定向井和水平井钻井技术
- 格式:docx
- 大小:28.38 KB
- 文档页数:8
第一章定向井(水平井)钻井技术概述第一节定向井、水平井的基本概念1.定向井丛式井发展简史定向井钻井被(英)T .A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。
”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。
定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然是直井。
定向井首先是从美国发展起来的,在十九世纪后期,美国的旋转钻井代替了顿钻钻井。
当时没有考虑控制井身轨迹的问题,认为钻出来的井必定是铅垂的,但通过后来的井筒测试发现,那些垂直井远非是垂直的。
并由于井斜原因造成了侵犯别人租界而造成被起诉的案例。
最早采用定向井钻井技术是在井下落物无法处理后的侧钻。
早在1895年美国就使用了特殊的工具和技术达到了这一目的。
有记录定向井实例是美国在二十世纪三十年代初在加利福尼亚享廷滩油田钻成的。
第一口救援井是1934年在东德克萨斯康罗油田钻成的。
救援井是指定向井与失控井具有一定距离,在设计和实际钻进让救援井和失控井井眼相交,然后自救援井内注入重泥浆压死失控井。
目前最深的定向井由BP勘探公司钻成,井深达10,654米;水平位移最大的定向井是BP勘探公司于己于1997年在英国北海的Rytch Farm 油田钻成的M11井,水平位移高达1,0114米。
垂深水平位移比最高的是Statoil 公司钻成的的33/9—C2达到了1:3.14;丛式井口数最多,海上平台:96口;人工岛:170口;我国定向井钻井技术发展情况我国定向井钻井技术的发展可以分为三个阶段,50—60年代开始起步,首先在玉门和四川油田钻成定向井及水平井:玉门油田的C2—15井和磨三井,其中磨三井总井深1685米,垂直井深表遗憾350米,水平位移444.2米,最大井斜92°,水平段长160米;70年代扩大实验,推广定向井钻井技术;80年代通过进行集团化联合技术攻关,使得我国从定向井软件到定向井硬件都有了一个大的发展。
定向井和水平井钻井技术定向钻井就是“使井眼按预定方向偏斜,钻达地下预定目标的一门科学技术”。
实际钻井的定向井井眼轴线是一条空间曲线。
钻进一定的井段后,要进行测斜,被测的点叫测点。
两个测点之间的距离称为测段长度。
每个测点的基本参数有三项:井斜角、方位角和井深,这三项称为井身基本参数,也叫井身三要素。
1.测量井深:指井口至测点间的井眼实际长度。
2.井斜角:测点处的井眼方向线与重力线之间的夹角。
3.方位角:以正北方向线为始边,顺时针旋转至方位线所转过的角度,该方向线是指在水平面上,方位角可在0—360°之间变化。
我们根据钻井用到的惯性产品的技术进行总结,分析各个技术中使用惯性陀螺及加速度计的优势,最后给出适合钻井技术的惯性产品。
一、井眼轨迹控制技术井眼轨迹控制的内容包括:优化钻具组合、优选钻井参数、采用先进的井下工具和仪器、利用计算机进行井眼轨迹的检测预测、利用地层的方位漂移规律、避免井下复杂情况等等。
轨迹控制贯穿钻井作业的全过程,它是使实钻井眼沿着设计轨道钻达靶区的综合性技术,也是定向井施工中的关键技术之一。
井眼轨迹控制技术按照定向井的工艺过程,可分为直井段、造斜段、增斜段、稳斜段、降斜段和扭方位井段等控制技术。
我们根据造斜段所需要的测斜仪进行分析。
根据测斜仪器的种类不同,分为四种定向方式:1.单点定向此方法只适用造斜点较浅的情况,通常井深小于1000米。
因为造斜点较深时,反扭角很难控制,且定向时间较长。
施工过程如下:(l)下入定向造斜钻具至造斜点位置(注意:井下马达必须按厂家要求进行地面试验)。
(2)单点测斜,测量造斜位置的井斜角,方位角,弯接头工具面;(3)在测斜照相的同时,对方钻杆和钻杆进行打印,并把井口钻杆的印痕投到转盘面的外缘上,作为基准点;(4)调整工具面(调整后的工具面是:设计方位角+反扭角)。
锁住转盘、开泵钻进;(5)定向钻进。
每钻进2~4个单根进行一次单点测斜,根据测量的井斜角和方位角及时修正反扭矩的误差,并调整工具面;(6)当井斜角达到8~10度和方位合适时,起钻换增斜钻具,用转盘钻进。
定向井及水平井基础知识介绍概述在石油勘探与开发中,为了更有效地获取地下资源,定向井和水平井技术日益被广泛应用。
本文将介绍定向井和水平井的基础知识,包括定义、优势、应用领域和技术特点等内容。
定向井的定义和优势定向井是指在垂直井的基础上,在一定深度范围内以一定倾角钻孔,旨在钻探具有特定目标的井筒。
与传统垂直井相比,定向井有以下优势: - 可钻入地下难以进入的地质层; - 可减少钻井长度,降低成本; - 可提高油井产能; - 可通过改变井眼轨迹实现水平产量。
定向井的应用领域定向井技术在石油勘探与生产中有着广泛的应用,主要包括以下几个领域: 1.增产:通过定向井技术,可达到增加油井产能的目的,提高石油开采效率。
2. 增储:将定向井开入储层可增加有效储集层面积,提高储层有效厚度。
3. 保护环境:通过定向井技术可以减少地表受到的损害,降低对环境的影响。
定向井的技术特点定向井技术具有以下技术特点: 1. 井眼轨迹可以根据地质条件和开采需求调整,灵活性高。
2. 需要精准的测量和导向技术,以确保井眼轨迹的准确性。
3. 钻井难度较大,需要高级的钻井设备和技术支持。
4. 通常需要配合水平井技术,实现更有效的油井开采。
水平井的定义和优势水平井是指在总长度相对较长、倾角相对较小的井筒中的一段呈水平或近水平方向前行的油气井。
与垂直井相比,水平井有以下优势: - 可以在储层中水平方向上穿过多个裂缝或孔隙,提高采收率。
- 可以减缓井底流体速度,减少持液力,降低油井产能。
- 可以有效控制油井生产,避免地层压力过快下降。
水平井的应用领域水平井技术主要应用于以下几个领域: 1. 大垂深气藏开发:通过水平井技术,可以有效提高气藏的采收率。
2. 高含水期油田的开发:水平井技术有助于提高油田的开发效率。
3. 多重边际储层的解决:适用于有多层油气藏交错分布的地质构造。
水平井的技术特点水平井技术具有以下技术特点: 1. 需要精确的测量和控制技术,以确保水平段的准确布置和有效开发。
石油钻井工程定向井技术的现状及发展1. 引言1.1 石油钻井工程定向井技术的重要性石油钻井工程定向井技术在石油勘探和开发中具有重要的意义。
随着石油资源日益枯竭,传统的直井已经难以满足需求,定向井技术的应用成为石油工程中不可或缺的部分。
通过定向井技术,可以实现井眼的弯曲和调整,有效地探测和开采石油藏。
定向井技术还可以帮助减少钻井风险,提高钻井效率,节约资源和成本。
定向井技术可以满足不同地质条件下的石油开采需求,例如在复杂地层条件下钻井,实现多井合采等。
通过定向井技术,可以有效地提高油田开发的效率和产量,实现资源的最大化利用。
定向井技术还可以帮助减少环境影响,降低油田开发对环境的破坏。
石油钻井工程定向井技术的重要性不言而喻。
它不仅可以帮助提高石油开采效率,降低风险和成本,还可以促进石油资源的有效开发和利用,为石油工程的发展做出重要贡献。
随着技术的不断进步和应用的不断推广,定向井技术的重要性将会进一步凸显,成为推动石油勘探和开发的关键技术之一。
2. 正文2.1 定向井技术的历史发展定向井技术的历史发展可以追溯到早期的地质学研究和石油勘探活动。
最早的定向钻井可以追溯到19世纪末,当时人们开始意识到在地下进行钻探可能会取得更好的效果。
随着石油勘探的深入和钻井技术的不断改进,定向钻井技术逐渐得到了发展和应用。
20世纪初,定向井技术开始得到广泛应用,尤其是在那些需要钻井到难以到达地点的情况下。
随着石油需求的增长和对储量更加严格的要求,定向井技术的发展也变得更加重要。
在过去的几十年里,定向井技术经历了巨大的进步,包括各种新型的设备和技术的应用。
现代定向井技术已经成为石油钻井工程中不可或缺的一部分。
通过定向井技术,可以有效地减少钻井时间、提高钻井效率,同时降低成本和风险。
定向井技术也为勘探和生产活动提供了更多的可能性,使得开采石油资源变得更加灵活和高效。
定向井技术的历史发展经历了一系列的改进和创新,不断地适应和满足石油行业的需求。
定向井和水平井钻井技术第一节 定向井井身参数和测斜计算一.定向井的剖面类型及其应用定向钻井就是“使井眼按预定方向偏斜,钻达地下预定目标的一门科学技术”。
定向钻井的应用范围很广,可归纳如图9-l 所示。
定向井的剖面类型共有十多种,但是,大多数常规定向井的剖面是三种基本剖面类型,见图9-2,称为“J ”型、“S ”型和连续增斜型。
按井斜角的大小范围定向井又可分为: 一、专业名词1.定向井(Directional Well ) 一口井的设计目标点,按照人为的需要,在一个既定的方向上与井口垂线偏离一定的距离的井,称为定向井。
2.井深(Measure Depth )井眼轴线上任一点,到井口的井眼长度,称为该点的井深,也称为该点的测量井深,或斜深。
单位为“m ”。
3.垂深(Vertical Depth or True Vertical Depth )井眼轴线上任一点,到井口所在水平面的距离,称为该点的垂深。
通常以“m ”为单位。
4.水平位移(Displacement or Closure Distance )井眼轨迹上任一点,与井口铅直线的距离,谓之该点的“水平位移”。
也称该点的闭合距。
其计量单位为“m ”。
5.视平移(Vertical section )水平位移在设计方位线上的投影长度,称为视平移。
如图10—1所示,OQ 为设计方位线,T O曲线为实钻井眼轴线在水平面上的投影,其上任一点P 的水平位移为OP ,以 A P表示。
P 点的视平移为OK ,其长度以V P 表示。
当OK 与OQ 同向时V P 为正值,反向时为负值。
视平移是绘制垂直投影图的重要参数。
单位为m 。
6.井斜角(Hole Inclination or Hole Angle )井眼轴线上任一点的井眼方向线,与通过该点的重力线之间的夹角,称为该点处的“井斜角”。
