2010年高考理科数学试卷(浙江卷)
- 格式:doc
- 大小:1.15 MB
- 文档页数:19
绝密★考试结束前2010年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页,非选择题部分3至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )=P (A )+P (B ) Sh V =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高P (A ·B )=P (A )·P (B ) 锥体的体积公式如果事件A 在一次试验中发生的概率是P ,那么n Sh V 31=次独立重复试验中恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高k n k kn n P P C k P --=)1()(),,2,1,0(n k = 球的表面积公式台体的体积公式 24R S π= )(312211S S S S h V ++= 球的体积公式其中S 1,S 2分别表示台体的上、下底面积 334R V π=h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设P={x ︱x <4},Q={x ︱2x <4},则( )(A )p Q ⊆ (B )Q P ⊆(C )Rp Q C ⊆(D )RQ P C ⊆解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位( ) (A ) k >4? (B )k >5? (C ) k >6? (D )k >7?解析:选A ,本题主要考察了程序框图的结构,以及与数列有关的简 单运算,属容易题(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =( ) (A )11 (B )5 (C )8- (D )11-解析:解析:通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 解析:因为0<x <2π,所以sinx <1,故x sin 2x <x sinx ,结合x sin 2x 与x sinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) (A )2z z y -= (B )222z x y =+ (C )2z z x -≥ (D )z x y ≤+解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 2222+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。
【关键字】学校2010年普通高等学校招生全国统一考试(浙江卷)数学理解析一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四项中,只有一项是符合题目要求的。
(1)设P={x︱x<4},Q={x︱<4},则(A)(B)(C)(D)解析:,可知B正确,本题主要考察了集合的基本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位(A)k>4? (B)k>5?(C)k>6? (D)k>7?解析:选A,本题主要考察了程序框图的结构,以及与数列有关的简单运算,属容易题(3)设为等比数列的前项和,,则(A)11 (B)5 (C)(D)解析:解析:通过,设公比为,将该式转化为,解得=-2,带入所求式可知答案选D,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式,属中档题(4)设,则“”是“”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件解析:因为0<x<,所以sinx<1,故xsin2x<xsinx,结合xsin2x与xsinx的取值范围相同,可知答案选B,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数,为虚数单位,则下列结论正确的是(A)(B)(C)(D)解析:可对选项逐个检查,A项,,故A错,B项,,故B错,C项,,故C错,D项正确。
本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题(6)设,是两条不同的直线,是一个平面,则下列命题正确的是(A)若,,则(B)若,,则(C)若,,则(D)若,,则解析:选B,可对选项进行逐个检查。
