汽车租赁调度问题详细数学建模竞赛
- 格式:docx
- 大小:265.04 KB
- 文档页数:47
数学建模中的汽车租赁调度在现代社会中,汽车租赁服务得到了广泛应用。
随着人们对出行方式的多样化需求,汽车租赁业务不断发展。
然而,如何进行高效的汽车租赁调度,最大程度地满足用户需求,并优化企业经营成为了一个重要的课题。
数学建模为解决这一问题提供了理论基础和实践依据。
一、问题背景假设有一家汽车租赁公司,拥有一定数量的汽车和分布于城市各地的租车站点。
用户可以通过手机、网站等方式预订汽车并在指定租车站点取车。
汽车租赁公司需要根据用户需求进行汽车的调度和分配,以保证用户的租车需求得到及时满足,并合理安排汽车的分布,优化公司的利润。
二、问题建模为了解决汽车租赁调度问题,我们可以利用数学建模的方法。
首先,需要明确一些假设和定义:1. 确定服务范围:确定租车服务的城市范围和租车站点的位置分布。
2. 确定需求预测模型:根据历史数据和市场研究,建立合理的汽车租赁需求预测模型,预测不同时间段、不同地点的租车需求量。
3. 建立调度模型:建立汽车调度模型,考虑用户租车的时间、地点和租赁时长等因素,以及汽车的运营成本、剩余电量等因素,确定最优的汽车分配方案。
4. 优化方案求解:利用优化算法求解调度模型,得出最优的汽车分配方案,并生成调度计划。
三、建模方法在汽车租赁调度问题中,我们可以借鉴运输问题中的调度与路径规划方法,如VRP(Vehicle Routing Problem)和TSP(Traveling Salesman Problem)等。
具体步骤如下:1. 数据收集与处理:采集租车站点的地理位置信息、历史租车记录、租车需求预测模型所需的数据等,并进行数据的预处理和分析。
2. 建立数学模型:根据问题的要求和假设,建立合理的数学模型,包括目标函数和约束条件等。
3. 求解最优解:利用优化算法求解建立的数学模型,如遗传算法、模拟退火算法等,得出最优的汽车分配方案。
4. 评估与优化:对求解结果进行评估和优化,根据实际情况修正模型参数和算法,提高调度效果和计算效率。
专业资料2012年西南财经大学数学建模竞赛赛题车辆调度问题说明:1、竞赛于5月2日12:00结束,各参赛队必须在此时间之前提交打印论文及上传论文电子文档,2、请认真阅读“西南财经大学数学建模竞赛章程”、“西南财经大学数学建模竞赛论文格式规范”,并遵照执行,3、打印论文交给经济数学学院办公室(通博楼B302),电子文档发至邮箱gdsxkj@4、选拔参加建模培训的本科参赛队必须提交一份解夏令营问题的论文,各本科参赛队根据自己的校赛状况,提前做好准备,校赛成绩公布后提交:夏令营问题地址5、由于本题目计算量比较大,竞赛期间如果计算不完,也可以提交部分成果。
某校有A、B两个校区,因为工作、学习、生活的需要,师生在两校区之间有乘车需求。
1、在某次会议上,学校租车往返接送参会人员从A校区到B校区。
参会人员数量、车辆类型及费用等已确定(见附录1)。
(1)最省的租车费用为多少?(2)最省费用下,有几种租车方式?2、两校区交通网路及车辆运行速度见数据文件(见附录2)。
试确定两校区车辆的最佳行驶路线及平均行驶时间。
3、学校目前有运输公司经营两校区间日常公共交通,现已收集了近期交通车队的运行数据(见附录3)。
(1)试分析运行数据有哪些规律,(2)运输公司调度方案是根据教师的乘车时间与人数来制定的,若各工作日教师每日乘车的需求是固定的(见附录4),请你根据运行数据确定教师在工作日每个班次的乘车人数,以供运输公司在制定以后数月调度方案时使用。
4、学校准备购买客车,组建交通车队以满足教师两校区间交通需求。
