人教版-数学-七年级上册-《代数式》典型例题
- 格式:doc
- 大小:181.50 KB
- 文档页数:5
一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)②.以上表中的价格均不包括1元/吨的污水处理费(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.【答案】(1)解:该用户12月份应缴水费是15×2.2+5×3.3+20=69.5(元)(2)解:①m≤15吨时,所缴水费为2.2m元,②15<m≤25吨时,所缴水费为2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③m>25吨时,所缴水费为2.2×15+3.3×(25﹣15)+(m﹣25)×4.4=(4.4m﹣110)元.【解析】【分析】(1)该用户12月份应缴水费三两部分构成:不超过15吨的水费+超过15吨不超过25吨的9吨的水费+20吨的污水处理费,列代数式求解即可。
新人教版(2024版)第三章代数式课时作业3 3.1.3 反比例关系班级 姓名 家长签名 年 月 日 知识要点:像这样,两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系如果用字母x 和y 表示两个相关联的量,用k 表示它们的积(k 是一个确定的值,且k ≠0),反比例关系可以用xy=k 或y= kx 来表示,其中k 叫作比例系数 同步练习 一、选择题1.下面各式中,表示x 和y 成反比例的是( ) A .x +y =6B .x =6+yC .x2=3yD .y =6x2.下面每个选项中的两种量成反比例关系的是( ) A .路程一定,速度和时间 B .圆柱的高一定,体积和底面积 C .被减数一定,减数和差 D .圆的半径和它的面积3.若5:x =y :3,则x 和y 成( ) A .正比例B .反比例C .不成比例D .无法判断4.如表中x 和y 两个量成反比例关系,则“△”处应填( )x 7 △ y514A .19.6B .2.5C .3.55.长方形的长和宽( ) A .成正比例B .成反比例C .不成比例6.下面两种量是反比例关系的是( ) A .圆的圆周率和半径B .圆柱体的底面积一定,体积和高C.一个房间铺地砖,每块地砖的面积和地砖数量D.一辆车的速度一定,路程和时间7.小明从家里去学校,所需时间与所行速度()A.成正比例B.成反比例C.不成比例D.以上都不对二.填空题8.修建一条1000米的公路,工作效率与工作时间成比例(填“正”,“反”).9.如果y=x4,则x和y成比例;如果y=4x,则x和y成比例.10.在100米赛跑中,时间和速度成比例;分数值一定时,分子和分母成比例.11.如果m:n=a,当n一定时,m和a成比例;当m一定时,a和n成比例.(m、n、a均有意义)12.当xy−6.7=3.3时,x和y成比例;当xy=1时,x和y成比例.13.n=3m,m和n成比例;若a×3=b×5,则a:b=.14.如果xy=5,那么x和y成比例.15.圆柱的体积一定,底面积和高成反比例.(判断对错)三.解答题16.判断下列各题中的两个量是否成反比例关系,并说明理由:(1)200名同学参加队列操表演,按每排人数相等的规定排列,每排的人数与排数;(2)三角形的面积是6cm2,它的一条边的长与这条边上的高:(3)张华每小时可以制作120朵小红花,她制作的小红花朵数与制作时间是否乘反比例关系,并说明理由。
人教版七年级数学上册《第三章代数式》单元测试卷及答案【主干体系建】思维导图扫描考点【中考层级练】真题链接实战演练基础知识的应用1.用代数式表示:a与3的差的2倍.下列表示正确的是( )A.2a-3B.2a+3C.2(a-3)D.2(a+3)2.(2023·泰州中考)若2a-b+3=0,则2(2a+b)-4b的值为.3.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a元,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花元.基本技能(方法)、基本思想的应用4.(2023·常德中考)若a2+3a-4=0,则2a2+6a-3= ( )A.5B.1C.-1D.05.(2023·牡丹江中考)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是( )A.92B.87C.83D.786.(2023·重庆中考)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是 ( )A .39B .44C .49D .547.(2023·娄底中考)从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,称从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示,C n m =n(n -1)(n -2)…(n -m+1)m(m -1)…1(n ≥m ,n ,m 为正整数);例如:C 52=5×42×1,C 83=8×7×63×2×1,则C 94+C 95= ( )A .C 96B .C 104 C .C 105D .C 106 8. (2023·广元中考)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 .实际生活生产中的应用9.(2024·潍坊期末)某商店去年12月份利润为a 元,今年1月份利润预计比去年12月份增加50%还多1 000元,则今年1月份利润预计为 ( )A .50%(a +1 000)元B .(50%a +1 000)元C .(150%a +1 000)元D .150%(a +1 000)元10.(2024·贵阳南明区期末)吕阿姨买了一套新房,她准备将地面全铺上地板砖,这套新房的平面图如图所示(单位:m),请解答下列问题:(1)用含a ,b 的代数式表示这套新房的面积;(2)若每铺1 m 2地板砖的费用为90元,当a =5,b =6时,求这套新房铺地板砖所需的总费用.参考答案【中考层级练】真题链接实战演练基础知识的应用1.用代数式表示:a与3的差的2倍.下列表示正确的是(C)A.2a-3B.2a+3C.2(a-3)D.2(a+3)2.(2023·泰州中考)若2a-b+3=0,则2(2a+b)-4b的值为-6.3.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a元,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花(4a+10b)元.基本技能(方法)、基本思想的应用4.(2023·常德中考)若a2+3a-4=0,则2a2+6a-3= (A)A.5B.1C.-1D.05.(2023·牡丹江中考)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是(C)A.92B.87C.83D.786.(2023·重庆中考)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是 (B)A .39B .44C .49D .547.(2023·娄底中考)从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,称从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示,C n m =n(n -1)(n -2)…(n -m+1)m(m -1)…1(n ≥m ,n ,m 为正整数);例如:C 52=5×42×1,C 83=8×7×63×2×1,则C 94+C 95= (C)A .C 96B .C 104 C .C 105D .C 106 8. (2023·广元中考)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 21 .实际生活生产中的应用9.(2024·潍坊期末)某商店去年12月份利润为a 元,今年1月份利润预计比去年12月份增加50%还多1 000元,则今年1月份利润预计为 (C)A .50%(a +1 000)元B .(50%a +1 000)元C .(150%a +1 000)元D .150%(a +1 000)元10.(2024·贵阳南明区期末)吕阿姨买了一套新房,她准备将地面全铺上地板砖,这套新房的平面图如图所示(单位:m),请解答下列问题:(1)用含a ,b 的代数式表示这套新房的面积;(2)若每铺1 m 2地板砖的费用为90元,当a =5,b =6时,求这套新房铺地板砖所需的总费用.【解析】(1)由题图可得,新房的面积为(a2+2a+4b)m2. (2)当a=5,b=6时a2+2a+4b=52+2×5+4×6=25+10+24=59(m2)所以这套新房铺地板砖所需的总费用为59×90=5 310(元).。
人教版数学七年级上《代数式》测试题(答案)代数式一、选择题(每题3分,共30分)1.下列各式子中,符合代数式书写要求的是()。
C)x + 3千米(D)ab•32.下列各式不是同类项的是()。
C)ab与3ab3.下列各式正确的是()。
D)23x(3x2)4.单项式2ab的次数是()。
B) -25.一个三位数,a表示百位数,b表示十位数,c表示个位数,那么这个三位数可表示为()。
D) 100a + 10b + c6.在排成每行七天的日历表中取下一个3×3方块(如图)。
若所有日期数之和为189,则n的值为:B)117.若k为自然数,xy与xk3y3是同类项,则满足条件的k值有()。
C) 3个8.长方形的一边长等于3a + 2b,另一边比它小a b,那么这个长方形的周长是()。
A) 10a + 6b9.代数式a3a7a7与32a3a a的和是()。
B) 偶数10.如果A是三次多项式,B是三次多项式,那么A+B一定是()。
C) 三次多项式二、填空题。
(每题3分,共24分)11.实数a(a≠0)的相反数的倒数是-1/a。
12.a,b两个数在数轴上表示如右图,则表示这两个数的两点之间的距离是|a-b|。
13.单项式πr的系数是-π,次数是1.14.多项式a-2a2+1的最高次项是-2a2,最高次项的系数是-2.15.一年期的存款的年利率为p%,利息个人所得税的税率为20%。
某人存入的本金为a元,则到期支出时实得本利和为(1+p%×0.8)a。
16.2a4b3与a b的2倍是3a-6b-6.17.已知多项式ax+bx+cx+9,当x=-1时,多项式的值为17.则该多项式当x=1时的值是3a+3b+2c+9.18.已知甲、乙两种糖果的单价分别为x元/千克和12元/千克。
为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y千克乙种糖果混合而成的什锦糖的单价应为(20x+y*12)/(20+y)元/千克。
2024-2025学年人教版七年级数学上册《第3章代数式》单元同步练习题(附答案)一、单选题1.下列式子,符合代数式书写格式的是()A.2B.283C.×7D.+人2.下列各式中是代数式的是()A.2−2=0B.6C.4>3D.5−2≠0 3.“4与x的平方的积”可表示为()A.4B.42C.16D.1624.一本笔记本原价a元,降价后比原来便宜了b元,小玲买了3本这样的笔记本,比原来便宜了()A.3−元B.3−元C.3元D.3元5.若=5,=2,且B<0,则−的值为()A.7B.3或−3C.3D.7或36.(代数式应用)一个两位数,十位上的数字是a,个位上的数字是6,表示这个两位数的式子是()A.6B.60+C.6+D.6+107.已知式子−3的值是3,则式子1−3+9的值是().A.−8B.−6C.6D.88.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.15B.17C.19D.24二、填空题9.试写出一个含x的代数式:当=3时,它的值为−5.这个代数式可以是.10.若s互为相反数,是最大的负整数,则3+3−4=.11.学校买来6个足球,每个元,又买来个篮球,每个58元,6+58表示.12.当=2时,整式B3+B−1的值等于−19,那么当=−2时,整式B3+B−1的值为.13.小强购买绿、橙两种颜色的珠子串成一条手链,已知绿色珠子m个,每个2元,橙色珠子n个,每个5元,那么小强购买珠子需花费元.14.一组按规律排列的代数式:+2,2−23,3+25,4−27,…,则第10个式子是.15.观察下列各式:22−2×1=1+1,32−2×2=4+1,42−2×3=9+1,52−2×4= 16+1,…,第n个等式是.16.在如图所示的运算程序中,若开始输入的x的值为36,我们发现第1次输出的结果为18,第2次输出的结果为9,……,则第2023次输出的结果为.三、解答题17.当=−2,=3时,求下列代数式的值:(1)3(−p;;(3)(−p2;(4)(B)2;(5)2+2.18.回答下列问题:(1)小明每季度有零花钱a元,拿出b元捐给爱心基金,平均每月剩余的零花钱是多少?(2)七年级(1)班共有a名学生,其中有b名男生,男生的三分之一去参加篮球比赛了,班级剩余多少人?(3)某种汽车油箱装满后有油Y,每小时耗油Y,行驶了3h,油箱剩余油量是多少?(4)某商品原价每件a元,商场打折,现价每件b元,现买3件可以省多少元?19.已知,如图,某长方形广场的四角都有一块边长为米的正方形草地,若长方形的长为米,宽为米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.20.如图,两摞规格完全相同的课本整齐叠放在讲台上.请根据图中所给出的数据信息,回答下列问题:(1)每本课本的厚度为cm ;(2)若有一摞上述规格的课本x 本,整齐叠放在讲台上,请用含x 的代数式表示出这一摞数学课本的顶部距离地面的高度;(3)当=55时,若从中取走13本,求余下的课本的顶部距离地面的高度.21.11×2=1−12,12×3=12−13,13×4=13−14,14×5=14−15=⋯(1)第5个式子是_______;第个式子是_______.