《可靠性工程》
- 格式:doc
- 大小:66.50 KB
- 文档页数:5
可靠性工程北交《可靠性工程》在线作业二一,单选题1. 建立可靠性框图的目的是()。
A. 方便观察B. 检测系统C. 建立数学模型D. 产品需要?正确答案:C2. 工程中失效率与时间关系曲线有各种不同的形状,典型的失效曲线呈()。
A. 抛物线状B. 直线状C. 斜线状D. 浴盆状?正确答案:D3. C=A∩B是()A. 并集B. 交集C. 补集D. 合集?正确答案:B4. ()是保持产品可靠性的基础。
A. 有效性B. 贮存寿命C. 广义可靠性D. 狭义可靠性?正确答案:D5. 机械结构可靠性设计又称为( ).A. 机械设计B. 产品设计C. 概率设计D. 可靠性设计?正确答案:C6. 故障树分析的简写是()。
A. FTAB. FATC. AFTD. TAF?正确答案:A7. 当其中任何一个单元失效时,都会引起系统失效的路集称为()。
A. 最小路集B. 最小割集C. 最小交集D. 最小子集?正确答案:A8. 在一般网络可靠性模型中,用一定函数式来表示部件的两态对系统两态的影响,这个函数式称为()。
A. 函数B. 态函数C. 网络函数D. 结构函数?正确答案:D9. 可靠性预测的方法中,最常用的是()。
A. 相似设备法B. 有源组件估计C. 计数法D. 应力分析法?正确答案:C10. 产品在单位时间内失效的概率称为()。
A. 可靠度B. 累计失效概率C. 失效率D. 失效概率密度?正确答案:D11. 产品在规定的条件下合规定的时节内完成规定的功能的概率称为产品的()A. 稳定性B. 重要性C. 可靠性D. 物理性?正确答案:C12. 失效率单位有菲特,1菲特等于()/h。
A. 10的5次方B. 10的负5次方C. 10 的9次方D. 10的负9次方?正确答案:C13. 可靠性寿命特征最重要的是()。
A. 平均寿命B. 可靠寿命C. 特征寿命D. 中位寿命?正确答案:A14. 为了提高系统的可靠性,还可以贮备一些单元,以便工作失效时,立即能由贮备单元接替,称为()。
可靠性工程参考答案可靠性工程参考答案可靠性工程是一门涉及产品、系统或服务在特定环境下正常运行的科学与技术。
它的目标是提高产品的可靠性,减少故障和维修成本,提高用户满意度。
在可靠性工程中,有一些关键的概念和方法,下面将对其进行详细介绍。
1. 可靠性的定义与度量可靠性是指产品或系统在规定的时间和环境条件下,能够正常运行的能力。
它可以通过可靠性度量来进行评估。
常用的可靠性度量指标包括故障率、平均无故障时间(MTTF)、平均故障间隔时间(MTBF)等。
故障率是指在单位时间内发生故障的概率,MTTF是指平均无故障时间,MTBF是指平均故障间隔时间。
2. 可靠性设计与可靠性增长可靠性设计是指在产品或系统的设计过程中,通过合理的设计和选择材料、零部件等,以提高产品或系统的可靠性。
可靠性增长是指通过对产品或系统的故障数据进行分析和改进,不断提高其可靠性。
可靠性设计和可靠性增长是可靠性工程的重要内容,它们可以有效地减少故障率,延长产品的寿命。
3. 可靠性测试与可靠性预测可靠性测试是通过对产品或系统进行实验、模拟或观察,以评估其可靠性。
可靠性测试可以通过加速寿命试验、可靠性试验等方法进行。
可靠性预测是通过对产品或系统的设计和使用环境等因素进行分析和计算,以预测其未来的可靠性。
可靠性测试和可靠性预测是评估产品或系统可靠性的重要手段。
4. 可靠性维修与可靠性改进可靠性维修是指在产品或系统出现故障时,通过维修和更换零部件等手段,使其恢复正常工作状态的过程。
可靠性维修可以通过故障树分析、故障模式与影响分析等方法进行。
可靠性改进是指通过对产品或系统的故障数据进行分析,找出故障的原因,并采取相应的措施,以减少故障的发生。
可靠性维修和可靠性改进是提高产品或系统可靠性的重要手段。
5. 可靠性工程的应用领域可靠性工程广泛应用于各个领域,如航空航天、电力、交通、通信、制造等。
在航空航天领域,可靠性工程可以提高飞机、火箭等的可靠性,确保飞行安全。