以度为单位。
7.最大的井斜角(MaxinumHoleAngle)“最大井斜角”有两种不同的意义。
第九章定向井(水平井)钻井技术新进展9.1 小井眼钻井技术(Slim-Hole Drilling Technique)9.1.1 小井眼钻井技术概况所谓小井眼,国外定义为90%以上井段直径小于177.8毫米(即7”)的井眼,国内有些学者则认为:穿过目的层的井段是用小于7”钻头钻成的井眼。
早在五十年代,小井眼就十分流行,但由于修井和采油的一些难题,又使人们在六十年代又转回到较大尺寸的生产井。
在沉寂了一段时间之后,近年来小井眼钻井作业在世界上又悄然兴起,主要基于以下原因:①国际油价大跌,迫使油公司要寻找一种更廉价的勘探开发方法,小井眼便是其重要途径。
据BP等多家油公司的统计资料表明:在相同井深的条件下,但就井眼小所发生的场地、材料、运输、资料解释等费用就比常规井少30%,根据几个油公司的小规模试验,节约钻井费用的前景是40%~50%;②出于环境保护的压力,由于井眼小,泥浆用量,排屑量,场地占用施工机械等相应减少,对环保有利;③减少边远和地面交通困难地区的勘探风险,在世界范围内,探井成功率只占13%。
探井打小井眼除低费用风险外,更重要的是这些地区地震工作也十分困难,在少量地震的前提下,早期打一些连续取芯的小井眼探井,可及早搞清地下情况,及早决策。
小井眼钻井有如下几方面的优点:A:井场占地面积小,一般不到1200平米,特别适用于农耕区钻井,节约土地;B:钻井设备轻,钻机及辅助设备不足200吨,易于搬运安装;C:钻井作业人员少,每24小时只需6~8人;D:岩屑量少,不足常规井的10%,便于废物处理,利于环保;E:消耗性材料(如钻头、套管、泥浆处理剂、水泥等)费用只占常规井的45%,可节约大笔成本。
由于小井眼钻井有其优越的经济性,所以日益为一些石油公司所青睐,仅1990年,国外小井眼已钻1000余口,其中大部分在美国。
92年由美国Maurer公司组织、12个国家的40多家公司参加的一个大型研究项目—DEA67,对小井眼及柔管技术进行系统的评价和研究。
定向井滑动钻进送钻原理与技术摘要:随着科学技术的发展,随着钻探技术的创新,钻探工作效率的提高,定向滑落的原理和技术探索十分必要。
本篇主要运用定向滑动滑落原理阐述相关技术。
关键词:定向井;滑动钻;进送钻原理与技术前言在实际打井和特定打井的过程中,一般会以打滑的方式改变井内方向,坡度,坡度。
所以要用滑动弹进行钻孔操作。
了解和掌握整向钻探的原理后,利用相关技术,可以提高钻探工作的效率,确保钻探工作安全有序进行。
在定向和水平的开凿过程中,经常采用滑动的方式改变井眼的流向,有时还采用滑动的方式开凿竖井段。
滑动进入时,钻头柱与井壁之间的摩擦力导致钓载减少,与钻头所受的压力不一致。
负荷的减少值是钻头和井壁的摩擦力。
其余的都加到钻头上。
这种钻头的压力的载荷减少值更小的现象叫做滑动。
在向下的过程中,由于钻头和井壁弹跳机的解除,摩擦状态由静止摩擦转变为动摩擦等原因,水钻的弹性能量突然释放,造成不平衡,有时钻头撞到井下,也会损伤钻头和井下动力钻。
这种锥形柱的弹性能量突然释放而不平衡下降的现象,称为“钻孔蛙的运动”。
为了减少地压,除了优化井底轨道,控制井底轨迹,保持良好的钻井液体系,保持钻井液性能外,还使用了主要电力推进器(又称水力压压机)和有水力振荡器的专用工具。
1 滑动钻井井底进给原理滑动钻进的钻进原理可分为液压螺旋桨钻进原理、串弹性钻进原理和液压振动器钻进原理。
1.1 液压振动钻井原理对于液压振荡器来说,纵向振动主要用于减小钻柱与井壁之间的摩擦阻力,从而提高钻孔过程中压力传递给钻头的效率。
液压振荡器主要由动力部分、轴承系统的支承部分和阀门组成。
重力加速度的极限在一到两倍之间。
实际工作频率范围:10-22hz。
在实践中,液压振动器本身不给钻井作业,其具体作用是减小钻柱之间的弹性,减少生产过程中的运行时间,影响摩擦系数,使摩擦系数接近数值,保证每个钻头尺寸都能得到扩展。
1.2 弹性钻柱进给原理根据液压推力器和液压振荡器的不同,合理组合井下动力钻具。
工艺技术延安气田定向井及水平井钻井和压裂技术优化邓长生㊀张㊀毅㊀谢小飞㊀宋珈萱㊀米伟伟㊀马㊀强㊀徐㊀敏(陕西延长石油(集团)有限责任公司研究院)邓长生,张毅,谢小飞,宋珈萱,米伟伟,马强,徐敏.延安气田定向井及水平井钻井和压裂技术优化.2019,30(4):29G34摘㊀要㊀为提高延安气田定向井和水平井的钻井及压裂成功率,提升天然气开采效率,进行了延安气田直井和水平井的压裂微地震监测,分析了定向井压裂的特点及裂缝延伸规律,归纳了定向井和水平井目前采用的井身结构特点,以此为基础,指出延安气田定向井及水平井在钻井和压裂方面存在的问题,并且针对每个问题给出了相应的优化方案:将定向井井身结构由三段式优化为五段式,要求在钻达延安气田主要目的层系之前就降斜成直井段;应用定方位定射角射孔技术,集中压裂液和管网压力对有效储集层进行压裂;向上调整水平井的二开结束点至斜井段的中下部位置.该方案可以有效提高延安气田天然气采收率,应用效果显著.关键词㊀延安气田㊀定向井㊀水平井㊀压裂㊀微地震监测㊀井身结构㊀定向射孔㊀优化中图分类号:T E132.1㊀㊀文献标识码:A㊀㊀D O I :10.3969/j.i s s n .1672G9803.2019.04.006基金项目:陕西省重点科技创新团队项目 延长石油集团天然气勘探开发创新团队 (编号:2015K C T G17);省部级项目 延长石油矿权区油气资源评价 (编号:2017Y Q Z Y P J 0110);延长石油集团项目 延安气田上古生界水平井钻井提速工艺技术研究及应用 (编号:y c s y 2016k y GA G19)㊀邓长生㊀工程师,1991年生,2014年毕业于中国地质大学(北京)资源勘查工程专业,现在陕西延长石油(集团)有限责任公司研究院从事天然气勘探开发方面研究.通信地址:710065陕西省西安市高新区唐延路61号延长石油科研中心.电话:13718753214.E Gm a i l :1243227328@q q.c o m 0㊀引㊀言延安气田位于陕西省延安市和榆林市境内,北部㊁东部与长庆油田的子洲-米脂气田毗邻,区内地表属典型的黄土塬地形,地面海拔850~1250m ,相对高差较大.延安气田的天然气勘探开发大体可划分为三个阶段.第一阶段:2003-2006年的气田探索阶段,2003年,延长油矿管理局在探区北部完钻了第一口天然气参数井 Y Q1井,于上古生界解释气层10.6m ㊁含气层12.3m ,证实探区具含气性;第二阶段:2007-2010年的气田评价阶段,2010年,在延安气田Y Q2-Y128井区上古生界基本落实天然气地质储量1000ˑ108m 3,发现了延安气田;第三阶段:2011年至今的增储上产阶段,延安气田的开发始于2011年,截至到2018年9月底,累计建产能37.0ˑ108m 3.延安气田处于黄土高原腹地,沟谷纵横,山峁相间,地形复杂,地表起伏高差大,地表为第四系松散黄色黏土,总体地势偏陡,现今采用直井㊁丛式定向井组和水平井相结合的开发井网进行气田开发.在气层厚度较大区域主要部署定向井,在储集层物性好且河道分布较为稳定的区域部署水平井,水平井的应用进一步提高了延安气田气井单井产量.定向井和水平井的钻井成功率和压裂增产效果直接决定了延安气田天然气的开采效率.1㊀压裂裂缝延伸方向的影响因素压裂技术是提高低渗透油气藏开采和生产效果的重要技术手段,而压裂的裂缝延伸和拓展方向又直接影响支撑剂的分布和天然气运移效果,以及压裂液的流动和裂缝的导流效果,从而直接影响压裂的增产程度[1].1.1㊀微地震监测微地震监测原理:在储集层压裂改造过程中会引起地下应力场变化,导致岩石破裂,形成裂缝,而裂缝的扩展必将产生一系列向四周传播的微震波,微地震法监测裂缝就是利用检波器,将微震波机械能转换为电能,当有微震事件发生时,微震波作用于检波器,使检波器内的敏感部件动感线圈产生电信号,完成对微震波的检测[2].微震波被布置在井周92 第30卷㊀第4期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀录井工程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀围的监测分站接收,根据各分站微震波的到来时差建立一系列方程组,求解这一系列方程组,就可确定微震震源位置,进而给出裂缝分布的方位㊁长度㊁高度(范围)及地应力方向等地层参数.在延安气田选取38口直井/50层㊁6口水平井/6层/42级进行了微地震监测,压裂层位包括盒8段㊁山西组㊁本溪组和马家沟组等气田主力层位.根据微地震监测资料统计,直井压裂形成的裂缝方位最小值为29.6ʎ,最大值为171.2ʎ,平均值为63.7ʎ,缝高平均值为11m,裂缝产状为垂直裂缝;水平井分级压裂形成的裂缝最小值为34ʎ,最大值为83.2ʎ,平均值为56.5ʎ,缝高平均值为27m,裂缝产状为垂直裂缝.前人研究成果显示,鄂尔多斯盆地伊陕斜坡大地最大主应力方位为60ʎ~80ʎ,结合延安气田压裂监测结果,可以得出延安气田直井和水平井压裂形成的裂缝方位与最大主应力方位平行,裂缝延伸方位受控于最大主应力方位.1.2㊀定向井压裂裂缝起裂延伸规律国内外大量定向井压裂施工实践表明[3G8],定向井压裂和直井压裂相比,在裂缝起裂和裂缝延伸的规律上存在着一定的差异,主要是由于井斜的影响,斜井井壁周围的应力分布规律不一样,同时斜井压裂裂缝的起裂压力与起裂方位角不一样,斜井更易发生裂缝的空间转向以及形成多裂缝.斜井的近井壁效应影响了裂缝的延伸规律,同时对于压裂施工能否顺利完成以及压裂后的增产效果都具有重要的影响.与直井进行对比分析,定向井压裂施工的特点主要表现为:定向井压裂的破裂压力高㊁施工压力高,同时近井地带的摩阻大,裂缝特征较复杂及压后增产效果斜井比直井的差等.基于国内外学者的多种数值解析模型㊁岩石物理模型室内试验,认为影响定向井压裂裂缝起裂和拓展的因素主要有三方面:定向井的井斜角㊁方位角以及射孔相位[9G12].