假设:(1)欲购买的车型已确定(见附录5),(2)各工作日教师每日乘车的需求是固定的(见附录4),(3)两校区间车辆运行时间固定为平均行驶时间(见附录2)若不考虑运营成本,请你确定购买方案,使总购价最省。
5、若学校使用8辆客车用于满足教师两校区间交通需求。
假设:(1)8辆客车的车型及相关数据已确定(见附录6),(2)各工作日教师每日乘车的需求是固定的(见附录4),(3)两校区间车辆运行时间固定为平均行驶时间(见附录2),(4)车库设在A校区,客车收班后须停靠在车库内。
数学建模中的汽车租赁调度在当今社会,汽车租赁业务发展迅速,越来越多的人选择租赁汽车来满足短期出行的需求。
然而,如何高效地进行汽车租赁调度,以提供优质的服务并降低成本,成为了汽车租赁公司亟待解决的问题。
数学建模为解决这一问题提供了有效的方法和工具。
本文将从几个方面探讨数学建模在汽车租赁调度中的应用。
一、需求预测模型在汽车租赁业务中,准确预测客户的需求是实现优质调度的关键。
数学建模可以利用历史数据和相关的影响因素,构建需求预测模型。
通过分析历史数据中的租车记录、天气、季节等因素,可以找到它们之间的关联性,并运用统计学方法建立预测模型,从而预测未来某一时段的租车需求。
这样一来,租赁公司可以根据预测结果合理安排车辆调配,以满足客户需求的同时最大程度地减少车辆的闲置率。
二、车辆调度模型根据需求预测模型得到的结果,租赁公司需要合理安排车辆的调度,以保证在预测的高峰时段有足够的车辆供应,并在低峰时段将多余的车辆调配到其他地方,以降低闲置率。
数学建模可以提供各种优化方法和算法,帮助租赁公司解决这一调度问题。
一种常见的方法是建立最优分配模型。
该模型考虑了多个因素,如车辆数量、车辆位置、客户的租车需求、交通状况等,并在不同的约束条件下,通过运用线性规划、整数规划等数学方法,求解出最优的车辆分配方案。
通过这种方式,租赁公司可以合理分配车辆,减少客户等待时间,提高服务质量。
此外,还可以利用模拟仿真方法进行车辆调度优化。
通过建立租车站点、路网、客户需求等多个因素的仿真模型,可以通过模拟实际情况来评估不同策略的效果,并找到最佳的调度方案。
模拟仿真方法具有较强的灵活性和可调节性,能够模拟不同的场景和情况,帮助租赁公司针对性地制定调度策略。
三、优化算法除了需求预测和车辆调度模型外,数学建模还可以利用优化算法来解决汽车租赁调度中的其他问题。
例如,优化算法可以用于解决最短路径问题,帮助租赁公司确定最佳的行驶路线,以减少车辆的行驶距离和时间成本。
出租车调价问题摘要:随着国际燃油价格的不断上涨,国内市场已经进行了多次调价,调价对于本来就经营困难的出租车来说更是雪上加霜。
为了化解高油价给出租车业,尤其是出租车司机带来的压力,各个地方政府采取种种措施化解油价上涨给出租车司机带来的减收问题。
2006年4月17号上海召开出租车运价油价联动机制听证会,就建立出租车行业运价油价联动机制展开论证并且提出了两个运价油价联动计算公式。
本文通过假设和一定的分析而建立一个数学模型以反映上海市的出租车运价与油价联动机制,并经过将大连的实际情况跟上海对比后,对模型做一定的改进以适合大连的情况。
本文利用线形规划模拟分析问题,建立模型并且利用LINGO求解。
最后从理论与实际的角度出发,提出对模型的改进方法和设想。
关键词:出租车调价线性规划数学模型一、问题的重述受国际原油价格持续上涨影响, 经国务院批准,国家发改委通知, 自2006年3月26日起将汽油和柴油出厂价格每吨分别提高300元和200元。
辽宁省的汽油和柴油零售基准价每吨分别提高250元和150元。
大连市93号汽油每升上调0.21元,调价后为每升4.47元。
国家发改委提高成品油价格的消息发布后,一些地方迅速做出反应。