可靠性工程简介可靠性工程是一门研究和应用工程技术的学科,旨在提高产品或系统在特定条件下的可靠性。
可靠性工程师通过分析产品或系统的故障模式和故障根本原因,设计和改进工程技术以提高产品或系统的可靠性,并采取措施防止故障的发生。
本文将介绍可靠性工程的基本原则、方法和工具,以及在实际应用中常见的挑战和解决方案。
可靠性工程的原则可靠性工程遵循以下几个基本原则:1.系统思维:可靠性工程师需要全面理解整个系统的运行原理和各个组件之间的相互影响。
只有通过深入了解系统的各个方面,才能准确地评估和改进系统的可靠性。
2.数据分析:可靠性工程师需要收集和分析各种数据,包括故障数据、维修数据、测试数据等,以理解和识别问题的根本原因。
通过数据分析,可靠性工程师可以找出故障模式和故障的频率,并制定相应的改进方案。
3.风险评估:可靠性工程师需要对系统的每个部分进行风险评估,确定关键的故障点和可能导致故障的条件。
通过确定风险,可靠性工程师可以制定预防措施,并在故障发生时采取适当的纠正措施。
4.改进持续性:可靠性工程是一个不断改进的过程。
可靠性工程师需要持续地监测和评估系统的可靠性,并根据实际情况调整和改进工程技术。
只有通过持续的改进,系统的可靠性才能不断提高。
可靠性工程的方法和工具可靠性工程师使用各种方法和工具来评估和改进系统的可靠性。
以下是一些常用的方法和工具:故障模式和效应分析(FMEA)故障模式和效应分析(Failure Mode and Effects Analysis,简称FMEA)是一种用于识别和评估系统故障模式和故障的影响的方法。
通过FMEA,可靠性工程师可以确定系统中的潜在故障模式和导致故障的主要原因,并制定相应的措施来防止故障的发生。
可靠性测试可靠性测试是一种通过实验和测试来评估产品或系统的可靠性的方法。
通过对产品或系统进行各种条件下的测试,可靠性工程师可以了解产品或系统在不同条件下的性能,并识别潜在的故障点。
可靠性工程简介可靠性工程(Reliability Engineering)是一种发展于20世纪60年代的工程学科,旨在提高产品、系统或过程在规定时间内正常运行的能力。
可靠性工程的目标是通过识别和消除故障源,优化设计和维护流程,提高产品和系统的可靠性和可用性。
可靠性工程的重要性在当今高度竞争的市场环境中,产品和系统的可靠性变得越来越重要。
用户对产品和系统的可靠性要求越来越高,一旦出现故障,可能会导致严重的经济和声誉损失。
通过进行可靠性工程分析和实施相应的改进措施,可以帮助组织降低故障率,提高产品和系统的可靠性和安全性,增强竞争力。
可靠性工程的方法和工具故障模式和影响分析(Failure Mode and Effects Analysis,FMEA)故障模式和影响分析是一种用于确定和评估系统故障模式及其潜在影响的方法。
它通过分析故障模式和确定可能的影响,以确定哪些故障模式是最具风险的,并制定相应的预防和纠正措施。
可靠性数据分析可靠性数据分析是通过收集和分析产品或系统的可靠性数据,识别故障模式、计算故障率、评估可靠性指标等,从而评估产品或系统的可靠性。
常用的可靠性数据分析方法包括故障率分析、可靠度增长分析、可靠度预测和可靠度测试等。
可靠性测试可靠性测试是一种通过将产品或系统暴露在实际使用环境中或模拟实际使用环境的试验台上,以评估其可靠性和耐久性的方法。
通过可靠性测试可以发现产品或系统的设计缺陷,评估其在不同环境条件下的性能,并为改进设计和制造过程提供数据支持。
维护优化维护优化是通过分析维护活动的数据和指标,优化维护策略,提高设备的可靠性和可用性的方法。
维护优化可以帮助组织降低维护成本,提高设备的寿命和性能,减少故障率。
可靠性工程的应用领域可靠性工程广泛应用于各个行业和领域,包括制造业、航空航天、能源、交通运输、医疗设备等。
在这些领域,可靠性工程可以帮助组织降低实际故障率,提高产品和系统的可靠性和安全性,优化维护策略,降低维护成本。
可靠性工程》复习总结一、名词、术语解释(1)可靠性的概念(经典定义;“狭义可靠性”):产品在规定条件下和规定时间内完成规定功能的能力;这种能力以概率表示,故可靠性又称:可靠度。