各因素的影响效果表现为:(1)定向井水力压裂形成的裂缝为垂直裂缝,且在螺旋射孔条件下并非每个孔眼都起裂,有些射孔孔眼会成为不起裂的无效孔眼.(2)当定向井井眼方位与最小水平主应力方向一致时,存在某一临界井斜角,当井斜角小于临界井斜角时,裂缝沿射孔穿透方向起裂,在拓展过程中发生转向和扭曲,最终裂缝方位沿最大主应力方向;当井斜角大于临界井斜角时,裂缝沿垂向起裂,拓展过程中在近井地带发生转向和扭曲,最后沿最大水平主应力方向延伸,形成多裂缝与弯曲裂缝.(3)当定向井井眼方位为其他非平行于最小主应力方向的任意角度时,裂缝沿射孔穿透方向起裂,拓展过程中在近井地带发生转向和扭曲,最后沿最大水平主应力方向延伸,形成多裂缝和弯曲裂缝.(4)在相同井斜角和射孔相位的条件下,随定向井井眼方位与最大水平主应力方向夹角的增大,裂缝转向和扭曲的程度也加大.(5)在相同井眼方位和射孔相位的条件下,井斜角越大,裂缝拓展时转向和扭曲越剧烈,形成的裂缝越复杂.(6)在相同井眼方位和井斜角的条件下,射孔相位对裂缝的影响,主要取决于起裂位置相对于最大水平主应力方向的偏离程度,即起裂方位与最大水平主应力方向夹角越大,相对裂缝的转向和扭曲越明显,当起裂方位与最大水平主应力方向夹角大于临界值时,该孔眼失效,裂缝在该孔眼处无法起裂.2㊀定向井和水平井井身结构延安气田定向井目前采用的井身结构是三段式(直-增-降,图1),根据已完钻井井斜数据统计结果,延安气田定向井在上古生界盒8段-下古生界奥陶系马家沟组井段的井斜角最小值为5.2ʎ,最大值为26.4ʎ,平均值为16.2ʎ,即定向井在主要目的层段非直井段,而是有平均16.2ʎ井斜角的斜井段.延安气田水平井目前采用的井身结构是五段式(直-增-稳-增-平,图2),钻井过程采用三开式,一开至直井段结束,二开至斜井段结束,三开至水平段结束,水平段井斜角根据目的层构造特征有所不同.图1㊀延安气田定向井井身结构03 ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀录井工程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年12月图2㊀延安气田水平井井身结构3㊀定向井和水平井存在的问题根据定向井和水平井的井身结构以及定向井压裂特点和裂缝起裂拓展规律,延安气田目前采用的直井㊁丛式定向井组和水平井相结合的开发井网,存在相应的技术问题,制约了定向井和水平井的钻井成功率和压裂增产效果,降低了天然气开采效率.3.1㊀定向井存在的问题根据前文所述,延安气田开发井网中的定向井的方位由气层展布规律以及开发井距综合确定,既可能平行于最大主应力方位,也可能平行于最小主应力方位,或是介于最大主应力和最小主应力之间的任一角度.而延安气田目前定向井在主要目的层段并非直井段,而是有一定井斜角的斜井段.由以上分析可知,延安气田定向井存在三个问题:(1)裂缝转向发生的弯曲裂缝会导致裂缝宽度减小(图3),压裂液流动阻力增加,在压裂过程中易产生砂堵,增加了起裂压力,故施工难度较直井大.(2)由于鄂尔多斯盆地伊陕斜坡的构造非常平缓,在开发井距内认为目的层是平缓的,带有一定井斜角的定向井压裂后产生的裂缝非平行于目的层界面,而是与目的层界面存在一定的夹角,故产生的裂缝不能完全在目的层深度范围内拓展延伸,会穿越到非目的层(图4),以致降低了气井压裂改造的效果.(3)在延安气田产能建设中,发现某些定向井处在目的层砂体展布河道的边缘位置,在该井的一侧沉积微相是分流河道,另一侧沉积微相是分流间湾,而有效储集层发育在分流河道一侧.如果采用传统的射孔方案进行压裂,那么另一侧分流间湾的无效储集层也将被射孔压开,然而无效储集层的这一部分对气井的天然气采收并无贡献,却分流了压裂液和压裂管网压力,造成分流河道一侧有效储集层不能产生最佳的压裂增产效果(图3).图3㊀延安气田定向井压裂裂缝平面图图4㊀延安气田定向井压裂裂缝剖面图3.2㊀水平井存在的问题延安气田现今水平井钻井施工采用三开式,结合延安气田的水平井现场试验效果,延安气田水平井存在以下问题:(1)鄂尔多斯盆地中生界刘家沟组㊁和尚沟组属易塌易漏地层,不仅在钻达时易发生坍塌漏失,而且在钻至下部上古生界㊁下古生界地层时,仍然会发生上部刘家沟组㊁和尚沟组地层坍塌漏失.(2)上古生界二叠系山西组地层煤层大规模发育,煤层在钻井的长期循环作用下不稳定极易造成坍塌漏失.延安气田水平井二开结束点设计在斜井段结束点(A靶点),由于水平井钻进过程中,A靶点的确定需要根据钻井地质设计㊁现场地质导向和随钻测井综合确定,往往需要长时间的停钻循环,而上部刘家沟组㊁和尚沟组地层不稳定,极易坍塌漏失,容易造成井眼垮塌㊁钻具被埋等钻井事故(延安气田水平井实验已经有多口水平井在二开结束点发生井13第30卷㊀第4期㊀㊀㊀㊀㊀㊀㊀㊀㊀邓长生等:延安气田定向井及水平井钻井和压裂技术优化眼垮塌事故).4㊀定向井及水平井钻井和压裂优化4.1㊀优化定向井井身结构将定向井的三段式井身结构优化为五段式(直-增-稳-降-直,图5),在钻达延安气田主要目的层系之前就降斜成直井段.通过井身结构的优化,消除了井筒在目的层段的井斜角,将主要目的层段由斜井段变成直井段,使定向井在目的层段压裂产生的裂缝延伸规律与直井一致,消除了定向井压裂时产生的近井效应,不会产生弯曲裂缝,能够产生垂直于井筒且平行于最大主应力方位的裂缝(图6),而且所产生的裂缝能完全在目的层深度范围内拓展延伸,从而增大裂缝沟通气层作用,有效提高天然气采收率.图5㊀延安气田定向井井身结构优化方案图6㊀延安气田定向井优化后的裂缝剖面形态4.2㊀应用定方位定射角射孔技术定向射孔压裂技术在我国20世纪90年代开始应用,最早应用于煤矿开发,避免了水力压裂时应力集中,裂隙在煤体无序拓展,实现压裂范围内煤体整体泄压增透,此后该工艺被应用于盐类矿物开采,又被用于油气田的开发生产[13G15].定方位定射角射孔,即控制射孔孔眼位置和射孔方位,引导压裂产生平行于最大主应力方位且不转向的裂缝;或者在射孔孔眼附近钻定向控制孔,射孔孔眼和定向孔眼间距不大于5m,引导裂隙从射孔孔眼向定向孔方向产生和拓展,促进射孔孔眼和定向孔眼之间的裂隙充分发育[16G19].在定向井进行射孔压裂作业时进行射孔优化设计,确定地层最大主应力方位,采用定方位定射角射孔技术.通常的射孔枪弹都是垂直于井筒但未必平行于最大主应力方位,而定方位定射角射孔技术可以利用调角器进行射孔孔眼方位校正,使得射孔枪弹平行于最大主应力方位.根据定向井压裂的裂缝起裂拓展规律,应用这一技术,可以让裂缝起裂就沿最大主应力方向,避免了裂缝拓展过程中转向带来的施工难度,同时可以让裂缝在目的层内充分拓展延伸增加压裂改造效果.对于处在目的层砂体展布河道的边缘位置这一类定向井,将射孔孔眼全部布置在沉积微相为分流河道这一侧,同时考虑地层最大主应力方位(图7),增加孔密,集中压裂液和管网压力对有效储集层进行压裂,增加有效储集层压裂裂缝的长度和宽度.对无效储集层则避开不进行射孔压裂.图7㊀延安气田定向井定向压裂裂缝平面图4.3㊀调整水平井的二开结束点将水平井现今的二开结束点由斜井段结束点(A靶点)向上调整至斜井段的中下部位置(图8),采取这样的优化方式,可以在确定A靶点所需较长23 ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀录井工程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年12月图8㊀延安气田水平井井身结构优化方案时间之前就二开结束固井,将目的层段上部地层用水泥浆封住,以便消除上古生界刘家沟组和和尚沟组地层以及山西组煤层的坍塌漏失对钻遇目的层段的影响,可以有效提高水平井钻井成功率,缩短钻井周期,提高延安气田整体的天然气开采速率.延安气田子长东区块2019年共部署9口水平井,全部采用优化方案钻井,水平井井眼垮塌率降为零,表明此优化方案在推广应用中效果显著.5㊀结束语(1)为了有效动用已落实储量,延安气田目前采用的是直井㊁丛式定向井组和水平井相结合的开发井网,以直井和定向井为主,水平井为辅.(2)延安气田定向井存在三个问题:裂缝转向发生的弯曲裂缝会导致裂缝宽度减小,增加了起裂压力,造成施工难度较直井大;压裂产生的裂缝不能完全在目的层深度范围内拓展延伸,而是会穿越到非目的层,减小了气井压裂改造效果;对于某些处在目的层砂体展布河道边缘位置的定向井,采用传统射孔方案进行压裂,造成分流河道一侧不能产生最佳的压裂增产效果.延安气田水平井存在的问题:水平井实验有多口水平井在二开结束点发生井眼垮塌事故.(3)针对延安气田定向井和水平井存在的问题,提出了相应的优化方案:将定向井井身结构由三段式优化为五段式,要求在钻达延安气田主要目的层系之前就降斜成直井段;应用定方位定射角射孔技术,集中压裂液和管网压力对有效储集层进行压裂;向上调整水平井的二开结束点至斜井段的中下部位置.此方案在推广应用中效果显著.参㊀考㊀文㊀献[1]㊀王磊.定向井压裂裂缝扩展规律研究[D].青岛:中国石油大学(华东),2011:3G10.WA N GL e i.R e s e a r c ho n p r o l o n g a t i o n l a wo f h y d r a uGl i cf r a c t u r ef o rd i r e c t i o n a lw e l l[D].Q i n g d a o:C h i n aU n i v e r s i t y o fP e t r o l e u m(H u a d o n g),2011:3G10.[2]㊀苏卿.定向井压裂裂缝起裂扩展规律及应用研究[D].青岛:中国石油大学(华东),2014:4G9.S U Q i n g.S t u d y a n da p p l i c a t i o no f p r o l o n g a t i o nl a wo f h y d r a u l i c f r a c t u r e f o rd i r e c t i o n a lw e l l[D].Q i n g dGa o:C h i n a U n i v e r s i t y o fP e t r o l e u m(H u a d o n g),2014:4G9.