logistic回归讲义
- 格式:ppt
- 大小:781.00 KB
- 文档页数:69
Logistic 曲线的回归分析例 某一品种玉米高度与时间(生长周期,每个生长周期为2-3天,与气温有关)的数据如表1.所示。
用转化为线性方程的方法估计其logistic 曲线预测模型。
设最大值k 为300(cm )。
表1. 玉米高度与时间(生长周期)的关系时间(生长周期) 高度/cm 时间(生长周期) 高度/cm 时间(生长周期) 高度/cm12 3 4 5 6 7 8 9 10 11 0.67 0.85 1.28 1.75 2.27 2.75 3.69 4.71 6.36 7.73 9.9112 13 14 15 16 17 18 19 20 21 12.75 16.55 20.1 27.35 32.55 37.55 44.75 53.38 71.61 83.89 22 23 24 25 26 27 28 29 30 31 97.46 112.7 135.1 153.6 160.3 167.1 174.9 177.9 180.2 180.83.1 基本绘图操作在Excel 中输入时间x 与高度y 的数据。
选择插入->图表图87点击图表,选择“标准类型”中的xy 散点图,并点击子图表类型的第一个。
图88 点击下一步,得到如图89。
图 89点击下一步。
图90分别点击标题、网格线、图例进行修改,然后点击下一步。
图91点击完成。
图92右击绘图区,修改绘图区格式,双击做表格,修改坐标轴刻度,最后的散点图。
图93观察散点图,其呈S 型曲线,符合logistic 曲线。
采用转化为线性方程的方法求解模型。
3.2 Logistic 曲线方程及线性化Logistic 曲线方程为:1atk y me-=+ (12)(1) 将数据线性化及成图转化为线性方程为:01'y a a t =+ (13)其中,'ln(/1)y k y =-,0ln a m =,1a a =-具体操作为:向excel 表格中输入y ’数据。
第十二章Logistic 回归分析一、Logistic 回归概述:Logistic 回归主要用于筛选疾病的危险因素、预后因素或评价治疗措施; 通常以疾病的死亡、痊愈等结果发生的概率为因变量,以影响疾病发生和预后的 因素为自变量建立模型。
、Logistic 回归的分类及资料类型:第一节非条件Logistic 回归分析、Logistic 回归模型:Logistic 回归模型:exp ( • :i X i ——亠」p X p )p 二1 +exp ( B o + B i X i i + Pp X p ) 1二、回归系数的估计(参数估计):回归模型的参数估计:Logistic 计法。
二、假设检验: 1. Logistic 回归方程的检验:•检验模型中所有自变量整体来看是否与所研究事件的对数优势比存在线性 关系,也即方程是否成立。
检验的方法有似然比检验、比分检验(score test )和Wald 检验(wald test )。
上述三种方法中,似然比检验最可靠。
•似然比检验(likehood ratio test ):通过比较包含与不包含某一个或几 个待检验观察因素的两个模型的对数似然函数变化来进行,其统计量为 G=-2l n(L)(又称Devia nee )。
无效假设H O : B =0。
当H 0成立时,检验统计量 G 近似服从自由度为N-P-1的X 2分布。
当G 大于临界值时,接受H,拒绝无效假设, 认为从整体上看适合作Logistic 回归分析,回归方程成立。
2. Logistic 回归系数的检验:•为了确定哪些自变量能进入方程,还需要对每个自变量的回归系数进行假 设检验,判断其对模型是否有贡献。
•检验方法常用 WaldX 检验,无效假设H0 B =0。
当X 2大于临界值时,拒 绝无效假设,自变量能进入方程。
1亠elogit (P )= ln (±)=B o +B * 1 x 1 + , + B n x n回归模型的参数估计通常利用最大似然估3.Logistic 回归模型的拟合优度检验:•Logistic 回归模型的拟合优度检验是通过比较模型预测的与实际观测的事件发生与不发生的频数有无差别来进行检验。
logistic回归模型讲稿Logitic回归分析模型2022-10-241各位老师,同学们大家上午好:非常感谢大家抽出宝贵的时间来参加沙龙,感谢我的导师对沙龙内容及PPT制作过程中的悉心指导,今天和大家一起分享的是在课题中用到的一种统计学分析方法,Logitic回归分析。
2这是CNKI学术搜索给出的近年来Logitic回归分析方法的学术关注度,由此可见,Logitic回归分析方法在当前学术研究中应用比较广泛、流行,关注度比较高,是进行科研数据分析不可缺少的利器。
3下面我将分以下几个部分对回归模型做详细的介绍:1.Logitic回归的基本概念与原理;2.Logitic回归的应用范畴;3.Logitic回归的类型及实例分析;这是本次沙龙的重点部分。
4.应用Logitic回归的注意事项;5.小结与答疑。
4首先来了解一下Logitic回归模型的基本概念与原理:Logitic回归又称「Logitic回归分析」,是一种「概率型非线性回归」,主要用于危险因素分析以及预后评估等方面,是目前流行病学和医学中最常用的分析方法之一。
近年来已逐渐成为发表高质量SCI论文必不可少的重要统计学分析利器。
Logitic回归本质上是一种用于研究二分类(或多分类)结局(y,因变量)与有关影响因素(某,自变量)之间关系的多因素分析方法。
5用比较通俗的话来解释它的基本原理,也就是说:用一组观察数据拟合Logitic模型,然后揭示若干个自变量某与一个因变量y之间的关系,结果反应了y对某的依存关系。
统计学的东西比较抽象,下面通过两张图再来重复解说一下。
6(1)与某一事件或某一疾病的结局有关的,存在很多可疑的影响因素,在这些可疑因素中包括促使结局发生的有关的一些危险因素、也包括抑制结局发生的有关的一些保护因素。
那么这些因素到底哪些是危险因素,哪些是保护因素呢?它们的危险及保护的程度大概有多少呢?7通过Logitic回归分析我们就可以看到详细的结果。