(2)从计算结果中找规律,利用规律计算:11×2+12×3+13×4+14×5+⋯+12020×2021=_______;(3)计算:(由此拓展写出具体过程):①11×3+13×5+15×7+⋯+199×101;②1−12−16−112−⋯−19900.22.【实践与应用】学校举办诗歌颂祖国活动,需要定制一批奖品颁发给表现突出的同学,每份奖品包含纪念徽章与纪念品各一个,现有两家供应商可以提供纪念徽章设计、制作和纪念品制作业务,报价如下:纪念徽章设计费纪念徽章制作费纪念品费用甲供应商300元3元/个18元/个乙供应商免设计费6元/个不超过100个时,20元/个;超过100个时,其中100个单价仍是20元/个,超出部分打九折(1)若学校需要定制20份奖品,则选甲供应商需要支付____________元,选乙供应商需要支付____________元;(2)现学校需要定制>100份奖品.若选择甲供应商,需要支付的费用为元;(用含的代数式表示,结果需化简)若选择乙供应商,需要支付的费用为元;(用含的代数式表示,结果需化简)(3)如果学校需要定制150份奖品,请你通过计算说明选择哪家供应商比较省钱.参考答案:题号12345678答案A B B D A D A D1.解:A、2符合代数式书写格式,故此选项符合题意;B、的系数应该为假分数,故此选项不符合题意;C、数字7应该在字母的前面,乘号省略,故此选项不符合题意;D、+应该加上括号,故此选项不符合题意;故选:A.2.解:、2−2=0不是代数式,不符合题意;B、6为代数式,符合题意;C、4>3不是代数式,不符合题意D、5−2≠0不是代数式,不符合题意.故选:B.3.解:的平方可以写成2,再与4的积,可以写成42,故选:B.4.解:一本笔记本原价元,降价后比原来便宜了元,则三本便宜了3元,故选:D.5.解:∵=5,=2,∴=±5,=±2,∵B<0,∴、异号,∴=5,=−2或=−5,=2,①当=5,=−2时,−=5−−2=5+2=7;②当=−5,=2时,−=−5−2=−7=7,综上所述,−的值为7.故选:A.6.解:10×+1×6=10+6;故选:D.7.解:∵式子−3的值是3,∴−3=3,∴1−3+9=1−3−3=1−3×3=1−9=−8.故选:A.8.解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4−1个(>1时),则第⑦个图中三角形的个数是4×7−1=24个,故选:D.9.解:依题意,满足题意的代数式可以是−8,故答案为:−8(答案不唯一).10.解:∵s互为相反数,是最大的负整数,∴+=0,=−1,∴3+3−4=3+−4=3×0−4×−1=4,故答案为:4.11.解:6+58表示买来6个足球和个篮球一共花多少钱,故答案为:买来6个足球和个篮球一共花多少钱.12.解:∵当=2时,整式B3+B−1的值为−19,∴8+2−1=−19,即8+2=−18,则当=−2时,原式=−8−2−1=18−1=17,故答案为:1713.解:∵绿色珠子每个2元,橙色珠子每个5元,∴小强购买珠子共需花费2+5元.故答案为:2+5.14.解:∵当n为奇数时,−1r1=1;当n为偶数时,−1r1=−1,∴第n个式子是:+−1r1⋅22K1.当=10时,代数式为:10−219故答案为:10−21915.解:∵22−2×1=1+1=12+1,32−2×2=4+1=22+142−2×3=9+1=32+1,52−2×4=16+1=42+1,…,∴第n个等式为:(+1)2−2=2+1.故答案为:(+1)2−2=2+1.16.解:第1次输出的结果为18,第2次输出的结果为12×18=9,第3次输出的结果为9+3=12,第4次输出的结果为12×12=6,第5次输出的结果为12×6=3,第6次输出的结果为3+3=6,第7次输出的结果为12×6=3,…,如此循环,从第4次开始第偶次输出的是6,第奇次输出的是3.第2023次输出的结果为3.故答案为:3.17.解:(1)3−=3×−2−3=−15(2=−3=49(3)−2=−2−32=25(4)B2=−2×32=36(5)2+2=−22+32=4+9=1318.(1)解:小明每季度有零花钱a元,拿出b元捐给希望工程,一个季度有3个月,则平均每月剩余零花钱K3元;(2)解:七年级(1)班共有a名学生,其中有b名男同学,男生的三分之一去参加篮球比赛,则班里还有−13人;(3)解:某种汽车油箱装满后有油Y,每小时耗油Y,行驶了3h,油箱剩余油量−3L;(4)解:某商品原价每件a元,商场打折,现价每件b元,现买3件可以省3−元.19.(1)解:∵某长方形广场的四角都有一块边长为米的正方形草地,若长方形的长为米,宽为米.∴由图可得,阴影部分的面积是(B−42)平方米;(2)解:当=20,=10,=1时,B−42=20×10−4×12=200−4=196(平方米),即阴影部分的面积是196平方米.20.(1)解:根据题意,得三本书的高度为88−86.5=1.5cm,故每本课本的厚度为1.5÷3=0.5cm,故答案为:0.5.(2)解:∵三本书的高度为88−86.5=1.5cm,∴桌子距离地面的高度为86.5−1.5=85cm,∵每本课本的厚度为0.5cm,∴x本的高度为0.5vm,∴距离地面的高度为0.5+85cm.(3)解:根据题意,得x本书顶部距离地面的高度为0.5+85cm,故当=55−13=42时,0.5+85=106cm.21.(1)解:∵11×2=1−12,12×3=12−13,13×4=13−14,14×5=14−15,∴第5个式子是:15×6=15−16;=11r1;第故答案为:15×6=15−16;=1−1r1;(2)解:1111+⋯1=1−2+23++ (2020)=1−12+12−13+13−14+…+12020−12021=1−12021=20202021;(3)解:①11×3+13×5+15×7+1=1313−15+…+199=2=50101.②1−12−16−112−⋯−19900=1−11×212×3−13×4−⋯−199×100=1−212×3+13×4+⋯+99=1−1−1212−13+13−14+⋯+199=1−1−100=1−1+1100=1100.22.(1)解:学校需要定制20份奖品,则选甲供应商需要支付:300+20×3+20×18=720(元),学校需要定制20份奖品,则选乙供应商需要支付:20×6+20×20=520(元).故答案为:720,520.(2)解:选择甲需要支付费用:300+3+18=21+300元;选择乙需要支付费用:当不超过100个时,4.5+20=24.5(元),当超过100个时,6+20×100+20×90%−100=24+200元.故答案为:21+300,24+200.(3)解:当=150时,甲供应商:21+300=21×150+300=3450(元)乙供应商:24+200=24×150+200=3800(元)∵3450<3800∴选择甲供应商比较省钱.。
一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。
”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。
(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。
(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。
(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。
2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。
2.1整式——列代数式专项练习题一.选择题1.下列代数式书写正确的是()A.a4 B.m÷n C.D.x(b+c)2.代数式的意义是()A.x除以y加3B.y加3除xC.y与3的和除以xD.x除以y与3的和所得的商3.代数式x﹣y2的意义为()A.x的平方与y的平方的差B.x与y的相反数的平方差C.x与y的差的平方D.x减去y的平方的差4.若x表示某件物品的原价,则代数式(1+10%)x表示的意义是()A.该物品打九折后的价格B.该物品价格上涨10%后的售价C.该物品价格下降10%后的售价D.该物品价格上涨10%时上涨的价格5.下列代数式中符合书写要求的是()A.ab4 B.4x C.x÷y D.﹣a6.代数式的正确解释是()A.a与b的倒数的差的立方B.a与b的差的倒数的立方C.a的立方与b的倒数的差D.a的立方与b的差的倒数7.某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打6折B.原价打6折后再减去10元C.原价减去10元后再打4折D.原价打4折后再减去10元8.小明、小亮参加学校运动会800米赛跑:小明前半程的速度为2x米/秒,后半程的速度为x米秒,小亮则用米/秒的速度跑完全程,结果是()A.小明先到终点B.小亮先到终点C.同时到达D.不能确定9.已知点A,B,C,D在数轴上的位置如图所示,且相邻两点之间的距离均为1个单位.若点A表示数a,点D表示数d,且d=﹣2a,则与数轴的原点重合的点是()A.A B.B C.C D.D10.某水果批发市场规定,批发苹果重量不多于100kg时,批发价为2.5元/kg,批发苹果重量多于100kg时,超过的部分按批发价打八折.若某人批发苹果重量为x(x>100)kg 时,需支付多少现金,可列式子为()A.100xB.100x+2.5×0.8×(x﹣100)C.100×2.5+2.5×0.8×(x﹣100)D.x+2.5×(x﹣100)二.填空题11.若商场去年的总销售量为n,预计今年增加20%的销售量,则今年的销售量为.12.九年级某班同学,每人都会打篮球或踢足球,其中会打篮球的人数比会踢足球的人数多12人,两种都会的有8人,设会踢足球的有a人,则该班同学共有人(用含a的代数式表示).13.某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%.用含a的代数式表示该公司这两周共生产医用护目镜个.14.《孙子算经》是中国南北朝时期重要的数学专著,其中包含了“鸡兔同笼”“物不知数”等许多有趣的数学问题.《孙子算经》中记载:“今有物不知数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”其译文为:“有一个正整数,除以3余2,除以5余3,除以7余2,求符合条件的正整数.”请用含有k的代数式表示满足条件的所有正整数.15.今年5月1日,历时8年修复的太原古县城正式开城迎客.统计结果显示,太原古县城第一时段a天内共接待游客m万人次,第二时段b天内共接待游客3m万人次,则这两个时段内平均每天接待游客万人次.16.如图,一块长为m,宽为n的长方形草坪,上下开辟的花园,都是由等半径的两个四分之一圆和一个半圆组成,那么中间草坪的面积是.三.解答题17.如图是用总长为12米的篱笆围成的区域.此区域由面积均相等的三块长方形①②③拼成的,若FC=EB=x米.(1)用含x的代数式表示AB=米、BC=米;(2)用含x的代数式表示长方形ABCD的面积(要求化简).18.如图,在一条数轴上,点O为原点,点A、B、C表示的数分别是m+1,2﹣m,9﹣4m.(1)求AC的长;(用含m的代数式表示)(2)若AB=5,求BC的长.19.已知a,b,c,d四个数,a<b<c<d,满足|a﹣b|=|c﹣d|,其中n≥2且为正整数.(1)若n=2.①当b﹣a=1,d=5,求c的值;②给定有理数e,满足|b﹣e|=|c﹣d|,请用含a,b的式子表示e;(2)若f=|a﹣c|,g=|b﹣c|且|f﹣g|=|c﹣d|,求n的值.20.已知数轴上有A、B、C三点,分别表示有理数:﹣22,﹣2,8,动点P从A点出发,以每秒1个单位长度的速度向终点C运动,设点P运动时间为t秒.(1)填空:AB=,PA=,PC=.(可用含t的代数式表示)(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向终点C运动,请用含t的代数式表示P、Q两点之间的距离.21.求两位数的平方,可以用“列竖式”的方法进行速算,求解过程如图1.(1)仿照图1,补全图2的竖式;(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3,若这个两位数的十位数是a,用含a的代数式表示这个两位数.22.今年春季,三元土特产喜获丰收,某土特产公司组织10辆汽车装运甲,乙两种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一土特产,且必须装满,设装运甲种土特产的汽车有x辆,根据如表提供的信息,解答以下问题:土特产种类甲乙每辆汽车运载量4 3(吨)100 90每吨土特产利润(元)(1)装运乙种土特产的车辆数为辆(用含有x的式子表示);(2)求这10辆汽车共装运土特产的数量(用含有x的式子表示);(3)求销售完装运的这批土特产后所获得的总利润(用含有x的式子表示).。