在油价走高的背景下,全国出租车价格涨声一片。
国家发改委要求各地建立出租车运价与油价的联动机制,今后按照联动机制调整运价。
目前北京、上海已经建立了出租车运价与油价的联动机制。
以上海市为例,在2006年4月17日召开的出租车运价油价联动机制听证会上公布了两个公式,运价油价联动机制今后将通过两个公式来操作。
第一个公式用于调整出租车起步费。
按照这个公式,如果油价平均提高一元,根据前期调研,单车每天消耗汽油43.75升,日均载客34次,代入公式,每车起步价需要提高1.29元;第二个公式用于调整超过起步价后的出租车公里单价。
按照这个公式,如果油价每升平均提高1元,每车每天行驶350公里、载客率61%、起步价外公里占总公里数的64%,与公里油耗无关的加价计时等营运附加收入系数0.15,计算后可以发现每公里运价需要提高0.27元。
2019数学建模c题出租车c(原创版)目录1.题目背景及要求2.出租车调度问题的解决方案3.数学建模在解决实际问题中的应用4.结论正文1.题目背景及要求2019 年数学建模竞赛的 C 题,题目为“出租车调度问题”。
该题目要求参赛者针对一个城市中的出租车调度问题进行分析,并提出解决方案。
具体而言,需要考虑如何在满足乘客需求的同时,使出租车的运营效率最大化,并降低出租车的空载率。
2.出租车调度问题的解决方案针对出租车调度问题,我们可以从以下几个方面进行分析和求解:(1) 建立问题模型:根据题目描述,可以将出租车调度问题建立一个车辆路径问题(Vehicle Routing Problem, VRP)模型。
在这个模型中,出租车作为车辆,乘客作为需求点,每辆出租车需要在满足乘客需求的同时,选择一条最优路径,使得总运营效率最大。
(2) 求解算法:针对 VRP 模型,可以采用各种算法进行求解,如穷举法、贪心算法、遗传算法等。
在实际应用中,常用的求解方法是遗传算法,因为它可以在较短时间内找到较优解。
(3) 实际应用:将求解出的最优路径应用于实际出租车调度,通过智能调度系统,实时调整出租车的运营路线,从而满足乘客需求,提高出租车的运营效率,降低空载率。
3.数学建模在解决实际问题中的应用数学建模是一种强有力的工具,能够帮助我们解决实际问题。
在本题中,通过建立 VRP 模型,并采用遗传算法求解,我们可以找到一个较优的出租车调度方案。
这种方法不仅可以应用于出租车调度,还可以应用于许多其他领域,如物流、生产调度等,充分体现了数学建模在解决实际问题中的广泛应用价值。
4.结论总之,2019 年数学建模 C 题“出租车调度问题”通过建立 VRP 模型,并采用遗传算法求解,为解决实际中的出租车调度问题提供了一种有效方法。
2019数学建模c题出租车c摘要:1.题目背景及要求2.出租车调度问题的解决方案3.数学建模在解决实际问题中的应用4.结论正文:1.题目背景及要求2019 年数学建模竞赛的C 题,要求参赛者针对出租车调度问题进行分析和求解。
具体来说,就是要在给定的时间内,合理地调度出租车,使得乘客的等待时间最短,出租车的运营效率最高。
这是一个典型的运筹学问题,需要运用数学建模的方法进行分析。
2.出租车调度问题的解决方案为了解决这个问题,我们可以采用以下步骤:(1)建立数学模型:我们可以将出租车和乘客的等待时间用一个线性规划模型来表示。
具体来说,我们可以设出租车的数量为x,每个出租车接到的乘客数量为c,乘客等待时间为d。
目标是最小化乘客的平均等待时间,即min ∑(d)。
