尚硅谷_宋红康_Java中数组结构及经典排序算法解析
- 格式:ppt
- 大小:2.11 MB
- 文档页数:38
java数组排序方法Java数组排序方法在Java编程中,数组是一种非常常见的数据结构,而排序是对数组中元素进行重新排列以达到某种有序状态的常用操作。
Java提供了多种排序算法和方法,本文将介绍一些常用的Java数组排序方法。
1. 冒泡排序法冒泡排序是一种简单直观的排序算法,其基本思想是通过相邻元素的比较和交换来实现排序。
具体实现过程如下:- 从数组的第一个元素开始,比较相邻的两个元素,如果顺序不正确,则交换它们的位置。
- 继续比较下一个相邻元素,直到最后一个元素。
此时,最大的元素已经排在了最后的位置。
- 重复以上步骤,直到所有元素都排好序。
2. 快速排序法快速排序是一种高效的排序算法,其基本思想是通过递归地将数组分成较小和较大的两个子数组,再分别对两个子数组进行排序,最终将整个数组排序。
具体实现过程如下:- 选择一个基准元素,将数组分成两部分,其中一部分的元素都小于基准元素,另一部分的元素都大于基准元素。
- 对两个子数组递归地进行快速排序。
- 将两个排好序的子数组合并起来,即可得到最终的排序结果。
3. 插入排序法插入排序是一种简单直观的排序算法,其基本思想是将数组分成已排序和未排序两部分,每次从未排序部分取出一个元素,并将其插入到已排序部分的正确位置。
具体实现过程如下:- 从数组的第二个元素开始,将其与前面的已排序部分逐个比较,找到合适的位置插入。
- 继续取出下一个未排序元素,重复以上步骤,直到所有元素都插入到已排序部分。
4. 选择排序法选择排序是一种简单直观的排序算法,其基本思想是从数组中选择最小的元素,将其与数组的第一个元素交换位置,然后从剩余的未排序部分选择最小的元素,将其与数组的第二个元素交换位置,依此类推。
具体实现过程如下:- 从数组的第一个元素开始,依次遍历数组中的每个元素。
- 在剩余的未排序部分中选择最小的元素,将其与当前元素交换位置。
- 重复以上步骤,直到所有元素都排好序。
5. 归并排序法归并排序是一种稳定的排序算法,其基本思想是将数组递归地分成较小的子数组,再将子数组归并成一个有序的大数组。
java中数组排序方法Java中数组排序方法在Java中,数组是一种非常常见的数据结构,用于存储一组相同类型的元素。
在实际的开发中,我们经常需要对数组进行排序,以便更方便地进行查找、比较和统计等操作。
Java提供了多种数组排序方法,本文将详细介绍其中的几种常用方法。
1. 冒泡排序冒泡排序是一种简单直观的排序方法,它重复地比较相邻的元素,如果顺序不对则交换它们,直到整个数组有序为止。
冒泡排序的时间复杂度为O(n^2)。
2. 选择排序选择排序是一种简单但低效的排序方法,它将数组分为已排序和未排序两部分,每次从未排序部分选择最小的元素放到已排序部分的末尾。
选择排序的时间复杂度也为O(n^2)。
3. 插入排序插入排序是一种稳定的排序方法,它将数组分为已排序和未排序两部分,每次从未排序部分选择一个元素插入到已排序部分的适当位置。
插入排序的时间复杂度为O(n^2)。
4. 快速排序快速排序是一种高效的排序方法,它通过选择一个基准元素将数组划分为两个子数组,然后递归地对子数组进行排序。
快速排序的平均时间复杂度为O(nlogn)。
5. 归并排序归并排序是一种稳定的排序方法,它将数组递归地划分为两个子数组,然后将两个有序子数组合并为一个有序数组。
归并排序的时间复杂度为O(nlogn)。
6. 堆排序堆排序是一种高效的排序方法,它利用二叉堆的性质进行排序。
堆排序的时间复杂度为O(nlogn)。
除了以上几种常用的排序方法,Java还提供了Arrays类中的sort 方法用于对数组进行排序。
这个方法使用了优化的快速排序算法,并且适用于所有的原始数据类型和对象类型。
Arrays.sort方法的时间复杂度为O(nlogn)。
对于自定义类型的数组,我们可以实现Comparable接口并重写compareTo方法来定义自己的排序规则。
然后使用Arrays.sort方法进行排序。
除了使用Java提供的排序方法,我们还可以使用其他的排序算法,如希尔排序、计数排序、桶排序等。
java常用算法和数据结构Java是一种面向对象的编程语言,它具有丰富的算法库和数据结构库,为开发人员提供了许多常用的算法和数据结构。
下面将介绍一些Java常用的算法和数据结构。
1.排序算法-冒泡排序(Bubble Sort):比较相邻的两个元素,如果顺序错误则交换位置,重复该过程直到整个序列有序。
-插入排序(Insertion Sort):将数组分为已排序和未排序两部分,每次从未排序部分取出一个元素,插入到已排序部分合适的位置。
-选择排序(Selection Sort):每次从未排序部分选择最小(或最大)的元素,放到已排序部分的末尾。
-快速排序(Quick Sort):选择一个基准元素,将数组分为两部分,小于基准的放左边,大于基准的放右边,递归地对左右两部分进行快速排序。
-归并排序(Merge Sort):将数组分为两部分,分别对每个子数组进行排序,然后合并两个有序子数组。