代数式化简求值的三种考法类型一、整体代入求值【答案】【分析】根据一元一次方程的解的定义,将3x =代入2mx n −=,得出32n m −=−,代入代数式,即可求解.【详解】解:∵3x =是关于x 的一元一次方程2mx n −=的解, ∴32m n −=,即32n m −=− ∴265n m −+=()()2352251n m −+=⨯−+=,故答案为:1.【点睛】本题考查了一元一次方程解的定义,代数式求值,整体代入解题的关键. 例2.已知代数式232a b −+的值为4,则代数式 2628b a −+的值为( ) A .4 B .8−C .12D .4−【答案】A【分析】由代数式232a b −+的值为4,可知23a b −的值,再观察题中的两个代数式23a b −和2628b a −+,可以发现226282(3)8b a a b −+=−−+,代入即可求解.【详解】解:∵代数式232a b −+的值为4,∴2324a b −+=,即232a b −=,∴2628b a −+22(3)8a b =−−+228=−⨯+4=,故选:A .【点睛】此题主要考查了代数式求值,代数式中的字母没有明确告知,而是隐含在题设中,首先应从题设入手,寻找要求的代数式与题设之间的关系,然后利用“整体代入法”求代数式的值.例3.已知535y ax bx cx =++−,当3x =时,7y =,那么3x =−时,y =( ) A .-3 B .-7 C .-17 D .7【答案】C【分析】把3x =,7y =代入计算得5333312a b c ++=,然后把3x =−代入原式化简,利用整体代入法即可得到答案.【详解】解:∵535y ax bx cx =++−中,当3x =时,7y =,∴5333357a b c ++−=, ∴5333312a b c ++=,把3x =−代入535y ax bx cx =++−,得 533335y b c a =−−−−, 53(333)5a b c =−++−125=−− 17=−;故选择:C.【点睛】本题考查了求代数式的值,解题的关键是利用整体代入法进行解题.【分析】根据绝对值的性质,求出,a b 可能取得值,根据0a b −<确定,a b 的值,再代数求值. 【详解】解:5a =,18b −=,5a ∴=±,18b −=±, 5a ∴=±,9b =或7−, 0a b −<Q ,∴当5a =,9b =时,5914a b +=+=;当5a =−,9b =时,594a b +=−+=. 故a b +的值为4或14.【点睛】本题考查了绝对值与代数式求值,解决本题的关键在于根据绝对值的性质求出,a b 的值,然后分情况讨论.【分析】先根据多项式乘以多项式运算法则,将括号展开,再将2a b −=,5ab =代入进行计算即可. 【详解】解:()()()444416416a b ab a b ab a b −+=+−−=+−−,∵2a b −=,5ab =, ∴原式5421619=−⨯−=−.故答案为:19−.【点睛】本题主要考查了多项式乘以多项式,解题的关键是掌握多项式乘以多项式,把前面一个多项式的每一项分别乘以后面一个多项式的每一项. 【变式训练3】已知a +b =2ab ,那么232a ab ba ab b++−+=( )A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=,∴232a ab b a ab b ++−+=2()3a b ab a b ab +++−=2232ab ab ab ab ⨯+−=43ab ab ab +=7abab =7,故选:B .类型二、特殊值法代入求值例1.已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数. (1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x −时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值. 【答案】(1)0 (2)3e = (3) 6.5−【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1−,1,2−,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x −代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd =,且a b c d 、、、是互不相等的整数, ∴a b c d 、、、为1−,1,2−,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++ 43231111a b c d e =⨯+⨯+⨯+⨯+ 3a b c d e =++++ 30e =+27=,3e ∴=;(3)解:当=1x −时,4323ax bx cx dx e ++++()()()()43231111a b c d e =⨯−+⨯−+⨯−+⨯−+3a b c d e =−+−+14=,13a b c d ∴−+−=−, 0a b c d +++=, 6.5a c ∴+=−.【点睛】本题主要考查了求代数式的值,解题的关键是得出a b c d 、、、这四个数以及a b c d 、、、之间的关系.【变式训练1】已知()20211232021012320211x a a x a x a x a x +=++++⋅⋅⋅+,则20212020201920181a a a a a −+−+⋅⋅⋅+的值为 .【答案】1【分析】分别令=1x −、0x =代入,求得对应代数式的值,求解即可.【详解】解:令=1x −,则()202101232020202110x a a a a a a +=−+−+⋅⋅⋅−=+,令0x =,则()2021011x a +==,∴2021202020192018100a a a a a a −+−+⋅⋅⋅+−=, ∴2021202020192018101a a a a a a −+−+⋅⋅⋅+==.故答案为:1.【点睛】此题考查了求代数式的值,解题的关键是给x 赋值,得到对应代数式的值. 【变式训练2】若()665432654321021x a x a x a x a x a x a x a −=++++++,则5310a a a a ++−=______. 【答案】365−【详解】解:令x=0,代入等式中得到:()61−=a ,∴0=1a , 令x=1,代入等式中得到:65432101①=++++++a a a a a a a , 令x=-1,代入等式中得到:66543210(3)②−−−−=+++a a a a a a a ,将①式减去②式,得到:65311(3)2()−−+=+a a a ,∴536113)3642(−+=+=−a a a ,∴53103641365++−=−−=−a a a a , 故答案为:365−.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=; (3)取1x =−时,可以得到432106a a a a a −+−+=−;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x −+−+−+−+−+−+=.求:(1)0a 的值;(2) 6543210++++++a a a a a a a 的值; (3) 642a a a ++的值. 【答案】(1)4;(2)8;(3)0 【解析】(1)解:当1x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴0414a =⨯=;(2)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+①;当0x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432100+−++=−−a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=−=. 类型三、降幂思想求值例.若2230x x −+=,则3227122020x x x −++=_____; 【答案】2029【详解】解:∵2230x x −+=, ∴223x x −=−,∴3227122020x x x −++=x(2x2-4x -3x+12)+2020=x[2(x2-2x)-3x+12]+2020= x[2×(-3)-3x+12]+2020=x(-3x+6)+2020=-3(x2-2x)+2020=-3×(-3)+2020=9+2020=2029 故答案为:2029.【分析】根据已知得到2232022x x −=,再将所求式子变形为()()22232320222020x x x x x x =−+−−−,整体代入计算即可.【详解】解:∵22320220x x −−=, ∴2232022x x −=, ∴32220252020x x x −−−322232*********x x x x x =−+−−−()()22232320222020x x x x x x =−+−−−2022202220222020x x =+−−2=故答案为:2.【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键. 【变式训练2】如果2233x x −+的值为5,则2695x x −−的值为______. 【答案】1【详解】∵22335x x −+=,∴2232x x −=∴2695x x −−()23235x x =−−325=⨯−1=,故答案为:1. 【变式训练3】已知21x x +=,求43222023x x x x +−−+的值. 【答案】2022【分析】把所求式子变形成含已知的代数式,结合整体代入的思想解答即可.【详解】解:∵21x x +=, ∴43222023x x x x +−−+()22222023x x x x x =+−−+2222023x x x =−−+ 22023x x =−−+()22023x x =−++12023=−+2022=.【点睛】本题考查了代数式求值和整式的乘法,正确变形,灵活应用整体思想是解题的关键. 【变式训练4】已知210x x −−=,则3222021x x −++的值是______. 【答案】2022【详解】解:∵210x x −−=,∴230x x x −−=, ∴32210x x −+−=,∴3221x x −+=,∴3222021120212022x x −++=+=,故答案为:2022.课后训练1.已知2|1|(2)0x y −++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +−−++的值. 【答案】-2 【详解】解:()2120x y −++=,()21020x y −≥+≥,.10x ∴−=,20y += 1x ∴=,2y =−因为a 与b 互为倒数,所以1ab = 因为c 与d 互为相反数,所以0c d += ∴原式()()()321213c d =−−−++()311=−−=-2.2.已知23a bc +=,222b bc −=−.则22543a b bc +−的值是( ) A .23− B .7C .13D .23【答案】B【分析】将所求式子变形为()()22542a bc b bc ++−,再整体代入计算.【详解】解:∵23a bc +=,222b bc −=−, ∴22543a b bc +−225548a bc b bc =+−+()()22254a bc b bc =+−+()5342=⨯+⨯−158=−7=故选B .【点睛】本题考查了整式的加减,代数式求值,解题的关键是掌握整体思想的灵活运用. 3.已知21a a +=,那么3222023a a ++的值是( ) A .2021 B .2022 C .2023 D .2024【答案】D【分析】先将3a 降次为2a a −+,然后代入代数式,再根据已知条件即可求解. 【详解】解:∵21a a +=,∴21a a =−+,则32a a a =−+,∴3222023a a ++2222023a a a =−+++ 22023a a =++12023=+2024=,故选:D .【点睛】本题考查了已知代数式的值求代数式的值,解决本题的关键是要将未知代数式进行降幂.【分析】根据2330a a −−=得出233a a ∴−=,然后整体代入求解;【详解】2330a a −−=Q ,233a a ∴−=,∴()222021262320212320212015a a a a −+=−−+=−⨯+=,故答案为:2015.【点睛】本题考查了求代数式的值,根据已有的等式整体代入求值是解题的关键.【分析】根据互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,代入求值.【详解】解:由题意可知,互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,故原式20200(11)=−−.0=.故答案为:0.【点睛】本题考查相反数的性质,倒数的性质以及最大的负整数,熟练掌握知识点是解题的关键.【答案】【分析】先把1x =代入531ax bx cx +++,可得a b c ++的值,再把1x =−代入531ax bx cx +++得1a b c −−−+,变形后再次把a b c ++的值代入计算即可.【详解】把1x =代入531ax bx cx +++得,12023a b c +++=∴2022a b c ++=,再把1x =−代入531ax bx cx +++得()11a b c a b c −−−+=−+++20221=−+ 2021=−.【点睛】此题考查代数式求值,解题关键在于把x 的值代入和整体思想的应用.【答案】(1)37;17;(2)2n+【分析】(1)根据题意代入求值即可;(2)分别计算1(),()f n f n 的值,找到规律再求解【详解】(1)()2263661637f ==+; 221114417114f ⎛⎫⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫+ ⎪⎝⎭;(2)22222111(),()1111n n f n f n n n n ===+++1()()1f n f n \+=∴()()()()1111231231f f f f f f n f n ⎛⎫⎛⎫⎛⎫+++++⋅⋅⋅+++ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()1111231231f f f f f f n f n ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++⋅⋅⋅+++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦11122n n =+⨯=+.【点睛】本题考查了代数式求值,分式的计算,理解题意,找到1()()1f n f n +=是解题的关键.【答案】【分析】把2x x +当整体代入求值,通过两次代入即可得出最后结果.【详解】解:230+−=x x ,23∴+=x x ,32225x x x +−+ 32225x x x x =++−+()2225x x x x x =++−+23x x +=,∴原式2325x x x =+−+25x x =++ 35=+8=,故答案为:8.【点睛】本题考查分解因式的应用,同时也要熟练运用整体代入的方法,快速分析出所需代入的整体是解题的关键.9.已知24a +=,()214b −=,且0ab <,则a b +=______.【答案】1或-3【详解】∵24a +=,()214b −=,∴a+2=±4,b−1=±2,∴a=2或a=−6,b=3或b=−1;∵0ab <,∴a=2,b=−1或a=−6,b=3,当a=2,b=−1时,则2(1)1a b +=+−=;当a=−6,b=3时,则633a b +=−+=−;故答案为:1或-3.。