(2)求解模型:根据上述模型,我们可以列出如下的目标函数和约束条件:目标函数:min ∑(d)约束条件:1) 乘客数量= 出租车数量× 每个出租车接到的乘客数量,即∑(c) = x2) 总等待时间= 每个乘客等待时间× 乘客数量,即∑(d) = ∑(c)3) 每个出租车接到的乘客数量不能超过最大乘客数量,即c ≤ max_c然后,我们可以通过求解这个线性规划问题,得到最优的出租车数量和每个出租车接到的乘客数量,从而实现乘客等待时间的最小化。
3.数学建模在解决实际问题中的应用这个例子充分展示了数学建模在解决实际问题中的应用。
在这个过程中,我们首先通过观察问题,提炼出关键的信息,然后建立数学模型,最后通过求解模型,得到问题的解决方案。
这个过程不仅锻炼了我们的逻辑思维能力,也提高了我们运用数学知识解决实际问题的能力。
4.结论总的来说,2019 年数学建模竞赛的C 题,不仅考察了我们的数学知识,也考察了我们解决实际问题的能力。
数学建模汽车租赁问题在如今的社会中,汽车租赁服务已经成为了越来越受欢迎的选择。
然而,在汽车租赁公司的运营过程中,如何合理地分配汽车资源以满足用户需求并提高运营效益成为了一项重要的问题。
在本文中,我们将运用数学建模的方法来探讨汽车租赁问题,以期得到最佳的汽车分配方案。
1. 问题描述我们假设有一家汽车租赁公司,该公司拥有不同型号和品牌的汽车,以满足不同用户的需求。
公司面临着以下问题:(1)如何根据用户需求高效地分配汽车资源?(2)如何合理安排汽车的调度和维修?(3)如何确定合适的租金策略以满足公司运营需求?2. 模型建立为了解决上述问题,我们可以建立以下数学模型:(1)需求预测模型:分析历史数据,通过时间序列分析或机器学习算法预测用户的汽车租赁需求。
将预测结果应用于汽车资源的分配,以避免资源浪费和不足的问题。
(2)运输调度模型:基于实时数据和优化算法,建立汽车调度模型,合理安排汽车的运输路径和时间,以提高运输效率和降低成本。
(3)维修决策模型:分析汽车日常维修和保养的历史数据,建立维修决策模型,包括维修周期、维修数量和维修质量等方面,以确保汽车的正常运行和延长使用寿命。
(4)租金策略模型:结合市场需求和竞争对手定价策略,建立租金策略模型,以确定合适的租金水平,同时考虑用户的支付能力和公司的利润目标。
3. 数据获取与分析为了建立有效的模型,我们需要收集并分析大量的数据,包括但不限于以下方面:(1)用户需求数据:通过调查问卷、网站访问记录等方式,获取用户对不同品牌和型号汽车的需求数据。
(2)租赁历史数据:统计汽车租赁的历史数据,包括租赁时长、租赁地点、租车用途等信息,以便进行需求预测和调度规划。
(3)汽车维修和保养数据:记录汽车的维修和保养历史,包括维修周期、维修费用、维修质量等信息,用于建立维修决策模型。
(4)竞争对手数据:调研竞争对手的租金策略、汽车品牌和型号等信息,以便制定适当的租金策略模型。
4. 模型求解基于收集的数据,我们可以利用数学优化算法和模拟仿真等方法求解建立的模型,得到最优的汽车分配方案和租金策略。
汽车租赁调度问题数学建模汽车租赁调度问题是一个经典的优化问题,在实际中常常需要考虑到多个因素,包括客户需求、车辆可用性、路况等。
下面是一种可能的数学建模方法:假设我们有N辆汽车和M个租赁点,每辆汽车的状态可以用一个二元向量表示,例如[0,1]表示汽车目前不在使用中,可以租赁;[1,0]表示汽车已经被租赁出去,目前正在路上或者用于服务。