[3]㊀刁素,颜晋川,任山,等.川西地区定向井压裂工艺技术研究及应用[J].西南石油大学学报(自然科学版),2009,31(1):111G115.D I A OS u,Y A NJ i n c h u a n,RE NS h a n,e t a l.R e s e a r c ha n d f i e l da p p l i c a t i o no nh y d r a u l i c f r a c t u r i n g t e c h n o l oGg y o fd i r e c t i o n a lw e l l si n w e s t e r nr e g i o no fS i c h u a n[J].J o u r n a l o f S o u t h w e s tP e t r o l e u m U n i v e r s i t y(S c iGe n c e&T e c h n o l o g y E d i t i o n),2009,31(1):111G115.[4]㊀王志龙.地面煤层气井定向消突与负压抽采试验[J].能源与节能,2016(4):26G27,117.WA N G Z h i l o n g.T e s to fo r i e n t a t e de l i m i n a t i o no u tGb u r s t a n dn e g a t i v e p r e s s u r e e x t r ac t i o n i n g r o u nd c o a lGb e d m e t h a n e w e l l s[J].E n e r g y a n d C o n s e r v a t i o n,2016(4):26G27,117.[5]㊀程木林.定向井分层压裂工艺[J].油气田地面工程,2010,29(5):85G86.C H E N G M u l i n.D i r e c t i o n a lw e l l f r a c t u r i n g t e c h n o l oGg y[J].O i lGG a sf i e l d S u r f a c e E n g i n e e r i n g,2010,29(5):85G86.[6]㊀贾长贵.定向井压裂技术发展现状分析[J].内蒙古石油化工,2010,36(20):92G94.J I AC h a n g g u i.A n a l y s i so fd e v e l o p m e n t s t a t u s i nd iGr e c t i o n a lw e l l c r a c k i n g t e c h n o l o g i e s[J].I n n e rM o n g oGl i aP e t r o c h e m i c a l I n d u s t r y,2010,36(20):92G93.[7]㊀曾凡辉,尹建,郭建春.定向井压裂前的射孔方位优化设计[J].断块油气田,2012,19(5):638G641.Z E N G F a n h u i,Y I N J i a n,G U O J i a n c h u n.O p t i m i z aGt i o no f p e r f o r a t i o no r i e n t a t i o nb e f o r ed i r e c t i o n a lw e l lf r a c t u r i n g[J].F a u l tGB l o c kO i l a n dG a sF i e l d,2012,19(5):638G641.[8]㊀曾凡辉,尹建,郭建春.定向井压裂射孔方位优化[J].石油钻探技术,2012,40(6):74G78.Z E N GF a n h u i,Y I NJ i a n,G U OJ i a n c h u n.O p t i m i z a t i o n33第30卷㊀第4期㊀㊀㊀㊀㊀㊀㊀㊀㊀邓长生等:延安气田定向井及水平井钻井和压裂技术优化o f p e r f o r a t i o no r i e n t a t i o nf o rd i r e c t i o n a lw e l l f r a c t uGr i n g[J].P e t r o l e u m D r i l l i n g T e c h n i q u e s,2012,40(6):74G78.[9]㊀颜晋川,刁素,朱礼平,等.定向井压裂优化设计及现场应用[J].油气地质与采收率,2008,15(5):102G104.Y A NJ i n c h u a n,D I A OS u,Z HUL i p i n g,e t a l.O p t i m iGz a t i o na n d f i e l da p p l i c a t i o no f h y d r a u l i c f r a c t u r i n g d eGs i g no fd i r e c t i o n a lw e l l s[J].P e t r o l e u m G e o l o g y a n dR e c o v e r y E f f i c i e n c y,2008,15(5):102G104.[10]㊀季伟,马新川,阿木提江 亚力昆,等.定向井钻井特点及定向井做法[J].云南化工,2018,45(4):161.J I W e i,MA X i n c h u a n,AMU T I J I A N G Y a l i k u n,e ta l.D i r e c t i o n a lw e l l d r i l l i n g c h a r a c t e r i s t i c sa n dd i r e cGt i o n a lw e l l p r a c t i c e s[J].Y u n n a nC h e m i c a lT e c h n o l oGg y,2018,45(4):161.[11]㊀严申斌,黄导武,伍锐东.海上低渗气藏定向井压裂经济开发地质下限探讨[J].长江大学学报(自然科学版),2016,13(26):61G64.Y A N S h e n b i n,HU A N G D a o w u,WU R u i d o n g.D i sGc u s s i o no n g e o l o g i c a l l o w e r l i m i t so f e c o n o m i cde v e lGo p m e n t o fd i r e c t i o n a lw e l l f r a c t u r i n g i no f f s h o r e l o wp e r m e a b i l i t yg a sr e s e r v o i r s[J].J o u r n a lo f Y a n g t z eU n i v e r s i t y(S o c i a l S c i e n c e sE d i t i o n),2016,13(26):61G64.[12]㊀李小龙,许华儒,刘晓强,等.径向井压裂裂缝形态及热采产能研究[J].岩性油气藏,2017,29(6):154G160.L IX i a o l o n g,X U H u a r u,L I U X i a o q i a n g,e ta l.F r a cGt u r em o r p h o l o g y a n d p r o d u c t i o n p e r f o r m a n c e o f r a d i a lw e l l f r a c t u r i n g[J].L i t h o l o g i c R e s e r v o i r s,2017,29(6):154G160.[13]㊀陈学习,徐永,金文广,等.低透气性煤层定向水力压裂增透技术[J].辽宁工程技术大学学报(自然科学版),2016,35(2):124G128.C H E N X u e x i,X U Y o n g,J I N W e n g u a n g,e ta l.P e rGm e a b i l i t y i m p r o v e m e n t t e c h n o l o g y o fd i r e c t i o n a lh yGd r a u l i c f r a c t u r i n g i nl o w pe r m e a b i l i t y c o a l s e a m[J].J o u r n a l o f L i a o n i n g T e c h n i c a l U n i v e r s i t y(N a t u r a l&S c i e n c eE d i t i o n),2016,35(2):124G128.[14]㊀梅朝杰.定向喷射及定向压裂的方法探讨[J].中国井矿盐,1994,25(2):19G20.M E I Z h a o j i e.D i s c u s s i o no nd i r e c t i o n a l j e t t i n g a n dd iGr e c t i o n a l f r a c t u r i n g[J].C h i n a W e l la n d R o c kS a l t,1994,25(2):19G20.[15]㊀吴坛珍.定向压裂连通技术在盐类矿物开采中的应用[J].