单克隆抗体及基因工程抗体制备技术
- 格式:ppt
- 大小:803.50 KB
- 文档页数:15
基因工程制备抗体方案有哪些引言抗体是一种可以识别并结合特定抗原的蛋白质,具有重要的生物学功能和临床应用价值。
传统制备抗体的方法主要是从动物(如小鼠、兔子等)中提取抗体,但该方法存在一些缺点,如周期长、成本高、质量不稳定等。
因此,基因工程技术的发展使得制备抗体的方法得到了革命性的改变,可以通过基因工程技术在体外合成抗体,提高了抗体的质量和稳定性。
本文将介绍基因工程制备抗体的方法和流程,包括抗体的选择和克隆、表达、纯化和鉴定等环节。
通过基因工程方法获得的抗体,可以应用于药物研发、医学诊断、生物学研究等领域,具有广阔的应用前景。
1. 抗体的选择和克隆(1)抗原的选择制备抗体的第一步是选择合适的抗原。
抗原是引发免疫反应的物质,可以是蛋白质、多肽、多糖、药物等。
根据需要制备的抗体类型,可以选择相应的抗原。
例如,如果需要制备单克隆抗体,可选择单个抗原蛋白作为抗原进行制备。
(2)抗体基因的克隆在选择了合适的抗原后,下一步是将抗体基因克隆到表达载体中。
通常可以利用PCR方法从免疫细胞中扩增出抗体基因,并将其插入表达载体中。
选择合适的表达载体是非常重要的,通常选择在哺乳动物细胞或大肠杆菌中表达。
2. 抗体的表达(1)表达载体的构建在决定抗体表达载体后,接下来是进行表达载体的构建。
通常表达载体包括启动子、终止子、选择标记基因等,通过合成或限制性内切酶切割等方法将抗体基因插入表达载体中。
(2)转染和筛选将构建好的表达载体导入宿主细胞中,可以通过转染等方法实现。
转染后,需要进行筛选,筛选出表达抗体的稳定细胞株。
通常可以利用克隆技术选取高表达的细胞株。
3. 抗体的纯化(1)细胞培养和收获经过筛选的稳定细胞株可以进行大规模培养,收获细胞培养上清液。
(2)亲和层析纯化常用的抗体纯化方法包括亲和层析纯化。
可以利用蛋白A/G或其他具有特异性结合抗体的配体进行纯化。
通过这种方法可以高效地将目标抗体从细胞培养上清液中纯化出来。
4. 抗体的鉴定(1)免疫印迹(Western blot)通过Western blot方法,可以验证纯化得到的抗体是否具有结构完整,是否与目标抗原结合。
生物制药的创新技术生物制药是利用生物技术生产药物的一种制药方式,其产品主要包括蛋白质药物、抗体药物、疫苗等。
随着生物技术的不断发展,生物制药领域的创新技术也在不断涌现,为药物研发和生产带来了新的机遇和挑战。
本文将重点介绍生物制药领域的创新技术,包括基因工程、单克隆抗体技术、基因编辑技术等。
一、基因工程技术基因工程技术是生物制药领域最重要的创新技术之一。
通过基因工程技术,科学家可以将外源基因导入宿主细胞中,使其表达目标蛋白,从而实现大规模生产药物的目的。
基因工程技术的应用使得生物制药领域的药物研发周期大大缩短,同时也提高了药物的纯度和效力。
基因工程技术的核心是重组DNA技术,包括DNA的克隆、DNA的测序、DNA的合成等。
通过重组DNA技术,科学家可以构建携带目标基因的载体,并将其导入宿主细胞中,使其表达目标蛋白。
目前,基因工程技术已经成功应用于生产多种重要的生物制药产品,如胰岛素、生长激素、干扰素等。
二、单克隆抗体技术单克隆抗体技术是生物制药领域的又一项重要创新技术。
单克隆抗体是指来源于同一克隆细胞的抗体,具有高度的特异性和亲和力。
单克隆抗体技术通过对抗体的基因进行克隆和表达,可以大规模生产具有特定功能的单克隆抗体,用于治疗癌症、自身免疫性疾病等。
单克隆抗体技术的应用为个性化医疗提供了新的途径。
通过对患者的基因信息和病理特征进行分析,科学家可以设计和生产针对特定靶点的单克隆抗体,实现精准治疗。
目前,单克隆抗体已经成为生物制药领域的主力产品之一,为临床治疗带来了革命性的变革。
三、基因编辑技术基因编辑技术是近年来兴起的一项新兴生物技术,也被广泛应用于生物制药领域。
基因编辑技术通过精准编辑基因组中的特定序列,可以实现基因的插入、修饰、删除等操作,为药物研发和生产提供了全新的思路和方法。
CRISPR-Cas9技术是目前应用最广泛的基因编辑技术之一。