我们可以定义以下变量和参数来建模:变量:x[i, j, t] 表示在时刻t汽车i是否在租赁点j,取值为0或1y[i, j, t] 表示在时刻t汽车i是否已经被租赁出去了,取值为0或1z[i, j, t] 表示在时刻t是否有人在租赁点j租赁了汽车i,取值为0或1s[i, t] 表示在时刻t汽车i的状态,取值为0或1其中,i ∈ {1, 2, ..., N},j ∈ {1, 2, ..., M},t ∈ {1, 2, ..., T}(T 为时间窗口大小,表示考虑的时间范围)参数:D[i, j] 表示从租赁点i到租赁点j之间的距离C[i, t] 表示在时刻t租赁点i的需求量T[i, t] 表示在时刻t租赁点i现有的汽车数量约束条件:1. 每辆汽车在一个时刻只能处于某个租赁点:sum(j=1 to M) x[i, j, t] = 1, for all i, t2. 每个租赁点的需求量不能超过现有的汽车数量:sum(i=1 to N) z[i, j, t] <= T[j, t], for all j, t3. 每辆汽车在被租赁前必须在某个租赁点上:y[i, j, t] <= x[i, j, t], for all i, j, t4. 每辆汽车在被租赁后必须离开租赁点:y[i, j, t] <= 1 - x[i, j, t+1], for all i, j, t5. 租赁点j在时刻t的汽车租赁情况与需求量和已有数量之间的关系:C[j, t] - sum(i=1 to N) z[i, j, t] <= T[j, t], for all j, t6. 汽车的状态与是否被租赁之间的关系:s[i, t] >= y[i, j, t], for all i, j, t目标函数:最小化成本或者最大化满足需求的汽车数量以上只是一个可能的模型示例,实际应用中还可能需要考虑更多实际情况和限制条件。
2023数学建模国赛b题解答2023年数学建模国赛B题是关于“共享单车调度优化”的问题。
问题描述:随着共享单车在各大城市的普及,如何高效地进行车辆调度成为了亟待解决的问题。
共享单车公司需要根据各停车点的车辆数量和需求,合理地调整车辆的位置,以保证用户的需求得到满足,同时避免资源的浪费。
任务要求:1. 分析给定数据,确定合适的调度策略。
2. 建立数学模型,描述车辆的调度过程。
3. 使用给定的数据,对模型进行验证。
4. 根据模型,给出调度方案,并分析其效果。
解题思路:1. 数据解析:首先,我们需要对给定的数据进行解析,了解各停车点的车辆数量和需求情况。
这需要使用到数据处理和分析的相关知识。
2. 模型建立:基于数据解析的结果,我们需要建立一个数学模型来描述车辆的调度过程。
可以考虑使用图论、最优化理论等工具。
3. 模型验证:使用给定的数据对模型进行验证,确保模型的准确性和有效性。
4. 调度方案:根据模型,制定一个合理的调度方案。
这需要考虑多个因素,如车辆的移动成本、各停车点的需求等。
5. 效果分析:对调度方案进行效果分析,评估其在实际操作中的可行性和效果。
解题步骤:1. 数据解析:首先,我们需要对给定的数据进行解析,了解各停车点的车辆数量和需求情况。
这需要使用到数据处理和分析的相关知识。
具体来说,我们可以使用Python中的pandas库来处理数据,并使用matplotlib库进行可视化分析。
通过分析数据,我们可以发现车辆数量和需求在不同时间和地点存在差异。
2. 模型建立:基于数据解析的结果,我们需要建立一个数学模型来描述车辆的调度过程。
可以考虑使用图论、最优化理论等工具。
具体来说,我们可以将各停车点视为节点,车辆的移动视为边,建立一个有向图模型。
然后,我们可以使用最短路径算法(如Dijkstra算法)来找到从起始点到目标点的最优路径,即最佳调度方案。
在模型中,我们需要考虑车辆的移动成本、各停车点的需求和车辆的容量限制等因素。
2019数学建模c题出租车c
摘要:
1.题目背景及要求
2.出租车调度问题的解决方案
3.数学建模在出租车调度中的应用
4.结论
正文:
1.题目背景及要求
2019 年数学建模竞赛的C 题是关于出租车调度的问题。
具体来说,题目描述了一个城市中有多个出租车司机,他们需要根据乘客的叫车请求来决定如何分配车辆。