第三章代数式全章综合训练一、选择题(每小题5分,共40分)1[2024湖南湘潭期末]下列代数式中,书写规范的是 ( )A.112a B.a÷b C. a;3 D.-lab2[2024四川泸州龙马潭区质检]苹果原价是每千克x元,按八折优惠出售,下列代数式中表示现价正确的是 ( )A.8x元/千克B.0.8x元/千克C.2x元/千克D.0.2x元/千克3[2024河南郑州金水区校级调研]x,y是两种相关联的量,下面能表示x,y成正比例关系的是( )A.y=611x B.x12=1yC. x+y=10D.5x=y4[2024甘肃张掖校级期末]一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩(单位:分)为 ( )A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)5[2024江苏徐州期末]下列代数式,满足表中条件的是 ( )x 0 1 2 3代数式的值-3 -1 1 3A.-x-3.B.x²+2x−3C.2x-3D.x²−2x−36[2024辽宁抚顺期末]下列能用2a+4表示的是( )7[2024安徽合肥期末]如图是计算机程序的一个流程图,现定义:“x←x+2”表示把x+2的值作为x的值输入程序再次计算.比如:当输入x=2时,依次计算作为第一次“传输”,可得2×2=4,4-1= 3,3²=9,,9 不大于 2 024,所以2+2=4,把x=4输入程序,再次计算作为第二次“传输”,可得4×2=8,8-1=7,…,直到计算结果大于2 024时输出结果y.若输入x=1,则经过几次“传输”后可以输出结果,结束程序 ( )A.11B.12C.21D.235[2024 重庆万州区期末]下列图形都是由相同的小正方形按照一定规律摆放而成的,第1 个图形中小正方形的个数是3,第2个图形中小正方形的个数是8,第3个图形中小正方形的个数是15,…,照此规律排列下去,则第6个图形中小正方形的个数是 ( )A.24B.30C.35D.48二、填空题(每小题5分,共10分)[2024江苏扬州期中]体育委员带了100元钱去买体育用品,已知一个足球a元,一个篮球b元,则代数式100–3a–2b 表示的意义为10[2024河北承德期末]如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(相邻两个条钢之间都有交叉,a为正整数).设半圆形条钢的总个数为x(x为正整数).(1)当a=50,x=2时,护栏总长度为厘米;(2)当a=60时,护栏总长度为厘米(用含x的代数式表示,结果要求化简);(3)若护栏的总长度为15米,为尽量减少条钢用量,a的值应为 .三、解答题(共50分)的值.11[2024四川成都调研]当a取下列值时,求代数式a2−3a+15.1)a=4;(2)a=−1312[2024河北石家庄期末]现有甲、丙两种正方形和乙一种长方形卡片各若干张,如图(1)所示(a>1).小明分别用6张卡片拼出了如图(2)和图(3)的两个长方形(不重叠且无缝隙),其面积分别为S₁,S₂.(1)请用含a的式子分别表示 S₁,S₂;(2)当a=3 时,通过计算比较 S₁与 S₂的大小.13[2024山东青岛调研]如图是某居民小区的一块长为a米、宽为2b米的长方形空地.为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b米的扇形花台,然后在花台内种花,其余地方种草.如果建造花台及种花的费用为每平方米100元,种草的费用为每平方米50元.(1)填空:种花的面积为平方米,种草的面积为平方米.(用含有a,b,π的式子表示)(2)当a=6,b=2,π取3.14时,美化这块空地共需多少元?14[2024河南周口期末]某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)有4张桌子,用第一种摆放方式,可坐多少人?用第二种摆放方式,可坐多少人?(2)用含有n的代数式表示:有n张桌子,用第一种摆放方式可坐多少人?用第二种摆放方式可坐多少人?(3)一天中午,餐厅要接待80位顾客共同就餐,但餐厅只有20张这样的桌子可用,且每4张拼成一张大桌子.若你是这家餐厅的经理,你打算选择哪种方式来摆放餐桌?并说明理由.1. C 【解析】A 选项, 112a 应该写为 32a,故A 错误,不符合题意;B 选项,( a ÷b 应该写为 a b ,故B 错误,不符合题意;C 选项, a 3书写规范,故C 正确,符合题意;D 选项, −1ab 应该写为 −ab,,故D 错误,不符合题意.故选C.2.B 【解析】苹果原价是每千克x 元,按八折优惠出售,现价是0.8x 元/千克,故选B.3. A 【解析】A 选项, y =611x,x ,y 成正比例关系,故此选项符合题意;B 选项, x 12=1y ,则 xy =12,x 和γ成反比例关系,故不符合题意;C 选项, x +y =10,x 和y 不成正比例关系,故此选项不符合题意;D 选项, y =5x ,x 和y 成反比例关系,故此选项不符合题意.故选 A.4.D 【解析】由题意可得他的成绩是[ [3x −(24−x)]分.故选 D.5. C 【解析】因为: x =0时,代数式的值为 −3; x =1时,代数式的值为 −1;x =2时,代数式的值为1,所以只有: 2x −3满足条件.故选C.6. C 【解析】A 选项,线段AB 的长为 2+3+4=9,则A 不符合题意;B 选项,组合图形的面积为 2×(3+4)=14,则B 不符合题意;C 选项,长方形的周长为 2(a +2)=2a +4,则 C 符合题意;D 选项,圆柱的体积为4a ,则D 不符合题意.故选 C.7.B 【解析】由题可知每次输入的数应该是1,3,5,7,9,…,所以第n 次输入的数应该是 2n −1.每次算出的数为|[2(2n −1)−1]².因为 45²=2025>2024,程序结束,所以 2(2n −1)− 1=45,解得 n =12..故选 B.8.D 【解析】由所给图形可知,第1个图形中小正方形的个数为 3=1²+1×2;第2个图形中小正方形的个数为 8=2²+2×2;第3 个图形中小正方形的个数为 15=32+3×2;⋯,依次类推,第n 个图形中小正方形的个数为 n²+2n.所以第6个图形中小正方形的个数是 6²+2×6=48,故选 D.9.买了3个足球,2个篮球,还剩多少元【解析】因为一个足球a 元,一个篮球b 元,所以100-3a-2b 表示的意义为体育委员买了3个足球,2个篮球后所剩下的钱,故答案为买了3个足球,2个篮球,还剩多少元.10.(1)130 (2)(60x+20) (3)71【解析】(1)由题意得护栏的总长度为[80+(x-1)a]厘米,所以当a=50,x=2时,80+(x-1)a=80+(2-1)×50=130,故答案为 130.(2)当a=60时,80+(x-1)a=80+60x-60=60x+20,所以当a=60时,护栏总长度为(60x+20)厘米,故答案为(60x+20).(3)15 米=1 500 厘米.令 80+(x-1)a=1 500,所以(x-1)a=1 420=71×20.因为a 为正整数且a<80,x 为正整数,所以为尽量减少条钢用量,a=71,x=21时符合题意. 故答案为 71.11.【解】(1)当( a =4时,原式 =16−12+15=1.=19+1+15=1945.(2)当 a =−13时,原式 12.【解】(1)根据题意得, S₁=a²+3a +2,S₂= 5a +1.(2)当( a =3时, S₁=3²+3×3+2=20,S₂=5×3+ 1=16..因为 20>16,所以 S₁>S₂.13.【解】(1)因为一个花台为 14圆,所以四个花台的面积为一个圆的面积,即种花的面积为 πb²平方米,所以种草的面积为 (2ab −πb²)平方米,故答案为 πb²,(2ab −πb²). (2)依题意,得美化这块空地共需的费用为 100×πb²+50×(2ab −πb²)=(100ab +50πb²)元.当 a =6,b =2,π=3.14时, 100ab + 50πb²=100×6×2+50×3.14×2²=1828(元),所以美化这块空地共需 1 828 元.14.【解】(1)有 4 张桌子,用第一种摆放方式,。
七年级上册代数式的习题一.选择题(共20小题)1.下列语句正确的是()A.1+a不是一个代数式 B.0是代数式C.S=πr2是一个代数式D.单独一个字母a不是代数式2.下列代数式的意义表示错误的是()A.2x+3y表示2x与3y的和B.表示5x除以2y所得的商C.9﹣y表示9减去y的所得的差D.a2+b2表示a与b和的平方3.若每100kg小麦可出akg面粉,bkg小麦可出面粉千克数为()A. B.C.D.4.某商场进了一批衬衣,每件售价为a元,若每件获利20%,则每件衬衣的进价是()A.(1+20%)a B.(1﹣20%)a C.D.5.代数式用语言叙述为()A.a与b的差的倒数B.a与b的倒数差C.a、b两数倒数的差D.a的倒数与b的差的倒数6.为了测算一捆粗细均匀的电线的总长度,小明先称出它的质量为akg,然后从中剪出一段1m长的电线,称得质量为bkg,这样可求得这捆电线原来的总长度为(单位:m)()A.B.C.D.7.下列说法正确的是()A.x的倍列代数式表示是x或B.与的读法都是a加b分之cC.5不是代数式D.x≠b不是代数式8.在某月的日历表上,任意圈出一整列相邻的三个数,这三个数的和不可能是()A.24 B.20 C.51 D.729.x是大于﹣2.5的负整数,y为绝对值最小的有理数,x3+x2y﹣y3的值()A.﹣8 B.﹣8或﹣1 C.1 D.8或110.如果a,b互为相反数,x,y互为倒数,则(a+b)+2xy的值是()A.2 B.3 C.3.5 D.411.已知|a|=3,|b|=4且a>b,则2a﹣b的值为()A.﹣10 B.10 C.2或﹣10 D.﹣2或1012.若(x﹣1)3=a3x3+a2x2+a1x+a0,那么a3+a2+a1=()A.1 B.2 C.3 D.413.下列各式符合代数式书写规范的是()A.B.a×3 C.2m﹣1个D.1m14.下列各式:a,0,3x﹣1,a+b=b+a,7>6.9,xy,,其中代数式有()个.A.4 B.5 C.6 D.715.电影院第一排有m个座位,后面每排比前一排多2个座位,则第n排的座位数为()A.m+2n B.mn+2 C.m+2(n﹣1)D.m+n+216.某商品的原价是m元,现降价30%,现价是()A.(m﹣30%)元B.30%m元C.(1﹣30%)m元D.(1+30%)m元17.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值用代数式表示为()A.(1﹣10%+15%)x万元B.(1+10%﹣15%)x万元C.(1﹣10%)(1+15%)x万元D.(x﹣10%)(x+15%)万元18.一个长方形的宽为a,长方形的长比宽的2倍少3,则长方形的周长为()A.2a﹣3 B.3a﹣3 C.3a﹣6 D.6a﹣619.若代数式x2﹣x的值是2,则代数式3x2﹣3x﹣9的值是()A.﹣15 B.﹣9 C.﹣6 D.﹣320.已知x2+3x+5的值是7,那么多项式3x2+9x﹣2的值是()A.6 B.4 C.2 D.0二.填空题(共20小题)21.结合生活实际,代数式5m+2n可以解释为.22.如果a的实际意义是表示某线段的长度,那么2a+12的实际意义是.23.被x除,商是x,余数是2的数为.24.代数式3a2的实际意义可解释为.25.当a=1,b=2时,代数式a2﹣ab的值是.26.新华社3月16日授权发布了《中华人民共和国经济和社会发展第十二个五年规划纲要》明确规定收入增幅要超过GDP增幅,某公司决定给员工加薪,月工资在m元的基础上增长10%,那么加薪后员工的月工资为.27.当x=1时,代数式﹣5x+1的值是.28.体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y 元.则代数式500﹣3x﹣2y表示的实际意义是.29.规定符号⊗的意义为:a⊗b=ab﹣a2+|﹣b|+1,那么﹣3⊗4=.30.给出下列各式:①x2+2x;②xyz;③(x≥);④m+n=n+m.其中是代数式的有.31.代数式““可用语言表述为.32.甲、乙两个港口之间的海上行程为s km,一艘轮船以a km/h的航速从甲港顺水航行到达乙港.已知水流速度为xkm/h,则这艘轮船从乙港逆水航行回到甲港所用的时间为h.33.甲、乙两名工人铺地板砖,甲铺100m2需5小时,乙铺100m2需4小时,那么甲、乙合铺100m2,先让甲铺a(a<5)小时,剩下的乙铺需小时.34.