通过设计特定的引物和Cas9蛋白,科学家可以实现对基因组的高效编辑,从而修正遗传病变、增强药物的疗效等。
临床医学检验技师初级(师)临床免疫学及检验(单克隆抗体与基因工程抗体制备技术)-试卷1(总分:60.00,做题时间:90分钟)一、 A1型题(总题数:17,分数:34.00)1.下列关于杂交瘤细胞特点的错误描述是(分数:2.00)A.具备了双亲细胞的特点B.分泌人源性单克隆抗体√C.分泌鼠源性单克隆抗体D.体外繁殖快速E.能分泌抗体解析:解析:杂交瘤细胞是两个不同特性的细胞融合成一个异型核细胞,这两种细胞分别是小鼠脾细胞和小鼠骨髓瘤细胞,分泌鼠源性单克隆抗体。
2.杂交瘤技术中最常用的骨髓瘤细胞株是(分数:2.00)A.NS-1和SP2/0细胞株√B.NS-2株C.SP5株D.HPG-2E.HAILA解析:解析:杂交瘤技术中最常用的骨髓瘤细胞株是NS一1和SP2/0细胞株。
3.HAT培养基中三种关键成分为(分数:2.00)A.次黄嘌岭、氨基蝶呤、胸腺嘧啶核苷√B.黄嘌呤、氨基蝶呤、胸腺嘧啶核苷C.氨基嘌岭、氨基蝶呤、胸腺嘧啶核苷D.腺嘌呤、氨基蝶呤、胸腺嘧啶核苷E.鸟嘌呤、氨基蝶呤、胸腺嘧啶核苷解析:解析:HAT系次黄嘌呤(hypoxantin)、氨基蝶呤 (aminopterin)和胸腺嘧啶脱氧核苷(thymidin)三种物质各英文首字之缀列,HAT培养基也就是指含有这三种物质的细胞培养基。
4.阳性杂交瘤细胞的克隆化培养方法不包括(分数:2.00)A.有限稀释法B.无限稀释法√C.显微操作法D.荧光激活细胞分选仪E.软琼脂平板法解析:解析:阳性杂交瘤细胞的克隆化(单个细胞培养)方法包括有限稀释法、显微操作法、荧光激活细胞分选仪、软琼脂平板法。
5.实验室最常用的阳性杂交瘤细胞的克隆化方法是(分数:2.00)A.无限稀释法B.有限稀释法√C.荧光激活细胞分选仪D.软琼脂平板法E.显微操作法解析:解析:阳性杂交瘤细胞的克隆化(单个细胞培养)方法包括有限稀释法、显微操作法、荧光激活细胞分选仪、软琼脂平板法。
第四章单克隆抗体与基因工程抗体的制备将单个B细胞分离出来加以增殖形成一个克隆群落,该B细胞克隆产生出针对单一表位、结构相同、功能均一的抗体,称为单克隆抗体。
第一节杂交瘤技术的基本原理杂交瘤技术的原理是利用聚乙二醇(PEG)为细胞融合剂,使免疫的小鼠脾细胞与具有体外长期繁殖能力的小鼠骨髓瘤细胞融为一体,在HAT选择性培养基的作用下,只让融合成功的杂交瘤细胞生长,经过反复的免疫学检测、筛选和单个细胞培养(克隆化),最终获得既能产生所需单克隆抗体,又能长期繁殖的杂交瘤细胞系。
将这种杂交瘤细胞扩大培养,接种于小鼠腹腔,在小鼠腹腔积液中即可得到高效价的单克隆抗体。
杂交瘤技术是一项周期长和高度连续性的实验技术,涉及大量的细胞培养、免疫化学等方法。
具体包括两种亲本细胞的选择与制备,细胞融合,杂交瘤细胞的筛选与克隆化等。
一、杂交瘤技术(一)小鼠骨髓瘤细胞1.细胞株稳定,易于传代培养。
2.细胞株自身不会产生免疫球蛋白或细胞因子。
3.该细胞是次黄嘌呤鸟嘌呤磷酸核糖转化酶(HGPRT)或胸腺嘧啶激酶(TK)的缺陷株。
4.目前最常用的骨髓瘤细胞是NS-1和SP2/O细胞株。
(二)免疫脾细胞免疫时选用与骨髓瘤细胞同源的BALB/c小鼠,鼠龄8~12周,体重约20g,雌雄均可,但必须分笼。
免疫用抗原尽量提高其纯度和活性,免疫途径多用腹腔内或皮内多点注射法。
如为珍贵微量抗原,可用脾脏内直接注射法进行免疫。
(三)细胞融合细胞融合是产生杂交瘤细胞的中心环节。
PEG(聚乙二醇)有助于细胞融合。
(四)杂交瘤细胞的选择性培养将经过融合的细胞置于含有次黄嘌呤、甲氨蝶呤和胸腺嘧啶核苷的HAT培养基中。
1.脾细胞:在一般培养基中不能生长繁殖。
2.骨髓瘤细胞:采用的小鼠骨髓瘤细胞都是HGPRT或TK代谢缺陷型细胞,在HAT培养基中,不仅合成DNA的主要途径被氨基蝶呤阻断,又因缺乏HGPRT或TK而不能利用次黄嘌呤,虽有TK可利用胸腺嘧啶核苷,但终因缺乏嘌呤不能完整合成DNA,而使骨髓瘤细胞在HAT培养基中不能增殖而死亡。