这个问题需要参赛者运用数学建模的方法,为出租车司机提供一个高效的调度策略。
2.出租车调度问题的解决方案
针对这个问题,我们可以采用一种基于遗传算法的解决方案。
具体来说,我们可以将每个出租车司机看作是一个个体,每个个体都有一组基因,表示该司机当前的位置和行驶方向。
然后,我们可以通过模拟自然选择和基因遗传的过程,逐步优化所有个体的基因组合,从而找到一种最优的调度策略。
3.数学建模在出租车调度中的应用
在这个问题中,数学建模主要体现在以下几个方面:
首先,我们需要建立一个数学模型来描述出租车司机和乘客之间的互动关系。
这个模型可以用一个图来表示,其中出租车司机对应图中的节点,乘客的
叫车请求对应图中的边。
其次,我们需要运用一些数学方法(如遗传算法)来求解这个模型。
这些方法可以帮助我们在大量的可能解决方案中,找到一种最优的调度策略。
最后,我们还需要运用一些统计学方法来评估我们的调度策略是否有效。
例如,我们可以通过计算乘客的平均等待时间来判断我们的策略是否能够提高出租车的使用效率。
4.结论
通过运用数学建模的方法,我们可以为出租车司机提供一个高效的调度策略。
这种策略可以帮助他们更好地满足乘客的需求,提高出租车的使用效率。
汽车租赁调度问题(详细)--数学建模竞赛————————————————————————————————作者:————————————————————————————————日期:承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2015年8月15日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):汽车租赁调度问题摘要随着汽车租赁行业竞争的不断增加,众多汽车租赁公司针对汽车租赁的实际需求,纷纷调整调度方案以满足市场需求和赚取利益。
针对问题一,在尽量满足汽车需求的前提下,规划目标为代理点间车辆总转运费最小,首先使用多元统计方法对相关数据进行处理,根据每个汽车租赁代理点的坐标求出各代理点间的欧氏距离,再将其与各代理点的每辆车的转运成本相乘得出任意两个代理点的转运费用,把问题转化为运输问题,最后结合各代理点起初汽车数量与每天汽车需求量建立线性规划模型,确定合适的目标函数和约束条件,利用MATLAB和lingo编程,是最终结果与实际情况相符,最终得到最低转运费用40.49158及最优车辆调度方案见附录2。
针对问题二,考虑到短缺损失尽可能低与调度费用低于增值费用等因素,在问题一的基础上,建立目标函数为转运费用和短缺损失费用总和的最小值,同样利用lingo进行求解,得到4周内转运费用和短缺损失费总和最小为57.46982万元以及此时相对应的最优车辆调度方案见附录3。
针对问题三,在问题二的基础上,综合考虑公司获利、转运费用以及短缺损失等因素,规划目标为公司获得的净利润最大,运用插值拟合方法补充出附件5中租赁收入缺失的数据,用车辆租赁收入减去转运费用和短缺失费用表示公司的净利润。
利用lingo进行优化求解,得到未来四周内公司的最大获利为4076.341万元及最优调度方案见附录5。
针对问题四规划年度利润最大化,确定最优购进方案。
通过spss软件,拟合出每个代理点拥有车辆和需求车辆的关系,并综合总利润=总收入-总花费的关系式,规划出利润和购买车辆的关系,近似求出购买车辆数对年获利影响。
建立数学模型,容易直观地分析出所需购买的车辆数。
另外根据车辆价格汽车的价格,年维修费用的不同,所产生的不同的维修费用,计算出购买第八款车花费最小。