本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题(7)若实数,满足不等式组且的最大值为9,则实数(A)(B)(C)1 (D)2解析:将最大值转化为y轴上的截距,将m等价为斜率的倒数,数形结合可知答案选C,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题(8)设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为(A)(B)(C)(D)解析:利用题设条件和双曲线性质在三角形中寻找等量关系,得出a与b之间的等量关系,可知答案选C,本题主要考察三角与双曲线的相关知识点,突出了对计算能力和综合运用知识能力的考察,属中档题(9)设函数,则在下列区间中函数不存在零点的是(A)(B)(C)(D)解析:将的零点转化为函数的交点,数形结合可知答案选A,本题主要考察了三角函数图像的平移和函数与方程的相关知识点,突出了对转化思想和数形结合思想的考察,对能力要求较高,属较难题(10)设函数的集合,平面上点的集合,则在同一直角坐标系中,中函数的图象恰好经过中两个点的函数的个数是(A)4 (B)6 (C)8 (D)10解析:当a=0,b=0;a=0,b=1;a=,b=0; a=,b=1;a=1,b=-1;a=1,b=1时满足题意,故答案选B,本题主要考察了函数的概念、定义域、值域、图像和对数函数的相关知识点,对数学素养有较高要求,体现了对能力的考察,属中档题二、填空题:本大题共7小题,每小题4分,共28分。
[考试]2010浙江高考数学试题及答案理科绝密?考试结束前2010年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页,非选择题部分3至5页。
满分150分,考试时间120分钟。
请考生按规定用笔讲所有试题的答案涂、写在答题纸上。
选择题部分(共50分)主要事项:考生在答题前请认真阅读本注意事项及各题答题要求 1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:A、B如果事件互斥,那么柱体的体积公式VSh, PABPAPB()()(),,,A、BSh如果事件相互独立,那么其中表示柱体的底面积,表示柱体的高锥体的体积公式 PABPAPB()()() ,1VSh,p如果事件A在一次试验中发生的概率是,那么 3kShAn次独立重复试验中事件恰好发生次的概率其中表示锥体的底面积,表示锥体的高kknk,PkCppkn()(1)(0,1,2,),,,… 球的表面积公式nn2SR,4,台体的体积公式1 球的体积公式VhSSSS,,,,,1122343其中分别表示台体的上、下底面积, VR,,SS,123h表示台体的高其中R表示球的半径一. 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四项中,只有一项是符合题目要求的。
2(1)设P=,x,x<4,,Q=,x,<4,,则 x(A) (B) pQ,QP,(C)pQ, (D)QP,CCRR(2)某程序框图如图所示,若输出的S=57,则判断框内位(A) K,4? (B)K,5?(C) K,6? (D)K,7?S5a(3)设80aa,,S为等比数列的前项和,,则, n,,n25nS2,8,11(A)11 (B)5 (C) (D),2xxsin1,0,,xxxsin1,(4)设,则“”是“”的 2(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件izxyxy,,,i,R(5)对任意复数,为虚数单位,则下列结论正确的是,,222zzy,,2(A) (B) zxy,,(C) (D) zzx,,2zxy,,l(6)设,是两条不同的直线,是一个平面,则下列命题正确的是m,lm,l,,l,,m,,(A)若,,则 (B)若,,则lm//m,,(C)若l//,lm//l//,m//,lm//,,则 (D)若,,则m,,xy,,,330,,,230,xy,,,(7)若实数,满足不等式组且xy,的最大值为9,则实数yxm,, ,xmy,,,10,,(A),2,1 (B) (C)1 (D)222xy、分别为双曲线,,1(0,0)ab,,的左、右焦点.若在双曲线右支上存(8)设FF1222abPPFFF,在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的PFF21221渐近线方程为(A)(B)(C)(D)340xy,,350xy,,430xy,,540xy,,(9)设函数,则在下列区间中函数不存在零点的是fxxx()4sin(21),,,fx(),,4,2,2,00,22,4(A) (B) (C) (D) ,,,,,,,,(10)设函数的集合,,11, Pfxxabab,,,,,,,,()log(),0,,1;1,0,1,,222,,平面上点的集合,,11, Qxyxy,,,,,(,),0,,1;1,0,1,,22,,Pfx()Q则在同一直角坐标系中,中函数的图象恰好经过中两个点的函数的个数是(A)4 (B)6 (C)8 (D)10 绝密?考试结束前2010年普通高等学校招生全国统一考试数学(理科)非选择题部分(共100分) 注意事项:1( 用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2010年普通高等学校招生全国统一考试(浙江卷)数学理解析一. 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四项中,只有一项是符合题目要求的。