设a是最大的负整数,b是绝对值最小的有理数,c是最小的正整数,则b ﹣c+a的值是.35.如果mkg苹果的售价为a元.则代数式表示的实际意义是.36.a的3倍的相反数可表示为,系数为,次数为.37.x的2倍与3的差(用代数式表示):.38.某水果批发商购进一批苹果,共a箱,每箱b千克,若将这批苹果的放在大商场销售,则放在大商场销售的苹果有千克(用含a、b的代数式表示).39.已知代数式ax7+bx5+cx3﹣8,当x=﹣3时ax7+bx5+cx3﹣8的值为6,那么当x=3时,代数式ax7+bx5+cx3+4=.40.如图,若开始输入的x的值为正分数,最后输出的结果为13,则满足条件的x的值为.三.解答题(共10小题)41.指出下列各项中哪些是代数式,并说明原因.①x3﹣3;②;③m﹣4=8;④2a﹣b>5;⑤;⑥73.42.说出下列代数式的意义(1)2a+3;(2)(a+3)x;(3);(4).43.请按代数式lOx+30y编写一道与实际生活相关的应用题.44.请你做评委:在一堂数学活动课上,同在一合作学习小组的小明、小亮、小丁、小彭对刚学过的知识发表了自己的一些感受:小明说:“绝对值不大于4的整数有7个.”小丁说:“若|a|=3,|b|=2,则a+b的值为5或1.”小亮说:“﹣<﹣,因为两个负数比较大小,绝对值大的数反而小.”小彭说:“代数式a2+b2表示的意义是a与b的和的平方”依次判断四位同学的说法是否正确,如不正确,请帮他们修正,写出正确的说法.45.从176.4m 的高处有一石头由静止开始自由下落,石头下落的高度h与时间t(0≤t≤6)有面的关系:时间t(s)123456高度h(m) 4.9×1 4.9×4 4.9×9 4.9×16 4.9×25 4.9×36(1)写出用时间t表示下落高度h的公式;(2)当t=3.5s时,求石头下落的高度.46.已知a、b、c、d是整数,且满足a+b=c,b+c=d,c+d=a.(1)若a与b互为相反数,求a+b+c+d的值;(2)若b是正整数,求a+b+c+d的最大值.47.某商场一种商品的成本是销售收入的50%,税款和其他费用(不列入成本)合计为销售收入的10%,若该种商品的销售收入为x万元,则该商场获利润多少万元?48.已知(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,求a5﹣a4+a3﹣a2+a1﹣a0的值.49.人的身高很大程度是由遗传决定的,从父母的身高一定程度可以预测子女成年后能达到的身高,科学家经研究得出了人的身高与父母身高的一组相关数据,如下表所示.(1)请你根据表中提供的信息,写出人的遗传基因长高公式;(2)初一某学生的父亲身高175cm,母亲身高160cm,请你预测该学生成年后的身高.(精确到1cm)50.某工人上午7点上班至11点下班,一开始他用15分钟做准备工作,接着每隔15分钟加工完1个零件.(1)他加工完第一个零件是几点?(2)求他加工完零件x个零件时的时间(用x表示)(3)8点整他加工完几个零件?(4)这个工人上午最多加工几个零件?七年级上册代数式的习题参考答案与试题解析一.选择题(共20小题)1.下列语句正确的是()A.1+a不是一个代数式 B.0是代数式C.S=πr2是一个代数式D.单独一个字母a不是代数式【分析】代数式是用运算符号把数和字母连接而成的式子,根据定义即可判断.【解答】解:A、1+a是一个代数式,故本选项不符合题意;B、0是代数式,故本选项符合题意;C、S=πr2是等式,不是一个代数式,故本选项不符合题意;D、单独一个字母a是代数式,故本选项不符合题意.故选B.【点评】本题考查了代数式的定义,注意:代数式不含等号,也不含不等号,单独的一个数或字母也是代数式.2.下列代数式的意义表示错误的是()A.2x+3y表示2x与3y的和B.表示5x除以2y所得的商C.9﹣y表示9减去y的所得的差D.a2+b2表示a与b和的平方【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:A、2x+3y表示2x与3y的和,说法正确,不符合题意;B、表示5x除以2y所得的商,说法正确,不符合题意;C、9﹣y表示9减去y的所得的差,说法正确,不符合题意;D、a2+b2表示a的平方与b的平方的和,原来的说法错误,符合题意.故选D.【点评】此题主要考查了代数式的表示方法,题目比较简单.3.若每100kg小麦可出akg面粉,bkg小麦可出面粉千克数为()A. B.C.D.【分析】表示出1kg小麦可出的面粉,再乘b即可.【解答】解:1kg小麦可出的面粉数为kg,bkg小麦可出面粉千克数为:kg.故选A.【点评】本题考查了列代数式,比较简单,主要利用了出粉率的问题.4.某商场进了一批衬衣,每件售价为a元,若每件获利20%,则每件衬衣的进价是()A.(1+20%)a B.(1﹣20%)a C.D.【分析】每件售价为a元,若每件获利20%,即进价的(1+20%)倍就是a元,据此即可求解.【解答】解:每件售价为a元,若每件获利20%,即进价的(1+20%)倍就是a 元,则进价是:.故选C.【点评】本题考查了列代数式,正确理解增长率的含义是关键.5.代数式用语言叙述为()A.a与b的差的倒数B.a与b的倒数差C.a、b两数倒数的差D.a的倒数与b的差的倒数【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:A、a与b的差的倒数:,故本选项错误;B、a与b的倒数差:a﹣,故本选项错误;C、a、b两数倒数的差:,故本选项正确;D、a的倒数与b的差的倒数:,故本选项错误.故选C.【点评】此题考查了用语言表达代数式的意义,注意一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.6.为了测算一捆粗细均匀的电线的总长度,小明先称出它的质量为akg,然后从中剪出一段1m长的电线,称得质量为bkg,这样可求得这捆电线原来的总长度为(单位:m)()A.B.C.D.【分析】这捆电线的总长度=这捆电线总的质量÷这捆电线1m长的质量,依此列出代数式.【解答】解:根据题意可得这捆电线的总长度为.故选A.【点评】本题比较简单,主要考查了电线的长度与质量的关系.7.下列说法正确的是()A.x的倍列代数式表示是x或B.与的读法都是a加b分之cC.5不是代数式D.x≠b不是代数式【分析】根据代数式的定义和书写要求判断各项.【解答】解:A中的带分数应写成假分数,B中的读法是a加b分之c,而的读法是c除以a与b的和,5是代数式,所以选项A,B,C都错误,正确的是D.故选D.【点评】注意:含“≠”号的式子一定不是代数式.还要注意代数式的语言叙述,简明准确即可.8.在某月的日历表上,任意圈出一整列相邻的三个数,这三个数的和不可能是()A.24 B.20 C.51 D.72【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是3x,因而这三个数的和一定是3的倍数.【解答】解:设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是(x﹣7)+x+(x+7)=3x,因而这三个数的和一定是3的倍数.则,这三个数的和不可能是20.故选:B.【点评】此题主要考查根据日历表中的数字规律列代数式,解题的关键是:(1)根据竖排“第一数比第二数小7,第三数比第二数大7”列代数式并化简;(2)根据代数式的值是3的整数倍,确定选项.9.x是大于﹣2.5的负整数,y为绝对值最小的有理数,x3+x2y﹣y3的值()A.﹣8 B.﹣8或﹣1 C.1 D.8或1【分析】根据x是大于﹣2.5的负整数,y为绝对值最小的有理数可知x=﹣2或﹣1;y=0,再把x、y的值代入所求代数式即可求出代数式的值.【解答】解:∵x是大于﹣2.5的负整数,y为绝对值最小的有理数可知x=﹣2或﹣1;y=0,∴当x=﹣2,y=0时,原式=(﹣2)3=﹣8;当x=﹣1,y=0时,原式=(﹣1)3=﹣1.故选B.【点评】本题考查的是代数式求值的相关知识,解答此题的关键是根据已知条件求出未知数的值,再进行计算.10.如果a,b互为相反数,x,y互为倒数,则(a+b)+2xy的值是()A.2 B.3 C.3.5 D.4【分析】根据相反数和倒数概念,可得a、b;x、y的等量关系,把所得的等量关系整体代入可求出代数式的值.【解答】解:∵a,b互为相反数,x,y互为倒数;∴a+b=0,xy=1;原式=0+2×1=2.故选A.【点评】本题运用了相反数和倒数概念,以及整体代入的思想.11.已知|a|=3,|b|=4且a>b,则2a﹣b的值为()A.﹣10 B.10 C.2或﹣10 D.﹣2或10【分析】利用绝对值的代数意义求出a与b的值,即可确定出2a﹣b的值.【解答】解:∵|a|=3,|b|=4且a>b,∴a=﹣3,b=﹣4;a=3,b=﹣4,则2a﹣b的值为﹣2或10.故选D【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.若(x﹣1)3=a3x3+a2x2+a1x+a0,那么a3+a2+a1=()A.1 B.2 C.3 D.4【分析】首先将x=1代入得:a3+a2+a1+a0=0①,然后将x=0代入得:a0=﹣1②,①﹣②即可求得a3+a2+a1的值.【解答】解:将x=1代入得:a3+a2+a1+a0=0①,将x=0代入得:a0=﹣1②,①﹣②得:a3+a2+a1=1.故选:A.【点评】本题主要考查的是求代数式的值,将x=1和x=0代入求得:a3+a2+a1+a0=0,a0=﹣1是解题的关键.13.下列各式符合代数式书写规范的是()A.B.a×3 C.2m﹣1个D.1m【分析】根据代数式的书写要求判断各项.【解答】解:A、符合代数式的书写,故A选项正确;B、a×3中乘号应省略,数字放前面,故B选项错误;C、2m﹣1个中后面有单位的应加括号,故C选项错误;D、1m中的带分数应写成假分数,故D选项错误.故选:A.【点评】此题考查代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.14.下列各式:a,0,3x﹣1,a+b=b+a,7>6.9,xy,,其中代数式有()个.A.4 B.5 C.6 D.7【分析】根据代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式可得答案.【解答】解:a,0,3x﹣1,xy,是代数式,共5个.故选:B.【点评】此题主要考查了代数式,关键是掌握代数式的定义.15.电影院第一排有m个座位,后面每排比前一排多2个座位,则第n排的座位数为()A.m+2n B.mn+2 C.m+2(n﹣1)D.m+n+2【分析】此题要根据题意列出相应代数式,可推出2、3排的座位数分别为m+2,m+2+2,然后通过推导得出其座位数与其排数之间的关系.【解答】解:第n排座位数为:m+2(n﹣1).故选C.【点评】此类题在分析时不仅要注意运算关系的确定,同时要注意其蕴含规律性.这是分析的关键点.16.某商品的原价是m元,现降价30%,现价是()A.(m﹣30%)元B.30%m元C.(1﹣30%)m元D.(1+30%)m元【分析】用原价减去降低的价钱得出现价即可.【解答】解:现价是m﹣30%m=(1﹣30%)m元.故选:C.【点评】此题考查列代数式,掌握销售问题中的基本数量关系是解决问题的关键.17.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值用代数式表示为()A.(1﹣10%+15%)x万元B.(1+10%﹣15%)x万元C.(1﹣10%)(1+15%)x万元D.(x﹣10%)(x+15%)万元【分析】根据3月份、1月份与2月份的产值的百分比的关系列式计算即可得解.【解答】解:3月份的产值为:(1﹣10%)(1+15%)x万元.故选C【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.18.一个长方形的宽为a,长方形的长比宽的2倍少3,则长方形的周长为()A.2a﹣3 B.3a﹣3 C.3a﹣6 D.6a﹣6【分析】首先根据长方形的宽表示出长方形的长,然后利用长方形的周长计算方法表示出长方形的周长即可.【解答】解:∵长方形的宽为a,长比宽的2倍少3,∴长方形的长为2a﹣3,∴长方形的周长为2×(a+2a﹣3)=6a﹣6,故选:D.【点评】本题考查了列代数式的知识,解题的关键是用长方形的宽表示出长方形的长.19.若代数式x2﹣x的值是2,则代数式3x2﹣3x﹣9的值是()A.﹣15 B.﹣9 C.﹣6 D.﹣3【分析】把代数式3x2﹣3x﹣9变形为代数式3(x2﹣x)﹣9,再把x2﹣x的值代入求值即可.【解答】解:∵x2﹣x的值是2,∴x2﹣x=2,∴3x2﹣3x﹣9=3(x2﹣x)﹣9=3×2﹣9=﹣3,故选D.【点评】此题考查了代数式求值,整体代入是解本题的关键.20.已知x2+3x+5的值是7,那么多项式3x2+9x﹣2的值是()A.6 B.4 C.2 D.0【分析】根据题意,可求得x2+3x=2,再将3x2+9x﹣2变形可得:3(x2+3x)﹣2,然后把(x2+3x)作为一个整体代入变形后的代数式即可求解.【解答】解:已知x2+3x+5=7,∴x2+3x=2,则多项式3x2+9x﹣2=3(x2+3x)﹣2=3×2﹣2=4.故选B.【点评】本题是求多项式的值,其难点在于需要突破原来先求出x的值再代入多项式求解的思维定势,较有挑战性.二.填空题(共20小题)21.结合生活实际,代数式5m+2n可以解释为5位同学每人为灾区捐款m元,2位同学每人为灾区捐款n元,7位同学共捐款5m+2n元.【分析】代数式5m+2n为整式,再结合实际,解释代数式即可.【解答】解:代数式5m+2n可以解释为:5位同学每人为灾区捐款m元,2位同学每人为灾区捐款n元,7位同学共捐款5m+2n元.故答案为:5位同学每人为灾区捐款m元,2位同学每人为灾区捐款n元,7位同学共捐款5m+2n元.【点评】此题考查了代数式的实际意义,同学们应当在日常学习中加以积累,观察生活.22.