用MATLAB编程,计算出结果为当购买41辆第八款车时,年度总获利最大,最大为万元针对问题五,在问题四的基础上,考虑到购买数量与价格优惠幅度之间的关系,通过查阅资料发现当购买数量大于20时,优惠2%,当购买数量大于40时,优惠5%,在只购买第八款车型的情况下,得到年度净利润最大的购车方案,与问题四相同,使得净年利润最大为44.439310⨯万元,与不进行优惠相比,年利润增加3⨯万元。
210针对问题六,本文要求每个代理点的拥有车辆数中高级车和低级车各占一半以及每个代理点的高级车型需求与低级车型需求大约也各占一半,重新算问题三、四。
在问题三、四程序的基础上将拥有量和需求量各自减半对高级车和低级车分别求最大净利润值之和及购车数量。
关键字:线性规划汽车租赁调度拟合 SPSS一.问题重述国内汽车租赁市场兴起于1990年北京亚运会,随后在北京、上海、广州及深圳等国际化程度较高的城市率先发展,直至2000年左右,汽车租赁市场开始在其他城市发展。
现有某城市一家汽车租赁公司,此公司年初在全市范围内有379辆可供租赁的汽车,分布于20个代理点中。
每个代理点的位置都以地理坐标X和Y的形式给出,单位为千米。
假定两个代理点之间的距离约为他们之间欧氏距离(即直线距离)的1.2倍。
附件1—附件6给出了问题的一些数据。
请解决如下问题:1.给出未来四周内每天的汽车调度方案,在尽量满足需求的前提下,使总的转运费用最低;2.考虑到由于汽车数量不足而带来的经济损失,要求每个代理点的损失率尽可能都低于10%;另外,如果总转运成本太高,使得总转运费用高于因调度而增值的收入,这样的调度方案也是没有意义的,请综合以上情况给出使未来四周总的转运费用及短缺损失最低的汽车调度方案;3.综合考虑公司获利、转运费用以及短缺损失等因素,确定未来四周的汽车调度方案;4.为了使年度总获利最大,从长期考虑是否需要购买新车?如果购买,购买多少,各个代理点如何分配?5.如果购买新车的话,考虑到购买数量与价格优惠幅度之间的关系,在此假设如果购买新车,只购买一款车型,试确定购买计划。
6.在现实中,大多数租车公司会提供多种车型,如至少两种车型(A,B),若已知附件1中所给代理点的拥有车辆数中两种车型各占一半,亦可假定在过去一年和未来四周的汽车需求中,每个点的高级车型需求与低级车型需求大约也各占一半,另外高级车型(B型)租赁收入为低级车型(A型)的1.4倍,假定原附件5表中给出的租赁收入均为低级车型的租赁价格,两种车型的短缺损失假定相同,请再次计算问题3与问题4;7.以上述研究结论为基础,请为各代理点撰写一个简明扼要的调度方案手册,以便今后类似调度问题时使用。
2. 问题分析车辆调度问题是一个数学规划问题,即在满足调度限制的解空间内,寻找使调度选择中提出的目标函数都满意的最优解。
联系实际,综合考虑转运费用、短缺损失、公司获利等因素,利用优化算法、线性规划和lingo、matlab和excel 软件,尽可能得到各代理点车辆租赁调度安排的最优解。
针对问题一在满足需求的前提下得到未来四周内的最优解。
根据附件3未来四周每个代理点每天的汽车需求量,先求得年初各代理点的车辆到第一天最优调度方案,以后每天的调度最优方案都以前一天求得的最优调度结果为当天拥有量。
该问题以各个代理点间调度车辆的总费用最低为目标函数,以可提供车辆的代理点提供的车辆数和需接收车辆的代理点接收的车辆数为约束条件,建立线性规划数学模型。
借用LINGO工具进行方程求解[2]。
针对问题二要求在问题一所得结果的基础上,考虑由于汽车数量不足而造成的短缺损失费用,可以把总的费用简化为转运费用与短缺损失费用之和,建立总费用最低的线性规划模型[1],利用lingo程序进行优化处理,使目标函数值最小,从而得到最优解。