化工矿物与加工,2008,33(3):33G35.WU T a n z h e n.A p p l i c a t i o n o fd i r e c t i o n a lf r a c t u r i n gt e c h n o l o g y i n m i n i n g s a l t y m i n e r a l s[J].I n d u s t r i a lM i n e r a l s a n dP r o c e s s i n g,2008,33(3):33G35.[16]㊀张晓伟,余加正,刘俊龙.定向压裂增透技术在二1煤层中的应用[J].华北科技学院学报,2011,8(3):35G38.Z HA N G X i a o w e i,Y UJ i a z h e n g,L I UJ u n l o n g.A p p l iGc a t i o no fd i re c t i o n a lf r a c t u r i ng i n c r e a s e d p e r m e a b i l i t yt e c h n o l o g y i n N o.I IG1C o a lS e a m[J].J o u r n a lo fN o r t h C h i n aI n s t i t u t e o f S c i e n c e a n d T e c h n o l o g y,2011,8(3):35G38.[17]㊀胡胜勇.水力喷射钻孔定向压裂技术试验研究[J].钻采工艺,2014,37(5):59G62.HU S h e n g y o n g.E x p e r i m e n t a ls t u d y o n d i r e c t i o n a lf r a c t u r i ng o fh y d r a u li cj e td r i l l i n g[J].D r i l l i n g&P r o d u c t i o nT e c h n o l o g y,2014,37(5):59G62.[18]㊀王志军,连传杰,王阁.岩石定向水力压裂导控的数值分析[J].岩土工程学报,2013,35(增刊2):320G324.WA N GZ h i j u n,L I A N C h u a n j i e,WA N G G e.N u m e r iGc a l a n a l y s i so fd i re c t i o n a l h y d r a u l i cf r a c t u r i ng i nr o c k[J].C h i n e s eJ o u r n a lo f G e o t e c h n i c a lE n g i n e e r i n g,2013,35(S2):320G324.[19]㊀李栋,卢义玉,荣耀,等.基于定向水力压裂增透的大断面瓦斯隧道快速揭煤技术[J].岩土力学,2019,40(1):363G369,378.L ID o n g,L U Y i y u,R O N G Y a o,e t a l.R a p i du n c o v eGr i n g s e a mt e c h n o l o g i e s f o r l a r g e c r o s sGs e c t i o n g a s t u nGn e le x c a v a t e dt h r o u g h c o a ls e a m s u s i n g d i r e c t i o n a lh y d r a u l i c f r a c t u r i n g[J].R o c ka n dS o i l M e c h a n i c e s,2019,40(1):363G369,378.(返修收稿日期㊀2019G10G31㊀编辑㊀卜丽媛)43 ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀录井工程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年12月m e t h o d.T h eb e n d i n g d e f o r m a t i o nd e g r e e o f t h e r o c k f o r m aGt i o n i s c h a r a c t e r i z e db y t h e p r i n c i p a l c u r v a t u r em e t h o d i nd i fGf e r e n t i a l g e o m e t r y.T h e p r i n c i p a l c u r v a t u r e r a n g eo f t h e l o s t c i r c u l a t i o n i s d e t e r m i n e dw i t ht h e a c t u a l d r i l l i n g c o n d i t i o na s t h e c o n s t r a i n i n g c o n d i t i o n,s o t h a t t h e d i s t r i b u t i o n c h a r a c t e rGi s t i c s o f t h e p r i n c i p a l c u r v a t u r e f i e l dc a nb eu s e dt o i n d i c a t e t h e s t r u c t u r a l f r a c t u r e d e v e l o p m e n t z o n e,s o a s t o a c h i e v e t h e p u r p o s eo f p r e d i c t i n g t h e l o s tc i r c u l a t i o n.T h i s m e t h o dh a s b e e n a p p l i e dt ot h ed r i l l i n g s i t eo fS h u n b e ib l o c ki n N o r t hGw e s tO i l f i e l d.T h er e s u l t ss h o wt h a t t h e p r i n c i p a l c u r v a t u r e m e t h o d c a ne f f e c t i v e l yp r e d i c t t h e l o s tc i r c u l a t i o na n d g u i d e t h ed r i l l i n g s i t et oc a r r y o u tt h es a f e t y a n dh i g he f f i c i e n c y c o n s t r u c t i o n.K e y w o r d s:S h u n b e i b l o c k,p r i n c i p a l c u r v a t u r em e t h o d,f r a cGt u r e,l o s t c i r c u l a t i o n,p r e d i c t i o nL u S h i h a o,F r o n t C o mm a n dB a s e,N o r t h w e s tO i l f i e l dC o m p aGn y,L u n t a i C o u n t y,B a z h o u,X i n j i a n g,841600,C h i n aA p p l i c a t i o no f t h e c o m b i n e dm u d l o g g i n g t e c h n o l o g y i n t h e d i sGc o v e r y o f h y d r o c a r b o n r e s e r v o i r si n T a i y u a n f o r m a t i o n o f G a n g b e i b u r i e dh i l l.T a nC h a o,W a n g C h a n g z a i,J iL i n g,H u F e n g b o,W a n g X i a o c h e n g,D o n g F e n g a n dX uJ i c e.M u dL o gGg i n g E n g i n e e r i n g,2019,30(4):22G28T h ea p p l i c a t i o no fn e wd r i l l i n g t e c h n i q u e ss u c ha sP D C a n dh i g hGp r e s s u r e j e t d r i l l i n g i nT a i y u a n f o r m a t i o no f b u r i e d h i l l s,n o r t h e r n D a g a n g b r i n g s g r e a tc h a l l e n g e st o m u dl o gGg i n g d i s c o v e r y o fs h o w o f g a sa n do i l i nt h i sb l o c k,w h i c h l e a d s t o t h e f a i l u r eo f c o n v e n t i o n a l g e o l o g i c a l l o g g i n g t o f i n d h y d r o c a r b o n r e s e r v o i r sa n dt h e i r l i t h o l o g y c o m b i n e dc h a r a cGt e r i s t i c s i nT