(1)设P={x ︱x <4},Q={x ︱2x <4},则 (A )p Q ⊆ (B )Q P ⊆(C )Rp Q C ⊆(D )RQ P C ⊆解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位 (A ) k >4? (B )k >5? (C ) k >6? (D )k >7?解析:选A ,本题主要考察了程序框图的结构,以及与数列有关的简 单运算,属容易题(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = (A )11 (B )5 (C )8- (D )11-解析:解析:通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题 (4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 解析:因为0<x <2π,所以sinx <1,故x sin 2x <x sinx ,结合x sin 2x 与x sinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是(A )2z z y -= (B )222z x y =+ (C )2z z x -≥ (D )z x y ≤+解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 2222+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。
第一章集合论第一节集合[学习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、De Morgan律等),文氏(Venn)图[学习要求]1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。
2、掌握集合的表示法和集合的交、并、差、补等基本运算。
3、掌握集合运算基本规律,两个集合相等或包含的推演方法。
[重点内容]集合的概念、集合的运算、集合恒等式的证明。
[重点习题]《综合练习题》第1、2、3、4、5、6、17、61、62、63、79、91题、P7 定理2 教材p17 第1、3、4、5、6(1)(2)题[疑难解析]1、集合的概念因为集合的概念在中学已经学过,这里只多了一个幂集概念,重点对幂集加以掌握,一是掌握幂集的构成,一是掌握幂集元数为2n。
在集合概念部分要特别注意:元素与子集,子集与幂集,∈与⊂(⊆),空集∅与所有集合等的关系。
2、集合的运算集合的运算有交、并、差、补,应该很好地掌握。
由这些运算派生出的11条运算律(即运算的性质),即交换律、结合律、分配律、同一律、排中律、矛盾律、双重否定律、幂等律、零一律、吸收律、摩根律等,更应该很好地掌握。
集合的运算部分有三个方面的问题:其一是进行集合的运算;其二是集合运算式的化简;其三是集合恒等式的推理证明。
3、集合恒等式的证明集合恒等式的证明方法通常有二:其一,要证明A=B,就需要证明A⊆B且A⊇B。
其二,通过运算律进行等式推导。
实际上,本章做题是一种基本功训练,尤其要求学生重视吸收律和重要等价式B=-在证明中的特殊作用。
⋂A~AB第二节关系[学习知识点]1、序偶与迪卡尔积。
2、关系、关系矩阵。
3、复合关系与逆关系。
4、关系的性质(自反性、对称性、反对称性、传递性)。
5、等价关系与等价类。
[学习要求]1、了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。
绝密★考试结束前2010年普通高等学校招生全国统一考试数 学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页,非选择题部分3至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )=P (A )+P (B ) Sh V =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高P (A ·B )=P (A )·P (B ) 锥体的体积公式如果事件A 在一次试验中发生的概率是P ,那么n Sh V 31=次独立重复试验中恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高kn kkn n P P C k P )1()(=),,2,1,0(n k = 球的表面积公式台体的体积公式 .ξE )(312211S S S S h V ++=球的体积公式其中S 1,S 2分别表示台体的上、下底面积 3π34R V =h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设}4|{},4|{2<=<=x x Q x x P(A )Q P ⊆(B )P Q ⊆(C )Q C P R ⊆(D )P C Q R ⊆(2)某程序框图如图所示,若输出的S=57,则判断框内为 (A )?4>k (B )?5>k (C )?6>k (D )?7>k (3)设n S 为等比数列}{n a 的前n 项和,0852=+a a ,则=25S S(A )11 (B )5 (C )-8(D )-11(4)设2π0<<x ,则“1sin2<x x ”是“1sin <x x ”的(A )充分而不必不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)对任意复数i R y x yi x z ),∈,(+=为虚数单位,则下列结论正确的是(A )y z z2||= (B )222y x z += (C )x z z2≥|| (D )||||≤||y x z + (6)设m l ,是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若α⊥,α⊂,⊥l m m l 则 (B )若α⊥,//,α⊥m m l l 则(C )若m l m l //,α⊂,α//则(D )若m l m l //,α//,α//则(7)若实数y x ,满足不等式组++,0≥1,0≤32,0≥33my xyxyx 且y x +的最大值为9,则实数=m(A )-2 (B )-1(C )1(D )2(8)设F 1,F 2分别为双曲线)0,0(12222>>=b a by ax 的左、右焦点。
