最常用的局域网协议之一,它定义了计算机网络中的物理介质、数据帧格式、帧的传输速率等规范。
以太网协议使用双绞线、光纤等传输介质,以及CSMA/CD(载波监听多路访问/冲突检测)的介质访问控制方法。
其帧格式由目的MAC地址、源MAC地址、数据内容和校验字段组成,通过MAC地址的比对来实现数据的传输。
以太网协议广泛应用于局域网,具有传输速度快、成本低、安装和维护简便等优点。
然而,在大规模网络中,以太网的广播特性容易引发网络拥塞和冲突问题,因此在实际应用中需要采用交换机等设备来优化网络性能。
二、无线局域网协议无线局域网协议是一种基于无线电波传输的物理层协议,它使用无线传输介质,如无线电、红外线等,来实现计算机之间的通信。
常见的无线局域网协议有Wi-Fi(无线保真)和蓝牙协议。
Wi-Fi协议广泛应用于宽带无线接入和无线局域网,其使用2.4GHz或5GHz频段的无线电波进行数据传输。
Wi-Fi协议具有高速传输、覆盖范围广的特点,因此在家庭、办公室等场景中得到了广泛应用。
蓝牙协议主要用于短距离无线通信,如手机与耳机、键盘、鼠标等设备之间的连接。
蓝牙协议通过2.4GHz频段的无线电波进行通信,具有低功耗、低成本、易于使用等特点,被广泛应用于个人消费电子产品。
三、光纤通信协议光纤通信协议是一种基于光信号传输的物理层协议,它使用光纤作为传输介质,通过调制光波来传输数据。
光纤通信协议的典型代表是SONET(同步光网络)和光纤以太网协议。
SONET是一种面向长距离、高速传输的光纤通信协议,其传输速率可达到数十Gbps甚至更高。
由于其具有高可靠性、高容量等特点,SONET广泛应用于长距离通信网络中。
了解计算机网络的物理层和传输层原理计算机网络是现代社会中不可或缺的一部分,它将世界紧密地连接在一起,为人们提供了快捷的数据传输和信息交流方式。
而要深入了解计算机网络的运行原理,我们需要从物理层和传输层两个方面进行探索。
一、物理层原理物理层是计算机网络中最基础的一层,它主要负责将数字信息转化为电信号,并在计算机之间进行传输。
物理层的主要任务有以下几个方面:1. 传输介质:物理层规定了计算机网络使用的传输介质,可以是铜缆、光纤或无线信号等,这些传输介质能够将数字信息转化为适合传输的信号。
2. 数据编码:物理层需要对数字信息进行编码,以便在传输介质上进行传输。
常用的编码方式有不归零码、曼彻斯特编码等。
3. 数据传输方式:物理层定义了数据传输的方式,包括串行传输和并行传输。
串行传输是逐位进行传输,而并行传输则是同时传输多个位。
4. 时钟同步:物理层需要保证发送方和接收方的时钟同步,以确保数据能够正确地接收和解码。
在实际应用中,物理层还需要考虑信号的传输距离、传输速率以及抗干扰能力等因素,以保证数据的可靠传输。
二、传输层原理传输层是计算机网络中的第四层,它负责将数据从源主机传输到目的主机,并提供可靠的数据传输服务。
传输层的主要功能如下:1. 分段和重组:传输层将上层发送的数据进行分段,并在接收方进行重组。
这样可以将较大的数据拆分成较小的分组进行传输,提高了数据的传输效率。
2. 端口号管理:传输层使用端口号来标识不同的应用程序,以确保数据能够正确地传输到目的地。
3. 连接管理:传输层可以建立、维护和终止两个主机之间的连接。
常见的传输层协议有TCP(传输控制协议)和UDP(用户数据报协议),它们分别提供了面向连接和无连接的服务。
4. 差错控制:传输层通过检验和、确认和重传等机制来确保数据的可靠传输。
TCP协议可以通过序号、确认号和滑动窗口等方法实现可靠传输。
除了上述功能,传输层还负责拥塞控制、流量控制和错误恢复等工作,以保证数据在网络中的高效传输。
(答案仅供参考如有不对请自己加以思考)第二章计算机网络物理层一、习题电路交换的优点有()。
I 传输时延小 II 分组按序到达III 无需建立连接 IV 线路利用率高A I IIIB II IIIC I IIID II IV解析: A。
首先电路交换是面向连接的,一旦连接建立,数据便可直接通过连接好的物理通路到达接收端。
因此传输时延小;其次由于电路交换中的通信双方始终占用带宽(即使不传送数据)就像两个人打电话都不说话,所以电路交换的线路利用率横笛;由于电路交换是面向连接的,有面向连接的服务特性克制,传送的分组必定是按序到达的。
2 下列说法正确的是()。
A 将模拟信号转换成数字数据称为调制。
B 将数字数据转换成模拟信号称为调解。
C 模拟数据不可以转换成数字信号。
D 以上说法均不正确。
解析; D。
将数字数据转换变成模拟信号就是调制;相反,将模拟信号变成数字数据的过程称为解调,所以A,B错误。
有节的讲解可知,脉冲编码调制可以将模拟数据编码为数字信号。
3 脉冲编码调制(PCM)的过程是()。