a i y u a nf o r m a t i o ni nt i m e.I no r d e rt of i n do u t t h e g e o l o g i c i n f o r m a t i o no f t h es t r a t a i nt h i sa r e aa n dd e t e rGm i n et h e m o s ts u i t a b l ec o m b i n a t i o n o f m u dl o g g i n g t e c hGn i q u e s f o r t h i sk i n do f o i l a n d g a sd i s c o v e r y,t a k i n g t w oe xGp l o r a t i o n w e l l s o f h y d r o c a r b o n r e s e r v o i r si n b u r i e d h i l l, n o r t h e r nD a g a n g a s e x a m p l e s,t h e c o m b i n a t i o n s e r i e s a n d a pGp l i c a t i o ne f f e c t o fm u d l o g g i n g m e t h o d s a r e s u mm a r i z e d,a n d t h e l i t h o l o g y a n d p e t r o l i f e r o u s p r o p e r t y o fT a i y u a n f o r m a t i o n a r e r eGr e c o g n i z e d.F i n a l l y,i t i s c o n f i r m e d t h a t t h e c o m b i n e d m u d l o g g i n g t e c h n o l o g y o fc a r b o n a t ea n a l y s i s+t h i ns e c t i o n a n a l y s i s+X R D+X R Fh a sa g o o de f f e c t o nt h e i d e n t i f i c a t i o n o f c o m p l e x l i t h o l o g y a n d r e s e r v o i r i n t h i s a r e a,t h e c o m b i n e d m u dl o g g i n g t e c h n o l o g y o f g a sl o g g i n g+t h r e eGd i m e n s i o n a l q u a n t i t a t i v e f l u o r e s c e n c e+r o c k p y r o l y s i sa n a l y s i sc a ne f f e cGt i v e l y d e a lw i t ht h ed i s c r i m i n a t i o no f f o r m a t i o n p e t r o l i f e r o u s p r o p e r t y i n t h i s a r e a.K e y w o r d s:c o m b i n e d m u dl o g g i n g t e c h n o l o g y,T a i y u a nf o rGm a t i o n,o i l a n d g a s i d e n t i f i c a t i o n,c o a l s e a m,b u r i e dh i l l i n n o r t h e r nD a g a n gT a nC h a o,N o.1M u dL o g g i n g C o m p a n y,T u a n j i eE a s tR o a d, D a g a n g O i l f i e l d,T i a n j i n,300280,C h i n aO p t i m i z a t i o no fd r i l l i n g a n df r a c t u r i n g t e c h n o l o g y f o rd i r e cGt i o n a l a n dh o r i z o n t a l w e l l s i nY a nᶄa n g a s f i e l d.D e n g C h a n g s hGe n g,Z h a n g Y i,X i eX i a o f e i,S o n g J i a x u a n,M i W e i w e i,M a Q i a n g a n dX uM i n.M u d L o g g i n g E n g i n e e r i n g,2019,30(4):29G34I no r d e r t o i m p r o v e t h e s u c c e s s r a t e o f d r i l l i n g a n d f r a cGt u r i n g o f d i r e c t i o n a l a n dh o r i z o n t a lw e l l s i nY a nᶄa n g a s f i e l d a n de n h a n c e t h e e f f i c i e n c y o f n a t u r a l g a s e x p l o i t a t i o n,m i c r oGs e i s m i cm o n i t o r i n g o f f r a c t u r i n g f o rv e r t i c a lw e l l sa n dh o r iGz o n t a lw e l l s i nY a nᶄa n g a s f i e l d i s c a r r i e do u t,t h e c h a r a c t e rGi s t i c so f d i r e c t i o n a l w e l l f r a c t u r i n g a n d t h e l a wo f f r a c t u r e e xGt e n s i o na r ea n a l y z e d,a n dt h ec h a r a c t e r i s t i c so f w e l lb o r e s t r u c t u r ec u r r e n t l y u s e di nd i r e c t i o n a lw e l l sa n d h o r i z o n t a l w e l l s a r e s u mm a r i z e d.B a s e do nt h i s,t h e p r o b l e m s i nd r i l lGi n g a n d f r a c t u r i n g o f d i r e c t i o n a l a n dh o r i z o n t a lw e l l s i nY a nᶄa n g a s f i e l d a r e p o i n t e do u t,a n d t h e c o r r e s p o n d i n g o p t i m i z aGt i o n s c h e m e i s g i v e n f o r e a c h p r o b l e m.O p t i m i z i n g t h e d i r e cGt i o n a l w e l ls t r u c t u r ef r o m t r i p l eGs e c t i o n t o p e n t a dGs e c t i o n t y p e r e q u i r e s t h a t t h ea n g l ed r o p s i n t os t r a i g h tw e l l s e c t i o n b e f o r e d r i l l i n g i n t o t h em a i n t a r g e t s t r a t a o fY a nᶄa n g a s f i e l d.B y u s i n g o r i e n t e d f i x e da n g l e p e r f o r a t i n g t e c h n o l o g y,t h e e fGf e c t i v e r e s e r v o i r i s f r a c t u r e db y f o c u s i n g f r a c t u r i n g f l u i da n d p i p en e t w o r k p r e s s u r e,a n dt h ee n d p o i n t o f t h es e c o n ds e cGt i o no f t h eh o r i z o n t a lw e l l i sa d j u s t e du p w a r dt ot h e m i d d l e a n d l o w e r p a r t o f t h e d e v i a t e dw e l l s e c t i o n.T h i s s c h e m e c a n e f f e c t i v e l y i m p r o v e t h er e c o v e r y r a t i oo fn a t u r a l g a s i nY a nᶄa n g a s f i e l