2010年普通高等学校招生全国统一考试(浙江卷)数学理解析一. 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四项中,只有一项是符合题目要求的。
(1)设P={x ︱x <4},Q={x ︱2x <4},则 (A )p Q ⊆ (B )Q P ⊆ (C )Rp Q C⊆(D )RQ P C⊆解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基 本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位 (A ) k >4? (B )k >5? (C ) k >6? (D )k >7?解析:选A ,本题主要考察了程序框图的结构,以及与数列有关的简 单运算,属容易题(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =(A )11 (B )5 (C )8- (D )11-解析:解析:通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 解析:因为0<x <2π,所以sinx <1,故x sin 2x <x sinx ,结合x sin 2x 与x sinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是(A )2z z y -= (B )222z x y =+ (C )2z z x -≥ (D )z x y ≤+解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 2222+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。
仅提供了答案与解析,具体过程,还是要按照思路自己动手做的!数学(理科)一、选择题1-10 BCDBC ACDCC1、【解析】对于,因此.2、【解析】对于“ 且”可以推出“ 且”,反之也是成立的3、【解析】对于4、【解析】对于,对于,则的项的系数是5、【解析】取BC的中点E,则面,,因此与平面所成角即为,设,则,,即有.6、【解析】对于,而对于,则,后面是,不符合条件时输出的.7、【解析】对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.8、【解析】对于振幅大于1时,三角函数的周期为,而D不符合要求,它的振幅大于1,但周期反而大于了.9、【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,,则有,因.10、【解析】对于,即有,令,有,不妨设,,即有,因此有,因此有.二、填空题11、答案:15【解析】对于12、答案:18【解析】该几何体是由二个长方体组成,下面体积为,上面的长方体体积为,因此其几何体的体积为1813、答案:4【解析】通过画出其线性规划,可知直线过点时,14、答案:【解析】对于应付的电费应分二部分构成,高峰部分为;对于低峰部分为,二部分之和为15、答案:【解析】这是一种需类比推理方法破解的问题,结论由二项构成,第二项前有,二项指数分别为,因此对于,16、答案:336【解析】对于7个台阶上每一个只站一人,则有种;若有一个台阶有2人,另一个是1人,则共有种,因此共有不同的站法种数是336种.w.w.w.k.s.5.u.c.o.m 17、答案:【解析】此题的破解可采用二个极端位置法,即对于F位于DC的中点时,,随着F点到C点时,因平面,即有,对于,又,因此有,则有,因此的取值范围是三、解答题18、解析:(I)因为,,又由,得,w.w.w.k.s.5.u.c.o.m(II)对于,又,或,由余弦定理得,w.w.w.k.s.5.u.c.o.m19、解析:(I)记“这3个数恰有一个是偶数”为事件A,则;w.w.w.k.s.5.u.c.o.m (II)随机变量的取值为的分布列为0 1 2P所以的数学期望为w.w.w.k.s.5.u.c.o.m20、证明:(I)如图,连结OP,以O为坐标原点,分别以OB、OC、OP所在直线为轴,轴,轴,建立空间直角坐标系O ,w.w.w.k.s.5.u.c.o.m则,由题意得,因,因此平面BOE的法向量为,得,又直线不在平面内,因此有平面(II)设点M的坐标为,则,因为平面BOE,所以有,因此有,即点M的坐标为,在平面直角坐标系中,的内部区域满足不等式组,经检验,点M 的坐标满足上述不等式组,所以在内存在一点,使平面,由点M的坐标得点到,的距离为.w.w.w.k.s.5.u.c.o.m21、解析:(I)由题意得所求的椭圆方程为,w.w.w.k.s.5.u.c.o.m(II)不妨设则抛物线在点P处的切线斜率为,直线MN的方程为,将上式代入椭圆的方程中,得,即,因为直线MN与椭圆有两个不同的交点,所以有,设线段MN的中点的横坐标是,则,w.w.w.k.s.5.u.c.o.m设线段PA的中点的横坐标是,则,由题意得,即有,其中的或;当时有,因此不等式不成立;因此,当时代入方程得,将代入不等式成立,因此的最小值为1.22、解析:(I)因,,因在区间上不单调,所以在上有实数解,且无重根,由得w.w.w.k.s.5.u.c.o.m,令有,记则在上单调递减,在上单调递增,所以有,于是,得,而当时有在上有两个相等的实根,故舍去,所以;w.w.w.k.s.5.u.c.o.m(II)当时有;当时有,因为当时不合题意,因此,下面讨论的情形,记A ,B= (ⅰ)当时,在上单调递增,所以要使成立,只能且,因此有,(ⅱ)当时,在上单调递减,所以要使成立,只能且,因此,综合(ⅰ)(ⅱ);当时A=B,则,即使得成立,因为在上单调递增,所以的值是唯一的;同理,,即存在唯一的非零实数,要使成立,所以满足题意.。