如果a的实际意义是表示某线段的长度,那么2a+12的实际意义是一条线段的长度为a米,另一条线段比该线段的2倍还长12米,则该线段的长度.【分析】根据代数式的特点,结合具体情境解答此类问题.【解答】解:一条线段的长度为a米,另一条线段比该线段的2倍还长12米,则该线段的长度;故答案为:一条线段的长度为a米,另一条线段比该线段的2倍还长12米,则该线段的长度;【点评】考查了代数式的特点,结合具体情境解答此类问题.开放型试题可以考查你的数学应用能力,我们要把知识学活.23.被x除,商是x,余数是2的数为x2+2.【分析】根据被除数=商×除数+余数即可作答.【解答】解:被x除,商是x,余数是2的数为:x•x+2=x2+2.故答案为x2+2.【点评】此题考查了列代数式;解决问题的关键是读懂题意,找到所求的量的等量关系.24.代数式3a2的实际意义可解释为长为3a,宽为a的长方形的面积(答案不唯一).【分析】因为3a2=3a×a,所以3a,a可表示为长方形的边长,相乘的结果是长方形的面积.【解答】解:∵3a2=3a×a,∴代数式3a2的实际意义可解释为长为3a,宽为a的长方形的面积(答案不唯一).【点评】解决本题的关键是把3a2先进行分解,用常见的量解释.25.当a=1,b=2时,代数式a2﹣ab的值是﹣1.【分析】直接代入求值即可.【解答】解:∵a=1,b=2,∴a2﹣ab=1﹣1×2=﹣1.【点评】考查了代数式求值的方法.26.新华社3月16日授权发布了《中华人民共和国经济和社会发展第十二个五年规划纲要》明确规定收入增幅要超过GDP增幅,某公司决定给员工加薪,月工资在m元的基础上增长10%,那么加薪后员工的月工资为 1.1m元.【分析】根据题意月工资在m元的基础上增长10%可直接列出代数式.【解答】解:∵月工资在m元的基础上增长10%,∴加薪后员工的月工资为m(1+10%)=m(1+0.1)=1.1m,故答案为1.1m.【点评】本题考查了列代数式,解题的关键是认真审题,弄清题意,此题比较简单,易于掌握.27.当x=1时,代数式﹣5x+1的值是﹣4.【分析】将x的值代入所求式子中计算,即可求出值.【解答】解:∵x=1,∴﹣5x+1=﹣5+1=﹣4.故答案为:﹣4【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.28.体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y 元.则代数式500﹣3x﹣2y表示的实际意义是体育委员买了3个足球、2个篮球后剩余的经费.【分析】本题需先根据买一个足球x元,一个篮球y元的条件,表示出2x和3y 的意义,最后得出正确答案即可.【解答】解:∵买一个足球x元,一个篮球y元,∴3x表示体育委员买了3个足球,2y表示买了2个篮球,∴代数式500﹣3x﹣2y:表示体育委员买了3个足球、2个篮球,剩余的经费.故答案为:体育委员买了3个足球、2个篮球后剩余的经费.【点评】本题主要考查了列代数式,在解题时要根据题意表示出各项的意义是本题的关键.29.规定符号⊗的意义为:a⊗b=ab﹣a2+|﹣b|+1,那么﹣3⊗4=﹣16.【分析】首先需要看懂新定义的运算,再根据运算,把﹣3、4转化成a、b展开,再根据有理数的元算法则计算即可.【解答】解:∵a⊗b=ab﹣a2+|﹣b|+1,∴﹣3⊗4=(﹣3)×4﹣(﹣3)2+|﹣4|+1=﹣12﹣9+4+1=﹣16.故答案是﹣16.【点评】本题考查了代数式求值,解题的关键是看懂新定义的运算,能代入展开.30.给出下列各式:①x2+2x;②xyz;③(x≥);④m+n=n+m.其中是代数式的有①②③.【分析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.【解答】解:根据代数式定义可知④中含有“=”,不是运算符号,不是代数式,是代数式的为:①②③,故答案为:①②③.【点评】此题考查了代数式的概念.注意代数式中不含有关系符号.31.代数式““可用语言表述为x与1的和的平方的与3的差.【分析】依据有理数的运算顺序,可表述出代数的意义.【解答】解:代数式““可用语言表述为:x与1的和的平方的与3的差.故答案为:x与1的和的平方的与3的差.【点评】本题主要考查的是代数式的意义,明确代数式中各种运算的先后顺序是解题的关键.32.甲、乙两个港口之间的海上行程为s km,一艘轮船以a km/h的航速从甲港顺水航行到达乙港.已知水流速度为xkm/h,则这艘轮船从乙港逆水航行回到甲港所用的时间为h.【分析】用航行的路程除以逆水航行的速度即可得到时间.【解答】解:∵甲港顺水以akm/h的航速航行到乙港,已知水流的速度为xkm/h,∴逆水航行的速度为(a﹣2x)km/h,∴返回时的时间为:h.故答案是:.【点评】本题考查了列代数式的知识,熟练掌握顺水速度、逆水速度、静水速度、水流速度之间的关系是解题的关键.33.甲、乙两名工人铺地板砖,甲铺100m2需5小时,乙铺100m2需4小时,那么甲、乙合铺100m2,先让甲铺a(a<5)小时,剩下的乙铺需4﹣a小时.【分析】首先求得甲铺a(a<5)小时完成100÷5×a=20am2,剩下的面积为(100﹣20a)m2,再除以以每小时完成的即可得出答案.【解答】解:(100﹣100÷5×a)÷(100÷4)=(100﹣20a)÷25=4﹣a(小时)答:剩下的乙铺需4﹣a小时.故答案为:4﹣a.【点评】此题考查列代数式,掌握工作总量、工作时间、工作效率之间的关系是解决问题的关键.34.设a是最大的负整数,b是绝对值最小的有理数,c是最小的正整数,则b ﹣c+a的值是﹣2.【分析】先依据有理数的相关概念求得a、b、c的值,然后代入计算即可.【解答】解:∵a是最大的负整数,b是绝对值最小的有理数,c是最小的正整数,∴a=﹣1,b=0,c=1.∴b﹣c+a=0﹣1+(﹣1)=﹣2.故答案为:﹣2.【点评】本题主要考查的是求代数式的值,求得a、b、c的值是解题的关键.35.如果mkg苹果的售价为a元.则代数式表示的实际意义是nkg苹果的售价.【分析】根据mkg苹果的售价为a元可得表示每千克的售价,进而可得代数式表示的实际意义是nkg苹果的售价.【解答】解:由mkg苹果的售价为a元,则每千克售价为元,故代数式表示的实际意义是nkg苹果的售价.故答案为:nkg苹果的售价.【点评】此题主要考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.36.a的3倍的相反数可表示为﹣3a,系数为﹣3,次数为1.【分析】首先a的3倍为3a,再进一步根据相反数的意义和单项式的意义,直接填出答案即可.【解答】解:a的3倍的相反数可表示为﹣3a,系数为﹣3,次数为1.故答案为:﹣3a,﹣3,1.【点评】此题考查列代数式,相反数的意义,单项式的意义等知识点.37.x的2倍与3的差(用代数式表示):2x﹣3.【分析】x的2倍即2x,然后求出其与3差即可.【解答】解:x的2倍与3的差用代数式表示为2x﹣3,故答案为:2x﹣3【点评】本题考查了列代数式的知识,解答本题的关键是熟练读题,找出题目所给的等量关系.38.某水果批发商购进一批苹果,共a箱,每箱b千克,若将这批苹果的放在大商场销售,则放在大商场销售的苹果有ab千克(用含a、b的代数式表示).【分析】先求出这批苹果总数,再乘以,列出代数式即可得出答案.【解答】解:∵共a箱,每箱b千克,∴这批苹果共有ab千克,∵将这批苹果的放在大商场销售,∴放在大商场销售的苹果有ab千克.故答案为:ab.【点评】此题考查了列代数式,读懂题意,找出题目中的数量关系,列出代数式是本题的关键.39.已知代数式ax7+bx5+cx3﹣8,当x=﹣3时ax7+bx5+cx3﹣8的值为6,那么当x=3时,代数式ax7+bx5+cx3+4=﹣10.【分析】将x=﹣3代入代数式值为6,列出关系式,将x=3代入所求式子,把得出的代数式代入计算即可求出值.【解答】解:将x=﹣3代入ax7+bx5+cx3﹣8得:﹣a•37﹣b•35﹣c•53﹣8=6,即a•37+b•35+c•53=﹣14,则当x=3时,ax7+bx5+cx3+4=a•37+b•35+c•53+4=﹣14+4=﹣10.故答案为:﹣10【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.40.如图,若开始输入的x的值为正分数,最后输出的结果为13,则满足条件的x的值为或.【分析】根据结果为13,由程序框图得符合条件x的值即可.【解答】解:根据题意得:2x+1=13,解得:x=6;可得2x+1=6,解得:x=;可得2x+1=,解得:x=,则符合条件x的值为或,故答案为:或.【点评】本题考查了求代数式的值,能求出符合的所有情况是解此题的关键.三.解答题(共10小题)41.指出下列各项中哪些是代数式,并说明原因.①x3﹣3;②;③m﹣4=8;④2a﹣b>5;⑤;⑥73.【分析】根据代数式的概念即可求出答案.【解答】解:由数和表示数的字母经有限次加、减、乘、除、乘方和开方运算所得的式子,或含有字母的数学表达式称代数式,故x3﹣3;、、73是代数式【点评】本题考查代数式的概念,属于基础题型.42.说出下列代数式的意义(1)2a+3;(2)(a+3)x;(3);(4).【分析】结合代数式的特点作答即可.【解答】解:(1)a的2倍与3的和;(2)a+3与x的积或a与3的和的x倍;(3)的意义是c除以ab的商;(4)x与(x﹣y)的商.【点评】此类问题应结合实际,根据代数式的特点解答.43.请按代数式lOx+30y编写一道与实际生活相关的应用题.【分析】结合实际情境作答,答案不唯一.【解答】解:答案不唯一.如一个苹果的质量是x,一个桔子的质量是y,那么10个苹果和30个桔子的质量和是10x+30y.【点评】此类问题应结合实际,根据代数式的特点解答.44.请你做评委:在一堂数学活动课上,同在一合作学习小组的小明、小亮、小丁、小彭对刚学过的知识发表了自己的一些感受:小明说:“绝对值不大于4的整数有7个.”小丁说:“若|a|=3,|b|=2,则a+b的值为5或1.”小亮说:“﹣<﹣,因为两个负数比较大小,绝对值大的数反而小.”。
人教版数学七年级上册第三章代数式单元测试一、单选题1.如图是一个简单的运算程序,如果输入的x值为﹣2,则输出的结果为()A.6B.﹣6C.14D.﹣142.下列说法中,正确的是()A.0是最小的有理数B.任一个有理数的绝对值都是正数C.-a是负数D.0的相反数是它本身3.已知x,y满足方程组,则的值为()A.B.0C.1D.54.在中,代数式有几个()A.3个B.4个C.5个D.6个5.若,则()A.B.C.3D.6.已知,与,都是方程的解,则和的值分别为()A.,B.,C.,D.,7.若时,则代数式的值为()A.17B.11C.D.108.若代数式y2-2y+1的值是5,则代数式2y2-4y-5的值是()A.-3B.25C.-25D.39.将正方形①,正方形②,长方形③,长方形④按如图所示放入长方形ABCD中(相邻的长方形,正方形之间既无重叠,又无空隙),且BE=DP.若已知长方形ABCD的周长,则不能确定周长的图形是()A.正方形①B.正方形②C.长方形③D.长方形④10.如图,正方形OABC的顶点A,C在坐标轴上,将正方形绕点O第1次逆时针旋转45°得到正方形,依此方式,连续旋转至第2023次得到正方形.若点A的坐标为,则点的坐标为()A.B.C.D.二、填空题11.如图,这是一个简单的数值运算程序,当输入的值为3时,输出的结果为.12.若有理数满足,则的值为.13.已知,则的值是.14.若,则的值为.15.若,,则.16.已知:,,代数式.17.若,则=.18.观察下列等式,,,将以上三个等式两边分别相加得:.(1)猜想并写出:;(2)直接写出下列各式的计算结果:;(3)探究并计算:.三、解答题19.如图,一个花坛由两个半圆和一个长方形组成,半圆的半径为,长方形的长为(1)求花坛的面积S;(2)当,时,计算花坛的面积.(取3)20.已知整式.(1)当,求整式的值;(2)若整式比整式大,求整式.21.昨天,小明把老师布置的作业题忘记了,只记得式子是.小军告诉小明,已知是最大的负整数,互为相反数,负数的绝对值是2,请你帮小明解答下列问题.求的值.22.已知x=1,求代数式3x+2的值.23.如图,某小区有一块长为米,宽为米的长方形地块,物业公司计划在小区内修一条平行四边形小路,小路的底边宽为米,将阴影部分进行绿化.(1)用含有、的式子表示绿化的总面积;(2)若,,求出此时绿化的总面积.24.如果互为相反数,互为倒数,没有倒数,的绝对值等于2,求代数式的值.25.水果商贩小王到水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.小王购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)小王有甲、乙两家店铺,每售出一箱草莓和苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a箱,苹果b箱,其余均分配给乙店.由于他口碑良好,两家店都很快卖完了这批水果.①若小王在甲店获利600元,则他在乙店获利多少元?②若小王希望获得总利润为1000元,则__▲_.(直接写出答案)答案解析部分1.【答案】C2.【答案】D【解析】【解答】解:A、因为没有最小的有理数,所以A选项错误;B、因为0的绝对值是0,不是正数,所以B选项错误;C、因为当a为负数时,-a是正数,所以C选项错误;D、因为0的相反数就是0,所以D选项正确.故答案为:D.【分析】由没有最小的有理数;0的绝对值是0;当a为负数时,-a是正数;0的相反数就是0,逐个判断即可得到说法正确的选项.3.【答案】D4.【答案】C【解析】【解答】解:属于代数式的有:1,,共5个故答案为:C.【分析】用基本的运算符号(加、减、乘、除、乘方、开方、括号等)把数、表示数的字母连结而成的式子就是代数式,单独的一个数或字母也是代数式,从而即可一一判断得出答案.5.【答案】D6.