A 采样,量化,编码B 采样,编码,量化C 量化,采样,编码D 编码,量化,采样解析 A。
脉冲编码调制过程主要经过3个过程,采样,量化和编码。
采样过程将连续时间模拟信号变为离散时间,连续幅度的抽样信号;量化过程将抽样信号变为离散时间,离散幅度的数字信号,;编码过程将量化后的信号编码为一个二进制码组输出。
此知识点属于死记硬背型,无需了解其原理。
4 调制解调技术主要使用在()通信方式中。
A 模拟信道传输数字数据B 模拟信道传输模拟数据C 数字信道传输数字数据D 数字信道传输模拟数据解析: A。
调制就是将基带数字信号的频谱变换为适合在模拟信道中传输的频谱。
解调正好相反。
所以,调制解调技术用于模拟信道传输数字数据通信方式,而模拟信道传输模拟数据不需要调制解调技术。
5 在互联网设备中,工作在物理层的互联设备是()。
I 集线器 II 交换机 III 路由器 IV 中继器A I IIB II IVC I IVD III IV解析C 。
集线器和中继器都工作在物理层,主要作用是再生,放大信号;而交换机和路由器分别工作在数据链路层和网络层。
6一个传输数字信号的模拟信道的信号功率是,噪声功率是,频率范围为~,该信道的最高数据传输速率是()。
A 1Mbit/sB 2Mbit/sC 4Mbit/sD 8Mbit/s解析 B。
计算信噪比S/N==31;带宽W=,由香农公式可知,最高数据传输率V=W×log2(1+S/N)=×log2(1+31)=2Mbit/s。
7 在采用1200bit/s同步传输时,若每帧含56bit同步信息,48bit控制位和4096bit数据位,那么传输1024b需要()秒。
A 1B 4C 7D 14解析 C。
计算每帧长=56+48+4096=4200bit,1024B=8192bit,由于每帧都有4096bit数据位,所以可将8192bit分成2帧传输,一共需要传输8400bit,而同步为传输的速率是1200bit/s。
传输8400bit需要7s。
8 为了是模拟信号传输的更远,可以采用的设备室()。
A中继器 B放大器 C 交换机 D 路由器解析 B。
首先要使模拟信号传输得更远,就需要对其进行放大,而放大信号是物理折本应执行的功能,所以交换机(数据链路层)和路由器(网络层)可以排除。
其次中继器和放大器都可以放大信号,但是两者的区别在于中继器放大数字信号,放大器放大模拟信号。
补充知识点:信号在传输介质上传输,经过一段距离后,信号会衰减。
为了实现远距离的传输,模拟信号传输系统采用放大器来增强信号中的能量,但同时也会使噪声分量增强,以致引起信号失真。
对于数字信号传输系统,可采用中继器来扩大传输距离。
中继器接受衰减的数字信号,把数字信号恢复成0和1的标准电平,这样有效地克服了信号的衰减,减少了失真。
所以得出一个结论:数字传输比模拟传输能获得更高的信号质量。
9 双绞线由螺旋状扭在一起的两根绝缘导线组成,线对扭在一起的目的是()。
A 减少电磁辐射干扰B 提高传输速率C 减少信号衰减 D减低成本解析 A。
次提记住即可。
10 英特网上的数据交换方式是()。
A 电路交换B 报文交换C 分组交换 D异步传输解析:C 。
电路交换主要用于电话网,报文交换主要用于早期的电报网,因特网使用的是分组交换,具体包括数据报和虚电路两种方式。
11 ()被用于计算机内部的数据传输。
A 串行传输B 并行传输 C同步传输 D 异步传输解析: B。
并行传输的特点:距离短,速度快。
串行传输的特点:距离长,速度慢。
所以在计算机内部(距离短)传输应该选择并行。
而同步异步传输时通信方式,不是传输方式。
12 某信道的信号传输速率为2000Baud,若想令其数据传输速率达到8kbit/s,则一个信号码元所取的有效离散值个数应为()。
A 2B 4C 8D 16解析: D。
对于信号传输速率为2000Baud,要使数据传输速率达到8kbit/s,则一个码元需携带4bit的信息,所以一个信号码元所能取的离散值的个数为24=16个。
13 根据采样定理,对连续变化的模拟信号进行周期性采样,只要采样频率大于或等于有效信号的最高频率或其带宽的()倍,则采样值便可包含原始信号的全部信息。
A B 1 C 2 D 4解析: C。
此题记住即可。
14 数据传输速率是指()。
A 每秒传输的字节数B 电磁波在传输介质上的传播速率C 每秒传输的比特数D 每秒传输的码元数解析: C。
此题记住即可。
15 有关虚电路服务和数据报服务的特性,正确的是()。
A 虚电路服务和数据报服务都是无连接的服务B 数据报服务中,分组在网络中沿同一条路径传输,并且按发出顺序到达C 虚电路在建立连接后,分组中只需携带虚电路标识D 虚电路中的分组到达顺序可能与发出顺序不同解析: C。