2010年高考理科数学试卷(浙江卷)2010年高考理科数学试卷(浙江卷)数学理解析一. 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四项中,只有一项是符合题目要求的。
(1)设P={x ︱x <4},Q={x ︱2x <4},则(A )p Q ⊆ (B )Q P ⊆(C )Rp Q C ⊆ (D )RQ P C ⊆ 解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位(A ) k >4? (B )k >5?(C ) k >6? (D )k >7?解析:选A ,本题主要考察了程序框图的结构,以及与数列有关的简单运算,属容易题(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =(A )11 (B )5 (C )8- (D )11- 解析:解析:通过2580aa +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件解析:因为0<x <2π,所以sinx <1,故x sin 2x <x sinx ,结合x sin 2x 与x sinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是(A )2z z y -= (B )222z x y =+(C )2z z x -≥ (D )z x y ≤+ 解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 2222+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。
本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是(A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥(C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m // 解析:选B ,可对选项进行逐个检查。
本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题(7)若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =(A )2- (B )1- (C )1(D )2解析:将最大值转化为y 轴上的截距,将m 等价为斜率的倒数,数形结合可知答案选C ,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题(8)设1F 、2F 分别为双曲线22221(0,0)x y a b a b -=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为(A )340x y ±= (B )350x y ±= (C )430x y ±= (D )540x y ±=解析:利用题设条件和双曲线性质在三角形中寻找等量关系,得出a 与b 之间的等量关系,可知答案选C ,本题主要考察三角与双曲线的相关知识点,突出了对计算能力和综合运用知识能力的考察,属中档题(9)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 (A )[]4,2--(B )[]2,0- (C )[]0,2 (D )[]2,4 解析:将()x f 的零点转化为函数()()()x x h x x g =+=与12sin 4的交点,数形结合可知答案选A ,本题主要考察了三角函数图像的平移和函数与方程的相关知识点,突出了对转化思想和数形结合思想的考察,对能力要求较高,属较难题(10)设函数的集合211()log (),0,,1;1,0,122P f x x a b a b ⎧⎫==++=-=-⎨⎬⎩⎭,平面上点的集合11(,),0,,1;1,0,122Q x y x y ⎧⎫==-=-⎨⎬⎩⎭,则在同一直角坐标系中,P 中函数()f x 的图象恰好..经过Q 中两个点的函数的个数是(A )4 (B )6 (C )8 (D )10解析:当a=0,b=0;a=0,b=1;a=21,b=0;a=21,b=1;a=1,b=-1;a=1,b=1时满足题意,故答案选B ,本题主要考察了函数的概念、定义域、值域、图像和对数函数的相关知识点,对数学素养有较高要求,体现了对能力的考察,属中档题二、填空题:本大题共7小题,每小题4分,共28分。