【答案】D【解析】【解答】解:∵,与,都是方程的解,∴代入得:,解得:,,故答案为:D.【分析】将,与,分别代入方程中,可得关于k、b 的方程组,解之即可.7.【答案】A【解析】【解答】因为3-2x+10y=3+2(5y-x),又5y-x=7,所以3-2x+10y=3+2×7=17.故答案为:A.【分析】把代数式3-2x+10y变形为3+2(5y-x)后,再整体代入求解.8.【答案】D【解析】【解答】解:∵y2-2y+1=5,∴y2-2y=4,∴原式=2(y2-2y)-5=2×4-5=8-5=3.故答案为:D.【分析】由题意可求y2-2y=4,将原式变形为2(y2-2y)-5,然后代入计算即可.9.【答案】B【解析】【解答】解:设长方形ABCD的周长为C,AE=x,DP=y,则C=2(AD+AB)=2[(AE+BE)+(AG+GD)]=2[(AE+DP)+(AE+PQ)=2[(AE+DP)+(AE+AE-DP)]=2[(x+y)+(x+x-y)]=6x.所以.正方形①的周长=4AE=,故能确定周长;长方形③的周长=2(GD+DP)=2(PQ+PD)=2(AE-DP+DP)=2AE=,故能确定周长;长方形④的周长=2(BC+BE)=2(AE+AE-DP+DP)=4AE=,故能确定周长.故A、C、D均不符合.故答案为:B.【分析】分别计算四个图形的周长,看是否能用长方形ABCD的周长表示,找出不能的即可. 10.【答案】C【解析】【解答】解:∵点A的坐标为(1,0),∴OA=1,∵四边形OABC是正方形,∴∠OAB=90°,AB=OA=1,∴点B的坐标为(1,1),连接OB,如图所示:由勾股定理可得:OB=,由旋转的性质可得:OB=OB1=OB2=OB3=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=45°,∴B1(0,),B2(-1,1),B3(,0),B4(-1,-1),B5(0,),B6(1,-1),B7(,0),……,∴点B的坐标是按8次一循环的规律进行,∵2023÷8=252……7,∴点的坐标为,故答案为:C.【分析】先求出点B的坐标,连接OB,再求出OB=OB1=OB2=OB3=,再利用旋转的性质求出B1(0,),B2(-1,1),B3(,0),B4(-1,-1),B5(0,),B6(1,-1),B7(,0),……,点B的坐标是按8次一循环的规律进行,再结合2023÷8=252……7,求出点的坐标为即可.11.【答案】34112.【答案】202813.【答案】14.【答案】15.【答案】1【解析】【解答】∵abc<0,∴a、b、c有1个负数或3个负数.∵a+b+c=0,∴a、b、c只有1个负数,不妨设a为负数,∴b+c=﹣a,a+c=﹣b,a+b=﹣c,∴++=﹣1+1+1=1.故答案为1.【分析】先求出a、b、c有1个负数或3个负数,再求出b+c=﹣a,a+c=﹣b,a+b=﹣c,最后计算求解即可。
人教版七年级数学上册《第三章代数式》单元检测卷及答案(时间:45分钟满分:100分)一、选择题(每小题5分,共40分)1.下列各式中,符合代数式书写规则的是( )xyA.x×5B.72ab D.m-1÷nC.2142.用代数式表示“a的3倍与b的差的平方”,正确的是( )A.3a-b2B.3(a-b)2C.(3a-b)2D.(a-3b)23.一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩为( )A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)4.有长为L的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t,则所围成的园子的面积为( ))t B.(L-t)tA.(L-t2C.(L-t)t D.(L-2t)t25.下面各选项中的两个量成正比例关系的是( )A.全班的人数一定,出勤人数与缺勤人数B.三角形的面积一定,它的底与高C.已知xy=1,y与xD.已知xy=3,y与x6.若2m-n-4=0,则-2m+n-9的值是( )A.-13B.-5C.5D.137.某超市把一种商品按成本价a元提高60%标价,然后再以7折优惠卖出,则这种商品的售价比成本多( )A.20%B.16%C.15%D.12%8.如图所示的图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑧个图形中实心圆点的个数为( )A.22B.23C.25D.26二、填空题(每小题4分,共16分)9.如果|a+3|+(b-2)2=0,那么代数式(a+b)2 025的值是 .10.对有理数a,b,规定运算如下:a※b=1a +1b,则-2.5※2= .11.如果A×B=4.5,那么A和B成比例关系;如果x÷y=3.5,那么x和y成比例关系;如果m∶1.2=1.5∶n,那么m和n成比例关系.12.找出下列数的排列规律,填上适当的数:13,29,427, .三、解答题(共44分)13.(7分)一个圆柱的底面积与高的关系如下表.底面积/cm2 4 5 6 8 10 …高/cm 15 12 10 7.5 6 …(1)这个圆柱的体积是多少?(2)如果用S表示圆柱的底面积,h表示圆柱的高,S与h成什么比例关系?你能写出这个关系式吗?(3)如果圆柱的底面积是20 cm2,那么圆柱的高是多少?14.(9分)某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+25,-15,-22,+24,-21,+14,-12.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存100 t水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元,出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费(用含a,b的代数式表示)?15.(8分)1号探测气球从海拔2 m处出发,以每秒0.8 m的速度上升.与此同时,2号探测气球从海拔10 m处出发,以每秒 0.3 m 的速度上升,设气球出发的时间为x s.(1)请用含x的代数式表示:1号探测气球与2号探测气球的海拔高度;(2)求出发多长时间1号探测气球与2号探测气球的海拔高度相同.16.(10分)甲、乙两家网购平台以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲平台规定:凡超过1 000元的电器,超出部分的金额打8折;乙平台规定:凡超过500元的电器,超出部分的金额按90%收取,两家平台均免费送货并赠送运费险,若某顾客购买电器的价格是x元,请回答下列问题:(1)当x=800时,该顾客应选择在哪家平台下单比较划算?(2)当x>2 000时,分别用代数式表示在两家平台购买电器所需支付的费用.(3)当x=3 500时,该顾客应该选择哪家平台下单比较划算?请说明理由.17.(10分)高速公路旁有三个物品代收点A,B,C,它们之间的距离如图所示.现要在高速公路旁修建一个货仓,把代收点A,B,C的货全部运到货仓,代收点A每天有50 t货物,代收点B每天有10 t货物,代收点C每天有60 t货物,从A到C方向每吨每千米运费1.5元,从C到A方向每吨每千米运费1元.问货仓应修建在何处才能使运费最低,最低运费是多少?参考答案一、选择题(每小题5分,共40分)1.下列各式中,符合代数式书写规则的是(B)xyA.x×5B.72C.21ab D.m-1÷n42.用代数式表示“a的3倍与b的差的平方”,正确的是(C)A.3a-b2B.3(a-b)2C.(3a-b)2D.(a-3b)23.一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩为(D)A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)4.有长为L的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t,则所围成的园子的面积为(D))t B.(L-t)tA.(L-t2-t)t D.(L-2t)tC.(L25.下面各选项中的两个量成正比例关系的是(D)A.全班的人数一定,出勤人数与缺勤人数B.三角形的面积一定,它的底与高C.已知xy=1,y与x=3,y与xD.已知xy6.若2m-n-4=0,则-2m+n-9的值是(A)A.-13B.-5C.5D.137.某超市把一种商品按成本价a元提高60%标价,然后再以7折优惠卖出,则这种商品的售价比成本多(D)A.20%B.16%C.15%D.12%8.如图所示的图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑧个图形中实心圆点的个数为(D)A.22B.23C.25D.26二、填空题(每小题4分,共16分)9.如果|a+3|+(b-2)2=0,那么代数式(a+b)2 025的值是-1 .10.对有理数a,b,规定运算如下:a※b=1a +1b,则-2.5※2= 110.11.如果A×B=4.5,那么A和B成反比例关系;如果x÷y=3.5,那么x和y成正比例关系;如果m∶1.2=1.5∶n,那么m和n成反比例关系.12.找出下列数的排列规律,填上适当的数:13,29,427, 881.三、解答题(共44分)13.(7分)一个圆柱的底面积与高的关系如下表.底面积/cm2 4 5 6 8 10 …高/cm 15 12 10 7.5 6 …(1)这个圆柱的体积是多少?(2)如果用S表示圆柱的底面积,h表示圆柱的高,S与h成什么比例关系?你能写出这个关系式吗?(3)如果圆柱的底面积是20 cm2,那么圆柱的高是多少?解:(1)4×15=60(cm3).答:这个圆柱的体积是60 cm3.(2)如果用S表示圆柱的底面积,h表示圆柱的高,因为“圆柱的底面积×高=圆柱的体积”,体积一定,也就是积一定,所以S与h成反比例关系,sh=60.(3)60÷20=3(cm).答:如果圆柱的底面积是20 cm2,那么圆柱的高是3 cm.14.(9分)某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+25,-15,-22,+24,-21,+14,-12.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存100 t水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元,出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费(用含a,b的代数式表示)?解:(1)因为+25-15-22+24-21+14-12=-7所以经过这7天,仓库里的水泥减少了,减少了7 t.(2)因为100-(-7)=100+7=107(t)所以那么7天前,仓库里存有水泥107 t.(3)依题意,得进库的装卸费为[(+25)+(+24)+(+14)]a=63a出库的装卸费为(|-15|+|-22|+|-21|+|-12|)b=70b所以这7天要付(63a+70b)元装卸费.15.(8分)1号探测气球从海拔2 m处出发,以每秒0.8 m的速度上升.与此同时,2号探测气球从海拔10 m处出发,以每秒 0.3 m 的速度上升,设气球出发的时间为x s.(1)请用含x的代数式表示:1号探测气球与2号探测气球的海拔高度;(2)求出发多长时间1号探测气球与2号探测气球的海拔高度相同.解:(1)根据题意,1号探测气球的海拔高度为(0.8x+2)m;2号探测气球的海拔高度为(0.3x+10)m.(2)依题意有0.8x+2=0.3x+10解得x=16.故出发16 s 1号探测气球与2号探测气球的海拔高度相同.16.(10分)甲、乙两家网购平台以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲平台规定:凡超过1 000元的电器,超出部分的金额打8折;乙平台规定:凡超过500元的电器,超出部分的金额按90%收取,两家平台均免费送货并赠送运费险,若某顾客购买电器的价格是x元,请回答下列问题:(1)当x=800时,该顾客应选择在哪家平台下单比较划算?(2)当x>2 000时,分别用代数式表示在两家平台购买电器所需支付的费用.(3)当x=3 500时,该顾客应该选择哪家平台下单比较划算?请说明理由.解:(1)顾客购买电器的价格是x=800元时,甲购物平台没有优惠,需要付费800元,乙购物平台有优惠,需要付费500+90%×(800-500)=770(元)所以顾客应选择在乙购物平台下单比较划算.(2)选择甲购物平台下单比较划算.理由如下:顾客购买电器的价格是x>2 000元时,甲购物平台需要付费1 000+80%(x-1 000)=(0.8x+200)(元)乙购物平台需要付费500+90%(x-500)=(0.9x+50)(元).(3)当x=3 500时,甲购物平台需要付费0.8×3 500+200=3 000(元)乙购物平台需要付费0.9×3 500+50=3 200(元)因为3 000<3 200所以该顾客应该选择甲购物平台下单比较划算.17.(10分)高速公路旁有三个物品代收点A,B,C,它们之间的距离如图所示.现要在高速公路旁修建一个货仓,把代收点A,B,C的货全部运到货仓,代收点A每天有50 t货物,代收点B每天有10 t货物,代收点C每天有60 t货物,从A到C方向每吨每千米运费1.5元,从C到A方向每吨每千米运费1元.问货仓应修建在何处才能使运费最低,最低运费是多少?解:①货仓P在A,B之间时,距离点A有x km,则距离点B有(50-x)km,距离点C 有(130-x)km.运费为50x×1.5+10×(50-x)×1+60×(130-x)×1=(5x+8 300)元.由题意,得0≤x≤50所以x=0时,运费最低,为8 300元.②货仓P在B,C之间时,距离点C有y km,则距离点B有(80-y)km,距离点A有(130-y)km.运费为60y×1+10×(80-y)×1.5+50×(130-y)×1.5=(-30y+ 10 950)元.由题意,得0≤y≤80所以当y=80时,运费最低,为8 550元.因为8 300<8 550所以货仓P在A,B之间,距离点A有 0 km,即在A处时,运费最低,为8 300元. 答:货仓在点A处时,运费最低,为 8 300元.自我诊断知识分类题号总分评价1,2,3,4,5,7,8代数式11,12,13,14求代数式的值6,9,10,15,16,17。