d,w i t h r e m a r k a b l e a p p l i c a t i o ne f f e c t.K e y w o r d s:Y a nᶄa n g a sf i e l d,d i r e c t i o n a l w e l l,h o r i z o n t a l w e l l,m i c r o s e i s m i cm o n i t o r i n g,w e l l b o r e s t r u c t u r e,o r i e n t e d p e r f o r a t i n g,o p t i m i z a t i o nD e n g C h a n g s h e n g,Y a n c h a n g P e t r o l e u m S c i e n t i f i c R e s e a r c h C e n t e r,61T a n g y a nR o a d,X iᶄa nH iGt e c h I n d u s t r i e sD e v e l o pGm e n t Z o n e,S h a a n x i P r o v i n c e,710065,C h i n aA p p l i c a t i o no fE x c e l f u n c t i o ni nt h e i d e n t i f i c a t i o no fv o l c a n i c r o c k si ne l e m e n tl o g g i n g.Q u S h u n c a i,Z u o T i e q i u,Z h a n g Y a n q i a n dZ h a n g P e n g.M u dL o g g i n g E n g i n e e r i n g,2019,30(4):35G39E l e m e n t l o g g i n g t e c h n o l o g y c a nb eu s e dt oo b t a i nt h e c o n t e n t o f e l e m e n t s i nr o c k sa n d m i c r o s c o p i c a l l y a n a l y z e t h e c o m p o s i t i o no f r o c k s.H o w e v e r,t h ea c c u r a t en a m i n g o f l iGt h o l o g y h a sb e c o m e a nu r g e n t p r o b l e mt ob e s o l v e d.T h e r eGf o r e,t h ea u t o m a t i cl i t h o l o g i cd i s c r i m i n a t i o na n dn a m i n g o f v o l c a n i c r o c k e l e m e n t l o g g i n g d a t a a r e r e a l i z e db y E x c e l f u n cGt i o n.T h a t i s,t h eT A Sc h a r tn u m b e ro fv o l c a n i cr o c ke l eGm e n t i d e n t i f i c a t i o ni sf o r m u l a t e di n E x c e l,a n dt h e E x c e l w o r k s h e e t o f v o l c a n i c r o c ke l e m e n t i d e n t i f i c a t i o n i s c o m p i l e d b a s e do nt h e l i t h o l o g y n a m i n g c o n d i t i o n s.T h e f i e l da p p l i e d e x a m p l e ss h o w t h a tt h e m e t h o di ss i m p l ea n dc o n v e n i e n t, w h i c hn o to n l y a c h i e v e st h ea c c u r a t en a m i n g o fe l e m e n t l iGt h o l o g y,b u t a l s o i m p r o v e s t h ew o r k e f f i c i e n c y.T h e a p p l i c aGt i o ne f f e c t o f e l e m e n t l o g g i n g t e c h n o l o g y i s e n h a n c e d.K e y w o r d s:e l e m e n t l o g g i n g,v o l c a n i cr o c k,c h a r t i d e n t i f i c aGt i o nm e t h o d,T A Sc h a r t,E x c e l f u n c t i o n,c h a r t f o r m u l a t i o n Q uS h u n c a i,D a t a A c q u i s i t i o n T e a m2,N o.1G e oGL o g g i n g C o m p a n y,D a q i n g D r i l l i n g&E x p l o r a t i o nE n g i n e e r i n g C o rGp o r a t i o n,R a n g h u l u D i s t r i c t,D a q i n g C i t y,H e i l o n g j i a n g P r o v i n c e,163411,C h i n aM e t h o d f o r c a l c u l a t i n g o i l a n d g a s u p w a r d f l o wv e l o c i t y i nd e e p w a t e rd r i l l i n g.J i a n gQ i a n t a o,C a oP e n g f e i,G u a nL i j u n,D u K e z h e n g a n dZ h o uZ h i j u n.M u dL o g g i n g E n g i n e e r i n g,2019,30(4):40G43T h e o i l&g a su p w a r d f l o wv e l o c i t y i s a n i m p o r t a n t p aGr a m e t e r f o r h y d r o c a r b o n r e s e r v o i r e v a l u a t i o n a n dw e l l c o n t r o l641 ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀录井工程㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2019年12月。
第八章定向井、水平井钻井技术前言定向井、水平井钻井技术在国内经过多年的研究、发展,目前已经相对成熟。
但是,就应用地域而言,川东北地区应用定向井、水平井技术相对较晚,由于地质条件复杂,钻井施工期间出现的问题较多,有必要对前期定向井施工中的成功经验和负面教训进行总结、分析,为提高今后钻井队伍对该地区定向井、水平井施工的认知程度,推动川东北地区定向井钻井技术的成熟,形成较为完善的川东北水平井钻井技术方案奠定基础。
一、国内外定向井、水平井钻井技术现状(一)定向井钻井技术简而言之,定向井是指按照预先设计的井斜方位和井眼的轴线形状进行钻进的井。
沿着预先设计的井眼轴线钻达目的层位的钻井方法,称为定向钻井。
定向井技术可以增加油藏泄油面积,提高油气产量,还能够克服地表障碍设定井场、节约用地、降低开发成本、提高经济效益。
定向井通常采用的轨道剖面是“直—增—稳”和“直—增—稳—降—稳”或与之相近的剖面结构,在数量上以“直—增—稳”三段制结构占绝大多数。
对于这种剖面,早期的定向井钻井在造斜点以下井段是分三步施工的,即弯接头+直螺杆定向造斜、转盘钻进增斜和转盘钻进稳斜。
该施工步骤相对而言较为复杂,且由于定向井井眼轨迹的井斜变化和方位漂移量受地层岩性、钻具结构、钻进参数等诸多因素影响,如果没有对相应区块的钻井施工经验,判断和量化分析井斜、方位变化规律的存在一定的难度。
随着弯壳体泥浆马达、高效PDC钻头的研制成功和无线随钻测量技术的发展,导向钻井系统逐步发展,并成为定向井技术发展的最重大的成果。
最初是弯壳体动力钻具与MWD组成的滑动导向钻井系统,近年来又出现了旋转导向钻井系统。
导向钻井系统的最大优点是一套工具下入井内后,可以增斜、降斜和稳斜,可以根据需要钻出不同曲率的井眼,从而大大提高了井眼轨迹控制能力。
如英国BP公司1999年7月在英国WytchFarm油田完成的M16SPZ井,完钻井深11278m,垂深1637m,水平位移达10728.4m。
定向井和水平井钻井技术(2008-11-19 08:53:54)标签:稳斜增斜率钻具钻铤井斜角我国海洋杂谈第三节井眼轨迹控制技术井眼轨迹控制的内容包括:优化钻具组合、优选钻井参数、采用先进的井下工具和仪器、利用计算机进行井眼轨迹的检测预测、利用地层的方位漂移规律、避免井下复杂情况等等。
轨迹控制贯穿钻井作业的全过程,它是使实钻井眼沿着设计轨道钻达靶区的综合性技术,也是定向井施工中的关键技术之一。