(11)函数2()sin(2)224f x x x π=--的最小正周期是__________________ .解析:()242sin 22-⎪⎭⎫ ⎝⎛+=πx x f 故最小正周期为π,本题主要考察了三角恒等变换及相关公式,属中档题(12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是___________3cm . 解析:图为一四棱台和长方体的组合体的三视图,由卷中所给公式计算得体积为144,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题(13)设抛物线22(0)ypx p =>的焦点为F ,点 (0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
解析:利用抛物线的定义结合题设条件可得出p 的值为2,B 点坐标为(142,)所以点B 324本题主要考察抛物线的定义及几何性质,属容易题(14)设112,,(2)(3)23n n n n N x x ≥∈+-+2012n n a a x a x a x =+++⋅⋅⋅+,将(0)k a k n ≤≤的最小值记为n T ,则2345335511110,,0,,,,2323nT T T T T ==-==-⋅⋅⋅⋅⋅⋅ 其中n T =__________________ .解析:本题主要考察了合情推理,利用归纳和类比进行简单的推理,属容易题(15)设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,则d 的取值范围是__________________ . 解析:(16)已知平面向量,(0,)αβααβ≠≠满足1β=,且α与βα-的夹角为120°, 则α的取值范围是__________________ . 解析:利用题设条件及其几何意义表示在三角形中,即可迎刃而解,本题主要考察了平面向量的四则运算及其几何意义,突出考察了对问题的转化能力和数形结合的能力,属中档题。
(17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共有______________种(用数字作答).解析:本题主要考察了排列与组合的相关知识点,突出对分类讨论思想和数学思维能力的考察,属较难题三、解答题:本大题共5小题.共72分。
解答应写出文字说明、证明过程或演算步骤。
(18)(本题满分l4分)在△ABC中,角A、B、C 所对的边分别为a,b,c,已知1C=-cos24(I)求sinC的值;(Ⅱ)当a=2,2sinA=sinC时,求b及c 的长.解析:本题主要考察三角变换、正弦定理、余弦定理等基础知识,同事考查运算求解能力。
(Ⅰ)解:因为cos2C=1-2sin2C=1-,及0<C<4π所以10(Ⅱ)解:当a=2,2sinA=sinC时,由正弦定理a c=,得sin A sin Cc=4由cos2C=2cos2C-1=1-,J及0<C<π得4cosC=±6由余弦定理c2=a2+b2-2abcosC,得b26解得66所以66c=4 或c=4(19)(本题满分l4分)如图,一个小球从M处投入,通过管道自上而下落A或B或C。
已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.(I )已知获得l ,2,3等奖的折扣率分别为50%,70%,90%.记随变量ξ为获得k (k =1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望ξE ;(II)若有3人次(投入l 球为l 人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求)2(=ηP .解析:本题主要考察随机事件的概率和随机变量的分布列、数学期望、二项分布等概念,同时考查抽象概括、运算求解能力和应用意识。
(Ⅰ)解:由题意得ξ的分布列为ξ 50%70%90%p31638716则Εξ=316×50%+38×70%+71690%=34. (Ⅱ)解:由(Ⅰ)可知,获得1等奖或2等奖的概率为316+38=916. 由题意得η~(3,916)则P (η=2)=23C (916)2(1-916)=17014096. (20)(本题满分15分)如图, 在矩形ABCD 中,点,E F 分别在线段,AB AD 上,243AE EB AF FD ====.沿直线EF 将AEFV 翻折成'A EF V ,使平面'A EF BEF ⊥平面.(Ⅰ)求二面角'A FD C --的余弦值;(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与'A 重合,求线段FM的长。
解析:本题主要考察空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同事考查空间想象能力和运算求解能力。
(Ⅰ)解:取线段EF 的中点H ,连结'A H ,因为'A E ='A F 及H 是EF 的中点,所以'A H EF ⊥,又因为平面'A EF ⊥平面BEF .如图建立空间直角坐标系A-xyz 则'A (2,2,22),C (10,8,0),F (4,0,0),D (10,0,0).故'FA →=(-2,2,2),FD →=(6,0,0).设n →=(x,y,z )为平面'A FD 的一个法向量,2z=0 所以 6x=0.取2z =(0,2)n=-r。