(2)有效性:可维修产品在某时刻具有维持规定功能的能力。
(3)维修性:在规定条件下使用的产品在规定的时间内,按规定的程序和方法进行维修时,保持或恢复到能完成规定功能的能力。
(4)上述(1)、(3)合起来称为(2)。
(5)贮存寿命:在规定的贮存条件下,产品从开始贮存到丧失其规定功能的时间。
(6)可靠性三大指标:狭义可靠性、有效性、贮存寿命。
(7)产品的可靠性:指产品全寿命周期的可靠性,与设计、制造、使用密切相关。
(8)各个阶段对可靠性的影响大小:1)设计:50%——60%;2)制造:20%——30%(固有可靠性);3)使用:20%——30%(使用可靠性:与安装、操作使用、维修保障有关)。
(9)综合性:包括耐久性、无故障性、维修性、可用性、保障性、经济性。
(10)故障树分析法(FTA):由上而下,假设系统失效,分析其可能的原因。
FTA以顶事件(系统不希望发生)为分析目标,逐层向下推溯所有可能的原因,且每层推溯其直接原因,从而找出系统内可能存在的元件失效、环境影响、人为失误以及程序处理等硬件和软件因素(各种底事件)与系统失效(顶事件)之间的逻辑关系,并用倒立树状图形表示出来。
再定性分析各底事件对顶事件发生影响的组合方式和传播途径,识别可能的系统故障模式,以及定量计算这种影响的轻重程度,算出致使系统失效的概率。
故障树分析法(FTA的优缺点:优点:加深对系统的全面了解,能用于研究特殊的故障问题;可研究环境及人为失误等因素的影响;是一种图示的分析方法,是逻辑推理方法;可进行定性与定量分析;能给设计、使用及维修提供改进、故障诊断的工具。
缺点:工作量大,时间、经济消耗大;结果不易检查,容易有疏忽或遗漏;对多态事件难以处理,对储备和可修复系统难以分析。
《可靠性工程》教学大纲
课程代码:080642008
课程英文名称:Reliability Engineering
课程总学时:40 讲课:40 实验:0 上机:0
适用专业:安全工程
大纲编写(修订)时间:2010年8月26日
一、大纲使用说明
(一)课程的地位及教学目标
随着科学技术的发展,产品的结构和功能日趋复杂化和多样化,致使对产品质量的要求逐渐从与时间无关的性能参数发展到与时间有关的可靠性指标,即要求产品在规定的条件下和规定的时间内,具有完成规定功能的能力。
人们愈来愈认识到可靠性是保证产品质量的关键。
尤其是我国加入WTO以后,机电产品将面临严峻的挑战,推行可靠性技术迫在眉睫。
通过该课程的学习,使学生掌握如下内容:
(1)可靠性的基本概念、原理和计算方法等知识;
(2)结合工程实际,使学生体会和掌握可靠性基本理论和分析解决工程实际问题的基本方法;
(3)可靠性管理的基本知识,为可靠性工程理论的进一步研究和实际应用打下基础。
(二)知识、能力及技能方面的基本要求
1.基本知识:了解可靠性概念等基本知识。
2.基本理论和方法:掌握维修系统与不可维修系统等基本原理,熟悉计算维修系统与不可维修系统可靠度等基本方法。
3.基本技能: 可靠性试验的类型、试验方案设计等基本技能。
(三)实施说明
1.教学方法:课堂教学过程中,重点讲授基本原理、基本概念和基本方法的讲解,并通过以下三种方法进行教学:
第一层次:原理性教学方法。
解决教学规律、教学思想、新教学理论观念与学校教学实践直接的联系问题,是教学意识在教学实践中方法化的结果。
如:启发式、发现式、注入式方法等。
第二层次:技术性教学方法。
向上可以接受原理性教学方法的指导,向下可以与不同学科的教学内容相结合构成操作性教学方法,在教学方法体系中发挥着中介性作用。
例如:讨论法、读书指导法等。
通过以上的教学,使学生思考问题、分析问题和解决问题的能力大大提高,进而培养学生自主学习的能力,为以后走入社会奠定坚实的基础。
2.教学手段:本课程属于专业课,在教学中采用电子教案、CAI课件及多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。
(四)对先修课的要求
无。
(五)对习题课的要求
对习题课的要求(2学时):掌握可靠性基本概念、可维修系统与不可维修系统等基本知识。