参考节的知识点讲解。
16数据报服务的主要特点不包括()。
A 同一报文的不同分组可以由不同的传输路径通过通信子网B 在每次数据传输前必须在发送方和发送方间建立一条逻辑连接C 同一报文的不同分组到达目的的结点可能出现乱序,丢失现象D每个分组在传输过程中都必须带有目的地址和源地址解析: B。
参考节的知识点讲解。
17 如果带宽为4kHz,信噪比为30dB,则该信道的极限信息传输速率为()。
A 10kbit/sB 20kbit/sC 40kbit/sD 80kbit/s解析: C。
信噪比常用分贝(dB)表示,在数值上等于10lg(S/N)(dB)。
题目已知带宽W=4kHz,信噪比S/N=1030/10=1000,根据香农定理得出该信道的极限信息传输速率公式,C=W×log2(1+S/N)=4kHz×log2(1+1000)≈40kbit/s。
18 一次传输一个字符(5~8位组成),每个字符用一个起始码引导,同一个停止码结束,如果没有数据发送,发送方可以连续发送停止码,这种通信方式称为()。
A 并行传输B 串行传输C 异步传输D 同步传输解析: C。
本题考查了异步传输的基本概念,记住即可。
19 在大多数情况下,同步传输和异步传输的过程中,分别使用()作为传输单位。
I 位 II 字节 III 帧 IV 分组A I IIB II IIIC III IID II IV解析: C。
异步传输以字节为单位,每一字节增加一个起始位和一个终止位。
同步传输以数据块(帧)为传输单位(可以参见本章习题7题,一次性传4200bit),为了使接受方能判定数据块的开始和结束,需要在每个数据块的开始处加一个帧头,在结尾处加一个帧尾。
接受判别到帧头就开始接受数据块,直到接收到帧尾为止。
补充知识点:从以上分析可以大致来讨论同步传输和异步传输的效率。
同步传输可以从习题7看出,帧头和帧尾只占数据位很小的一部分,几乎可以忽略不计,可以认为同步传输的传输效率近似为100%,但是异步传输每秒传8bit就要加一个起始位和一个终止位,可以得到异步传输的效率为80%,所以同步传输比异步传输的效率高。
注意:此题应看清题目的条件限制,大多数情况下异步传输是以8bit长的字符为单位,也就是1B。
当然,特殊情况会有,也有可能字符长度超过8bit,小概率事件不予考虑。
20 各种网络在物理层互联时要求()。
A数据传输绿荷链路协议都必须相同B数据传输率必须相同,链路协议可以不相同C数据传输率可以不相同,链路协议必须相同D数据传输率和链路协议都可以不相同解析: B。
物理层是OSI参考模型的最底层,他建立在物理通信介质的基础上,作为与通信介质的接口,用来实现数据链路实体之间透明比特流传输。
在物理层互联时,各种网络的数据传输率如果不同,可能出现以下两种情况:发送方速率高于接受方,由于接收方来不及接受将导致溢出(因为物理层没有流量控制),数据丢失。
接受方速率高于发送方,这时不会有数据丢失的情况,但是效率极低。
综上所述,数据传输率必须相同。
另外,链路协议可不相同,如果是在数据链路层互联,则要求数据链路层协议也要相同。
总结一句话就是,本层及本层以下协议必须相同,本层以上协议可不同。
注意:本题在其他辅导书和网络上几乎每个选项都被当做过正确选项,并且解释都很有道理,近两年不少同学在论坛询问到底哪个是标准答案笔者针对这个问题翻阅了不少教材,也请教了教授计算机网络课程的教师,上面给出的答案算是比较权威的,可以以此来作为标准。
21在下列数据交换方式中,数据经过网络的传输延迟长而且是不固定的,所以不能用于语音数据传输的是()。
A电路交换B报文交换C数据报交换D虚电路交换解析: B。
在报文交换中,交换的数据单元式报文。
由于报文大小不固定,在交换节点中需要较大的存储空间。
另外,报文经过中间节点的接受,存储和转发时间较长而且也不固定,因此不能用于实时通信应用环境(如语音,视频等)。
22下列哪种交换的实时性最好()。
A电路交换B报文交换 C 数据报交换 D 虚电路交换解析:A。
计算机通信子网的交换技术主要有两种方式:电路交换和存储转发交换。
存储转发方式又可分为报文交换和分组交换。
分组交换在实际应用过程中又可分为数据报分组交换和虚电路分组交换。
在电路交换方式中,虽然在数据传输之间需要建立一条物理连接(这需要一定的延迟),但一旦连接建立起来,后续所有的数据都将沿着建立的物理连接按序传送,传输可靠且时延很小。
在存储转发交换方式中,报文或分组都要经过中间节点的若干次存储,转发才能到达目的结点,这将增加传输延迟。
因此,与存储转发交换方式相比,电路交换具有较小的传输延迟,实时性较好,适用于高数大量数据传输。
23 下列关于卫星通信的说法,错误的是()。
A卫星通信的通信距离大,覆盖的范围广。