针对问题三需要综合考虑公司获利、转运费用以及短缺损失等因素建立规划模型,总的净利润可以简化为总收入减去总费用,运用matlab对缺少的数据进行拟合[3],再运用lingo辅助求解。
针对问题四需要解决是否购车及最佳购车方案的问题,用未来四周的需求量与现拥有量379做对比,得出供求关系,若总体上供不应求,则需要购进新车。
本问题在确定所需购买的车数量时,先分析附件-4中,10款同类汽车的价格、使用寿命、寿命期内的年维修费用,以八年为一个周期,计算出每款车的总费用,进而确定所需要购买的车型。
再利用spss软件拟合出需求量与拥有量的关系,结合总利润=总收入-总费用,建立购进车的数量与年总利润的数学模型,进而可以在MATLAB软件中求的利润最大时,所需购进的车辆数,确定最优购进方案,并求得最大利润。
并根据短缺损失费最高的代理点,和问题三的调度结果进行新车分配。
针对问题五,在问题四的基础上,考虑到购买数量与价格优惠幅度之间的关系,通过查阅资料发现当购买数量大于20时,优惠2%,当购买数量大于40时,优惠5%,在只购买第八款车型的情况下,得到年度净利润最大的购车方案,与问题四相同。
3.模型的假设(1)租出的每辆车当日租当日还,且无损坏。
(2)汽车的转运成本仅与距离有关,不考虑汽车在转运途中的损耗。
(3)租出的车辆只归还于租出代理点。
(4)各租赁代理点在第二天租赁业务开始前完成相互间的汽车调度。
4. 符号说明符号符号含义ij D 代理点i 和j 之间的实际距离 ij L 欧氏距离ij a代理点i 和j 之间的转运成本W 总转运费用 ij V 转运量数 ij C转运一辆车的费用 R公司获得的净利润s公司的总损失5. 模型的建立与求解5.1问题一:仅考虑总转运费用的汽车调度方案 5.1.1 模型的准备数据处理 (1)根据附件1中数据,利用MATLAB 作出将各个代理点的位置的散点图如下:10203040506070010203040506070x/kmy /k m图1 各代理点的位置(2)根据附件1 提供的各代理点位置的坐标,由平面上两点之间的距离公式22()()ij i j i j L X X Y Y =+++可计算出任意两个代理点之间的欧式距离,由于两个代理点之间的实际距离约为他们之间欧氏距离的1.2倍,则有任意两代理点之间的实际距离为:1.2ij ij D L =(3)各代理点间转运一辆车的费用等于各代理点之间的距离乘以相应的转运成本,即:ij ij ij C D a =利用MATLAB 编程求出各代理点的相互转运费用矩阵ij C ,具体结果见附录1。
5.1.2模型一的建立要使得未来四周的总转运费用最低,转运费用为需要转运两代理点之间的距离,乘以不同代理点之间的每辆车的转运成本(万元/千米),再乘以转运的车辆数,则可得到目标函数:292020211ij tijt i j min W C V====∑∑∑汽车总量约束:不考虑购入新车的情况下,未来四周内,该公司总车辆数是一定的,则有约束:201379,2,3......29tii yt ===∑汽车供求量约束:(1)当代理点i 的汽车供不应求时,即第k 天代理点i 所拥有的车辆数,与k+1 天代理点i 所需求的车辆数之差小于0,则应满足条件为:201,0tijti ti i Vy y =≥∆∆<∑(2)代理点i 的汽车供大于求,即第k 天代理点i 所拥有的车辆数与第k+1天代理点i 所需求的车辆数之差大于0,则应满足条件为:201,0,1,2...20,2,3...29tijti ti i Vy y i t =≤∆∆>==∑其中, ti y ∆表示第k 天代理点i 所拥有的车辆数与第1t +天代理点i 所需求的车辆数之差,即1,ti ik t i y y d +∆=-,ti d 表示第t 天代理点i 的车辆需求量。