(六)课程考核方式
1、考核方式:考查。
2.考核目标:在考核学生对可靠性基本知识、基本原理和方法的基础上,重点考核学生的分析问题能力、解决问题能力等。
3、成绩构成:平时成绩与期末考试成绩共同评定为课程总成绩:①平时成绩(作业、出勤等)占总成绩的20%;②期末考查占总成绩的80%。
(七)主要参考书目:
1、《可靠性工程基础》,赵涛等,天津大学出版社,1999
2、《可靠性工程技术》,姜兴渭等,哈尔滨工业大学大学出版社,2005
二、中文摘要
本课程是为安全工程专业本科生开设的一门专业选修课,是提高系统(或产品或元器件)在整个寿命周期内可靠性的一门有关设计、分析、试验的工程技术,主要包括:可靠性的基本概念、产品的寿命特征、产品的广义可靠性指标、不修系统的基本模型、最小路集法与最小割集法、维修度的计算等知识。
三、课程学时总体分配表
四、大纲内容
第1部分可靠性基本知识
总学时(单位:学时)8 讲课:8 实验:0 上机:0第1.1部分可靠性的基本概念(2学时)
具体内容:
可靠性的基本概念
第1.2部分产品的失效分布(2学时)
产品的寿命特征
第1.3部分产品的广义可靠性指标(2学时)具体内容:
产品的广义可靠性指标
第1.4部分产品的失效分布(2学时)
具体内容:
失效分布
重点:
可靠性的基本概念、失效分布
难点:
产品的广义可靠性指标
第2部分不修系统的可靠性
总学时(单位:学时)4 讲课:4 实验:0 上机:0第2.1部分相关系统(2学时)
具体内容:
(1)相关系统的基本概念
(2)相关系统的主要内容
第2.2部分不修系统的基本模型(2学时)具体内容:
(1)不修系统的基本概念
(2)不修系统的基本模型
重点:
相关系统的基本概念、相关系统的主要内容、难点:
不修系统的基本模型
第3部分不修网络系统的可靠性
总学时(单位:学时)8 讲课:8 实验:0 上机:0第3.1部分布尔真值表达(2学时)
具体内容:
布尔真值表达
第3.2部分概率分析法与概率图法(2学时)具体内容:
(1)概率分析法
(2)概率图法
第3.3部分最小路集法与最小割集法(2学时)
具体内容:
(1)最小路集法
(2)最小割集法
第3.4部分全概率分解法与用Bayes公式简化网络(2学时)具体内容:
(1)全概率分解法
(2)用Bayes公式简化网络
重点:
布尔真值表达、概率分析法、最小路集法、最小割集法、全概率分解法难点:
概率图法、用Bayes公式简化网络
第4部分可修系统的可靠性
总学时(单位:学时)8 讲课:8 实验:0 上机:0
第4.1部分随机过程概念(2学时)
具体内容:
随机过程概念
第4.2部分马尔可夫过程(2学时)
具体内容:
(1)马尔可夫过程具体分析
(2)马尔可夫过程的基本内容
第4.3部分串联系统(2学时)
具体内容:
(1)串联系统概念
(3)串联系统可靠度计算
第4.4部分并联系统(2学时)
具体内容:
(1)并联系统概念
(2)并联系统可靠度计算
第4.5部分 k/n(G)系统(2学时)
具体内容:
(1)k/n(G)系统
(2)k/n(G)系统可靠度计算
重点:
随机过程概念、串联系统可靠度计算、并联系统可靠度计算
难点:
马尔可夫过程
第5部分可靠性增长
总学时(单位:学时)2 讲课:2 实验:0 上机:0
第5.1部分求可靠性增长曲线的经典方法
具体内容:
求可靠性增长曲线的经典方法
第5.2部分可靠性增长的Bayes方法
具体内容:
可靠性增长的Bayes方法
第6部分维修性工程
总学时(单位:学时)6 讲课:6 实验:0 上机:0
第6.1部分维修性的基本概念(2学时)
具体内容:
维修性的基本概念
第6.2部分维修性的数学模型与维修度的计算(2学时)
具体内容:
(1)维修性的数学模型
(2)维修度的计算
第6.3部分维修方式与维修时限(2学时)
具体内容:
(1)维修方式
(2)维修时限
重点:
维修性的基本概念、维修方式、维修性的数学模型、维修度的计算
难点:
维修时限
编写人:李德顺
张敏革
王奕
审核人:崔岳峰
批准人:赵平(注:可编辑下载,若有不当之处,请指正,谢谢!)。