2.搜索算法-二分查找(Binary Search):对有序数组进行查找,每次将查找范围缩小一半。
-广度优先搜索(BFS):以树或图的形式搜索,从根节点开始,逐层扩展搜索范围,直到找到目标节点。
-深度优先搜索(DFS):以树或图的形式搜索,从根节点开始,逐个访问节点的所有邻居节点,直到找到目标节点或搜索完所有节点。
3.数据结构-数组(Array):一组按顺序存储的相同类型元素的集合,通过索引访问元素,可以快速访问元素,但插入和删除元素较慢。
-链表(Linked List):一组通过指针连接的节点存储的元素的集合,支持灵活的插入和删除操作,但访问元素较慢。
-栈(Stack):一种特殊的线性数据结构,遵循先进后出(LIFO)原则,只能在栈顶进行插入和删除操作。
-队列(Queue):一种特殊的线性数据结构,遵循先进先出(FIFO)原则,在队尾插入元素,队头删除元素。
-堆(Heap):一种特殊的树形数据结构,可以快速找到最小(或最大)元素,常用于实现优先队列。
—————————————————————————————题目:Java 之23种设计模式解析一、设计模式概述总体来说设计模式分为三大类:创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。
结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。
行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。
具体如下:其中创建型有:一、Singleton,单例模式:保证一个类只有一个实例,并提供一个访问它的全局访问点二、Abstract Factory,抽象工厂:提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们的具体类。
三、Factory Method,工厂方法:定义一个用于创建对象的接口,让子类决定实例化哪一个类,Factory Method使一个类的实例化延迟到了子类。
四、Builder,建造模式:将一个复杂对象的构建与他的表示相分离,使得同样的构建过程可以创建不同的表示。
五、Prototype,原型模式:用原型实例指定创建对象的种类,并且通过拷贝这些原型来创建新的对象。
行为型有:六、Iterator,迭代器模式:提供一个方法顺序访问一个聚合对象的各个元素,而又不需要暴露该对象的内部表示。
七、Observer,观察者模式:定义对象间一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知自动更新。
八、Template Method,模板方法:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中,TemplateMethod使得子类可以不改变一个算法的结构即可以重定义该算法得某些特定步骤。
九、Command,命令模式:将一个请求封装为一个对象,从而使你可以用不同的请求对客户进行参数化,对请求排队和记录请求日志,以及支持可撤销的操作。
java-数组排序算法1.数组排序算法-冒泡排序算法作⽤:可以对整数数组中的元素进⾏排序,与Arrays.sort⽅法的作⽤⼀样,唯⼀的区别是sort⽅法可以对任意的类型数组进⾏排序。
例⼦:public class P_1 {public static void main(String args[]) {int[] a = new int[] {5,2,6,7,3,9};P_1 p = new P_1();p.mysort(a);p.showarray(a);}public void mysort(int[] a) {for(int i=1;i<a.length;i++) { //⽐较的次数(25次)for(int j=0;j<a.length-1;j++) { //两个数进⾏⽐较,⼤的数往后移。
if(a[j]>a[j+1]) {int temp = a[j];a[j] = a[j+1];a[j+1] = temp;}}}}public void showarray(int[] a) {for(int i=0;i<a.length;i++) {System.out.println(a[i]);}}}2.直接选择排序作⽤:直接选择排序的作⽤跟冒泡排序⼀样,是对数组元素进⾏排序,优势在于直接选择排序算法⽐较的次数⽐冒泡排序算法少。
例⼦:public class P_1 {public static void main(String args[]) {int[] a = new int[] {5,2,6,7,3,9};P_1 p = new P_1();p.mysort(a);p.showarray(a);}public void mysort(int[] a) {int sum = 0;int index;for(int i=1;i<a.length;i++) { //⽐较的次数index = 0;for(int j=1;j<=a.length - i;j++) { //从数组第⼀个元素开始⽐较,最⼤的数移到最后,赋值给a[index]。