井眼轨迹控制技术按照定向井的工艺过程,可分为直井段、造斜段、增斜段、稳斜段、降斜段和扭方位井段等控制技术,其中直井段的控制技术见第七章第四节。
一.定向选斜井段初始造斜方法有五类,即井下马达和弯接头定向、喷射法、造斜器法、弯曲导管定向、倾斜钻机定向。
目前,我国海洋定向井一般采用第一种方式,常用造斜钻具组合为:钻头十井下马达十弯接头十非磁钻铤十普通钻铤(0~30米)十挠性接头十震击器十加重钻杆。
这种造斜钻具组合是利用弯接头使下部钻具产生一个弹性力矩,迫使井下动力钻具驱动钻头侧向切削,使钻出的新井眼偏离原井眼轴线,达到定向造斜或扭方位的目的。
造斜钻具的造斜能力主要与弯接头的弯角和动力钻具的长度有关。
弯接头的弯角越大,动力钻具长度越短,造斜率也越高。
弯接头的弯角应根据井眼大小、井下动力钻具的规格和要求造斜率的大小选择。
现场常用弯接头的弯角为1.5~2.25度,一般不大于2.5度。
弯接头在不同条件下的造斜率见第四节。
造斜钻具组合使用的井下动力钻具型号应根据造斜井段或扭方位井段的井深选择。
使用井段在2000米以内,一般采用涡轮钻具或普通螺杆钻具,深层走向造斜或扭方位应使用耐高温的多头螺杆钻具。
造斜钻具组合、钻井参数和钻头水眼应根据厂家推荐的钻井参数设计。
由于井下动力钻具的转速高,要求的钻压小[一般为29.4~78.4千牛(3~8吨)],因此,使用的钻头不宜采用密封轴承钻头,尤其是在浅层,可钻性好的软地层应使用铣齿滚动轴承钻头或合适的PDC钻头。
根据测斜仪器的种类不同,分为四种定向方式:1.单点定向此方法只适用造斜点较浅的情况,通常井深小于1000米。
因为造斜点较深时,反扭角很难控制,且定向时间较长。
施工过程如下:(l)下入定向造斜钻具至造斜点位置(注意:井下马达必须按厂家要求进行地面试验)。
(2)单点测斜,测量造斜位置的井斜角,方位角,弯接头工具面;(3)在测斜照相的同时,对方钻杆和钻杆进行打印,并把井口钻杆的印痕投到转盘面的外缘上,作为基准点;(4)调整工具面(调整后的工具面是:设计方位角十反扭角)。
锁住转盘、开泵钻进;(5)定向钻进。
每钻进2~4个单根进行一次单点测斜,根据测量的井斜角和方位角及时修正反扭矩的误差,并调整工具面;(6)当井斜角达到8~10度和方位合适时,起钻换增斜钻具,用转盘钻进。
在单点定向作业中要注意:①在确定了反扭角和钻压后,要严格控制钻压的变化范围,通常在预定钻压±19.6千牛(2吨)内变化;②每次接单根时,钻杆可能会转动一点,注意转动钻杆的打印位置至预定位置;③如果调整工具面的角度较大(>90度),调整后应活动钻具2~3次(停泵状态),以便钻杆扭矩迅速传递。
2.地面记录陀螺(SRO)定向在有磁干扰环境的条件下(如套管开窗侧钻井)的定向造斜,需采用SRO定向。
这种仪器可将井下数据通过电缆传至地面处理系统,并显示或用计算机打印出来,直至工具面调整到预定位置,再起出仪器,施工过程如下:(l)选择参照物,参照物应选择易于观察的固定目标,距井40米左右;(2)预热陀螺不少于15分钟,工作正常才可下井;(3)瞄准参照物,并调整陀螺初始读数;(4)接探管,连接陀螺外筒,再瞄准参照物,对探管和计算机初始化;(5)下井测量,按规定作漂移检查;(6)起出仪器坐在井口,再次瞄准参照物记录陀螺读数;(7)校正陀螺漂移,确定测量的精度;(8)定向钻进。
3.有线随钻测斜仪(SST)定向造斜钻具下到井底后,开泵循环半小时左右,然后接旁通头或循环接头。
把测斜仪的井下仪器总成下入钻杆内,使定向鞋的缺口坐在定向键上。
定向造斜时,可从地面仪表直接读出实钻井眼的井斜、方位和工具面,司钻和定向井工程师要始终跟踪预定的工具面方向,保持井眼轨迹按预定方向钻进。
4.随钻测量仪(MWD)定向MWD井下仪器总成安装在下部钻具组合的非磁钻铤内,其下井前要调整好工作模式和传输速度,并准确地测量偏移值,输入计算机。
仪器在井下所测的井眼参数通过钻井液脉冲传至地面,信息经地面处理后,可迅速传到钻台。
MWD不仅可用于定向造斜,也可用于旋转钻进中的连续测量,是一种先进的测量仪器。
5.定向造斜中的注意事项:(1)如果定向作业前的裸眼段较长,应短起下钻一趟,保证井眼畅通。
(2)井下马达下井前应在井口试运转,测量轴承间隙;记录各种参数,工作正常方可下井;(3)MWD等仪器下井前,必须输入磁场强度、磁倾角等参数;(4)定向造斜钻进,要按规定加压,均匀送钻,以保持恒定的工具面。
(5)造斜钻进或起下钻,用旋扣钳或动力水龙头上卸扣,不得用转盘上卸扣;(6)起钻前方位角必须在20~30米井段内保持稳定,且保证预定的提前角。
目前,“一次造斜到位法”也经常在我国海洋定向井中使用,这种方法适用于造斜点较浅,且机械钻速很快的造斜井段,常常配合使用随钻测量仪。
(7)井下马达出井时,按规定程序进行清洗、保养。
二.转盘钻增斜井段常用增斜钻具组合为:钻头十近钻头稳定器十非磁钻铤十钻铤(非磁钻铤和钻铤的总长度为18~30米之间)十稳定器十钻铤(10米)十稳定器十钻铤十随钻震击器十加重钻杆十钻杆(见图9-10,从下至上,增斜效果越来越强。
图中UG是指尺寸不足的扶正器)。
施工注意事项:1.按设计钻井参数钻进,均匀送钻,使井眼曲率变化平缓。
2.每钻进25~50米测量一次,随时作图,掌握井斜、方位的变化趋势。
如果增斜率不能满足设计要求,应及时采取措施:(1)调整钻压改变增斜率。
增加钻压可使增斜率增大,减小钻压,则使增斜率降低。
(2)更换钻具组合,改变近钻头稳定器与相邻稳定器之间的距离。
改变的范围为10~30米,距离越短,增斜率越低,距离越长,增斜率越高;(3)改变近钻头稳定器与相邻稳定器之间的钻铤刚性,刚性越高,增斜率越低;刚性越低,增斜度越高。
(4)钻头底部距近钻头稳定器翼片中部的距离为0.7~1.2米。
3.如果增斜率比设计值稍低(5°/100米以内),可采用强行增斜法。
(l)接单根后,开泵至设计排量,慢慢加压至设计钻压的75%左右;(2)转动转盘至设计转速,同时逐步增加钻压至允许的最大钻压;(3)钻完一个单根时,马上停转盘,钻压不回零,上提钻具。
(4)划眼时,井底的最后2米左右不划眼。
采用强行增斜法要注意:一是当前钻进的转盘扭矩不应过大;二是启动转盘时,要保持钻压达到预定的数值;三是整个井下钻具各组件质量应合格;四是采用这种特殊方法只能达到微增效果(增斜率可提高4°/100米左右——经验数据)。
三.稳斜井段常用的稳斜钻具组合(见图9-11,从下至上,稳斜效果越来越强。
图中UG是指尺寸不足的扶正器)。
钻头十近钻头稳定器十短钻铤(3~6米)十稳定器十非磁钻铤十稳定器十钻铤十键槽破坏器十挠性接头十震击器十加重钻杆。
施工措施:l.造斜或增斜结束后,下入第一趟稳斜钻具时,从造斜点开始要慢慢下钻。
尤其是在软地层、高造斜率的情况下,容易遇阻,并可能产生新井眼,必须注意:(1)下钻遇阻时,活动钻具3~5次,切勿“压死”钻具;(2)开泵,慢慢下放2~3次。
(3)在遇阻点以上1.5米左右,中高速转动转盘(80~90转/分),快速下放,钻压不超过98千牛(10吨);(4)通过遇阻点以后,上、下活动钻具l~2次,继续下钻。
注意:在硬地层时,稳斜钻具在造斜段遇阻,仍可采用前述(l)、(2)步骤,只是活动钻具的次数适当减少,仍然遇阻时,同样要转动转盘,只是转速适当地低一些,且控制钻压,慢慢下放,切勿“压死”钻具。
2.在方位右漂严重的地层中钻进,可采用“超长翼”的稳定器(钻具组合相同),以稳定方位角。
也可采用PDC钻头(如R426型),以利用PDC钻头具有方位左漂趋势的特性。
3.总结同一地层的自然增斜或降斜特性,合理地选择稳斜钻具组合。
4.测斜,最大测斜间距不超过100米,特殊井的关键井段测斜间距应为30米左右,并及时绘制垂直剖面图和水平投影图,随时掌握实钻井眼轨迹情况。
四.降斜井段常用降斜钻具组合(见图9一12,从下至上,降斜效果越来越强)。
钻头十短钻铤(3~8米)十稳定器十非磁钻铤十稳定器十钻铤十键槽破坏器十挠性接头十震击器十加重钻杆十钻杆。
注意。
1.定向井的降斜钻具组合不宜采用大钟摆式,否则降斜率过高,起下钻困难。
2.降斜段一般接近完井井段,井下扭矩和摩擦阻力较大,在满足中靶的前提下,应尽量简化钻具组合,使用加重钻杆加压。
五.扭方位一般地说,井斜的控制要比方位控制容易一些,如何实现方位的自由控制,也是定向井钻井的一大难题。
影响方位的因素很多,除地层这一不可改变的因素之外,钻井参数和钻具组合也对方位产生一定的影响。
其影响规律如下:在钻具组合方面,一般认为,对方位漂移产生主要的影响是前30~60米的钻具组件。
稳定器能起到稳定方位漂移的作用,稳定器越多,方位漂移总趋势的变化不会太大。
也就是说,对稳斜钻具组合,由于稳定器较多,方位的漂移趋势变化不大,而对于增斜和降斜钻具组合,方位的漂移趋势可能变化。
在钻井参数方面,钻压和转速也对方位产生影响。
一般地认为,适当的高转速(为90~110转/分)和中等钻压98~147千牛(10~15吨),抑制方位向右漂移的效果较好。
由于影响方位漂移的因素很多,地层的变化也很难掌握,因此方位控制的确较困难。
但是,要尽量少扭方位,一口井最多扭两次方位,还是可以接受的。
当实钻井眼轨迹严重偏离靶区范围,且根据当前的方位漂移趋势无望进入靶区时,应下入造斜钻具组合扭方位。
1.施工要点:(1)扭方位钻具组合及其采用的钻井参数和定向造斜施工基本上相同(建议尽量少下钻铤,防止压差卡钻);(2)选择可钻性和稳定性较好的地层(尤其是大段砂层),实施扭方位作业;(3)深井扭方位,由于反扭角较大,一般采用随钻测斜仪扭方位;(4)井斜角较大井段(40°以上)扭方位,容易降斜。
扭方位前一趟钻,可以事先增加2~3°井斜,以弥补扭方位时的降斜效果。
当然,采用先扭完方位,井斜自然降低以后,再适当地增斜,也能保证较好的井眼轨迹;(5)依据实钻的垂直剖面图,确定采用何种扭方位的工具面角度(增、降或稳斜)。
2.方位扭转角的计算方位扭转角的计算,可按如下步骤进行:(l)进行测斜计算,算出目前的井底坐标位置。
如图9-13所示,OT为设计的井斜方位线,ode为实钻井眼轴线的水平投影,e为目前的井底。