第三章代数式 单元练习一、单选题1.设n 为整数,下列式子中表示偶数的是( )A .2nB .2n+1C .2n-1D .n+22.按如图所示的运算程序,能使输出m 的值为1的是( )A .x =1,y =1B .x =2,y =0C .x =1,y =2D .x =3,y =2 3.已知代数式x ﹣ 12y 的值为﹣2,则代数式﹣6﹣2x+y 的值为( ) A .﹣8B .﹣2C .﹣4D .﹣10 4.当x=2时,代数式ax+bx+1的值为3,那么当x=-2时,代数式ax+bx+1的值是( )A .1B .-1C .3D .25.若x 的相反数是3,6y =,且0x y +<,则x y -的值是( )A .3B .3或9-C .3-或9-D .9-6.某商场举办促销活动,促销的方法是将原价x 元的衣服以(45x ﹣10)元出售,则下列说法中,能正确反映该商场的促销方法的是( )A .原价打8折后再减10元B .原价减10元后再打8折C .原价减10元后再打2折D .原价打2折后再减10元7.已知代数式x+2y 的值是2,则代数式2x+4y ﹣1的值是( )A .3B .4C .5D .68.文文设计了一个关于实数运算的程序,按此程序,输入一个数后,辐出的数比输入的数的平方小l ,若输入7 ,则输出的结果为( ) A .5 B .6 C .7 D .89.若 210x x --= ,则 3225x x -+ 的值为( )A .0B .2C .4D .510.在某一段时间里,计算机按如图所示程序工作,如果输入的数是2,那么输出的数是( )A .-54B .54C .-558D .558二、填空题11.若式子2x 2+3y+7的值为8,那么式子6x 2+9y+2的值为 .12.已知221x x -=-,则代数式()52x x +-的值为 .13.已知正整数 a , b ,满足 220b b -+-= , 0a b a b -+-= 且 a b ≠ ,则 ab 的值为 .14.已知三个有理数 a , b , c 的积是负数.当 a b c x a b c=++ 时,代数式 ()()2225235x x x x ---+ 的值是 .15.给定二元数对(p ,q ),其中p =0或1,q =0或1,三种转换器A ,B ,C 对(p ,q )的转换规则如下:a .转换器A 当输入(1,1)时,输出结果为1;其余输出结果均为0.转换器B 当输入(0,0)时,输出结果为0;其余输出结果均为1.转换器C 当输入(1,1)时,输出结果为0;其余输出结果均为1.b .在组合使用转换器时,A ,B ,C 可以重复使用.(1)在图1所示的“A -B -C”组合转换器中,若输入(1,0),则输出结果为 ;(2)在图2所示的“①-C-②”组合转换器中,若当输入(1,1)和(0,0)时,输出结果均为0,则该组合转换器为“ -C- ”(写出一种组合即可).三、解答题16.一种品牌衣服每件的进价为m元,在进价的基础上提高50%标价,“国庆”促销活动,将这种品牌衣服打八折销售:(1)用代数式表示这种品牌衣服每件的售价.m 时,求该品牌衣服获得(2)若在此次“国庆”促销活动期间,这种品牌衣服销售了12件,当800的利润是多少元?17.今年“十一”假期期间,某公园接待的游客数比去年同期增长了5.7%.若去年同期这个公园接待了游客x万人,求今年“十一”假期期间这个公园比去年同期多接待的游客人数.18.小方家的住房户型呈长方形,长为22宽为18,平面图如下(单位:米).现准用木地板铺设卧室。
3.1 列代数式表示数量关系 同步练习 2024-2025年人教版数学七年级上册一、单选题1.下列代数式书写规范的是( )A .21a 3B .2m n +C .a 5⨯D .22x y2.下列说法中,正确的是( )A .表示x ,y ,3,12的积的代数式为312xy B .a 是代数式,1不是代数式 C .3a b-的意义是a 与3的差除b 的商 D .m ,n 两数的差的平方与m ,n 两数积的2倍的和表示为(m -n )2+2mn3.请你帮助李飞同学,告诉他:他写的哪个式子不是代数式是( )A .23π12r =B .0C .aD .12m4.一个篮球的单价为a 元,一个足球的单价为b 元()b a >.小明买6个篮球和2个足球,小刚买5个篮球和3个足球,则小明比小刚少花( ) A .()a b -元B .()b a -元C .()5a b -元D .()5b a -元5. 一个两位数,十位上的数为a ,个位上的数为b ,若把这个两位数的十位上的数和个位上的数交换位置,计算所得的数和原数的和,用a ,b 可以表示为( ) A .11a+11bB .11abC .10a+10bD .10ab6.将字母“C ”,“H ”按照如图所示的规律摆放,依次下去,则第④个图形中字母“H ”的个数是( )A .9B .10C .11D .127. 通过计算比较图中图①,图②中阴影部分的面积,可以验证的计算式子是( )A .()a b x ab a -=-B .()b a x ab bx -=-C .()()a x b x ab ax bx --=--D .()()2a xb x ab ax bx x --=--+8.某产品原价a 元,提价10%后又降价了10%,则现在的价格是( )A .0.9aB .1.1aC .aD .0.99a9.观察下列关于m ,n 的单项式的特点:12m 2n ,23m 2n 2,34m 2n 3,45m 2n 4,56m 2n 5,……,按此规律,第n 个单项式是( ) A .21n nm n n + B .1n n nm n n + C .21nn m n n- D .1n nn m n n- 10.下列图形都是由同样大小的按一定规律组成的,其中第①个图形中一共有5个,第②个图形中一共有12个,第③个图形中一共有21个,⋅⋅⋅⋅⋅⋅,按此规律排列,则第⑥个图形中的个数为( )A .60B .45C .77D .50二、填空题11.某电视台要招聘1名记者,某应聘者参加了3项素质测试,成绩如下:测试项目 采访写作 计算机操作 创意设计 测试成绩(分)908580如果将采访写作、计算机操作和创意设计的成绩按5:2:3计算,则该应聘者的素质测试平均成绩是 分.12.三个连续的偶数从小到大排列,它们的和是a ,那么中间的数是13.一个两位数,个位数字与十位数字的和为6,设十位数字为x ,则这个两位数可表示为 .14.七年级举行一次数学基本功大赛,某班 45 人全部参加,有12a 人获得一等奖, a 人获得二等奖,b 人获得三等奖,该班没有获得奖项的同学有 人.(用含 a 、 b 的代数式表示)15.如图,在长为a 宽为b 的长方形中剪去两个半径为b 的四分之一圆,用代数式表示图中阴影部分面积 (用含a 、b 的代数式表示).16.BMX小轮车作为自行车运动大家庭的一员,近年来已经作为一项独特的运动项目受到了越来越多的青少年自行车运动爱好者的关注与喜爱.某自行车销售商看准商机迅速取得某品牌BMX小轮车的销售代理商资质,前期经过对BMX小轮车运动爱好者的问卷调查和相关市场调研,该销售商决定针对该品牌BMX小轮车的12寸、14寸、16寸三个车型进行宣传,并且在其成本基础上分别加价20%、25%、30%进行销售,其中14寸、16寸车型的成本分别是12寸车型的1.2倍、1.5倍.经过一个季度的销售,该销售商发现12寸BMX小轮车销售火热,其销售量占总销售量的35,且这个季度的三个车型的总利润率达到了24%;第二季度该销售商推出了12寸BMX小轮车改装型,并用其全部替换了上一季度的12寸BMX小轮车车型,其成本软上一季度提高了30%,销售量较上一季度提高了20%,另外14寸BMX小轮车车型其成本不变,销量软上一季度提高了4%,16寸BMX小轮车车型成本不变,但其销量较上一季度下降了9%.若该经销商在第二季度在12寸改装型、14寸、16寸三个车型成本基础上分别加价30%、25%、20%进行销售,则第二季度三个车型的销售总利润与其总成本之比为.三、解答题17.求如图所示图形的周长.18.甲、乙两地间的公路全长100 千米,某人从甲地到乙地每小时走m千米,用代数式表示:(1)此人从甲地到乙地需要走多长时间?(2)如果每小时多走5 千米,此人从甲地到乙地需要走多长时间?19.将形状相同、大小相等的长方形A、B和形状相同,大小相等的长方形C、D按图摆放,拼成一个中间含正方形的大长方形.(1)若长方形A的长为3,宽为1,设中间正方形的边长为x,用含x的式子表示拼成的大长方形的长和宽.(2)当长方形A的周长变化时,请写出拼成的大长方形的周长与长方形A的周长的关系,并说明理由.20.“双十一”期间,某电商城销售一种空调和立式风扇,空调每台定价3000元,立式风扇每台定价600元.商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台空调送一台立式风扇;方案二:空调和立式风扇都按定价的90%付款.x>.现某客户要到该卖场购买空调5台,立式风扇x台(5)(1)若该客户按方案一购买,需付款元(用含x的代数式表示),若该客户按方案二购买,需付款元.(用含x的代数式表示)x=,通过计算说明此时按哪种方案购买较为合算?(2)若1021.某市出租车的计价标准为:行驶路程不超过3千米收费10元,超过3千米的部分按每千米2.4元收费.(1)若某人乘坐了x(x>3)千米,则他应支付车费元;(用含有x的代数式表示)(2)一出租车公司坐落于东西方向的大道边,驾驶员王师傅从公司出发,在此大道上连续接送4批客人,行驶路程记录如下(规定向东为正,向西为负,单位:千米)第1批第2批第3批第4批+1.6-9+2.9-7①送完第4批客人后,王师傅在公司的边(填“东”或“西”),距离公司千米的位置;②在整个过程中,王师傅共收到车费多少钱?③若王师傅的车平均每千米耗油0.1升,则送完第4批客人后,王师傅的车用了多少升油?22.用同样规格的黑白两种颜色的正方形.按如图的方式拼图,请根据图中的信息完成下列的问题:(2)按如图的规律继续铺下去,那么第n个图形要用块白色正方形;(3)如果有足够多的黑色正方形,能不能恰好用完2023块白色正方形,拼出具有以上规律的图形?如果可以请说明它是第几个图形:如果不能,说明你的理由.答案解析部分1.【答案】D 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】D 9.【答案】A 10.【答案】A 11.【答案】86 12.【答案】3a13.【答案】9x+6 14.【答案】3452a b ⎛⎫-- ⎪⎝⎭15.【答案】212ab b π-16.【答案】429:158617.【答案】解: 如图所示图形的周长为2(m+6)=2m+12(cm ).18.【答案】(1)解:根据时间=路程÷速度,已知路程100千米,速度m 千米/小时,则时间=100m小时. (2)解:根据时间=路程÷速度,已知路程100千米,速度(m+5)千米/小时,则时间=1005m + 小时. 故答案为:1005m + 小时. 19.【答案】(1)解:大长方形长为6-x ,大长方形的宽为x+2(2)解:拼成的大长方形的周长始终是长方形A 的周长的2倍; 设长方形A 的长为a ,宽为b ,中间正方形的边长为x ,则拼成的大长方形长、宽分别为(2a-x)、(x+2b ),由题意得:大长方形的周长为 2[(2a-x )+(x+2b )] =4a+4b=2(2a+2b)答:长方形A的周长变化,拼成的大长方形的周长始终是长方形A的周长的2倍20.【答案】(1)(600x+12000);(540x+13500)(2)解:当x=10时,方案一:600×10+12000=18000(元),方案二:540×10+13500=18900(元).∵18000<18900,∴此时按方案一方案购买较为合算.21.【答案】(1)(2.4 2.8)x+(2)解:①西,11.5;②在整个过程中,王师傅共收到车费:10[10(93) 2.4]10[10(73) 2.4]64++-⨯+++-⨯=(元);③(| 1.6||9|| 2.9||7|)0.1++-+++-⨯(1.69 2.97)0.1=+++⨯20.50.1=⨯2.05=(升),答:送完第4批客人后,王师傅用了2.05升油.22.【答案】(1)8;11(2)32n+(3)解:不能,理由:3n+2=2023,解得:n=20213,n不是整数。
初一上册数学代数式练习题初一上册数学代数式练习题学生的学习生涯就是不断的用习题来充实自己,下面店铺给大家整理了一些初一上册数学代数式练习题,大家可以参考练习。
代数式练习题一:一、判断1、a²=a+a ( )2、小红今年a岁,比小艺大2岁,小艺今年(a+2)岁。
( )3、a×a可以写成2a。
( )4、m×6可以写成m6。
( )5、小明每分钟写x个字,6分钟写了6x个字。
( )6、一个书包a元,用50元钱买一个书包,还剩50a元。
( )7、比m的.3倍少12的数是3x-2. ( )8、u除3的商用字母表示为u÷3. ( )二、选择1、当a=20,b=40时,2a²-b=( )A. 0B. 160C.7602、甲、乙两地相距150千米,一辆汽车从甲地出发,每小时行m 千米,5小时以后离乙地还有( )千米。
A.150÷5+mB.150+5mC.150-5m3、5除a与b的差,商是( )A.5÷a-bB.5÷(a-b)C.(a-b)÷54、x的平方加x的7倍是( )A.2x+7xB.x²+7xC.x²-x÷75、张师傅每天做m个零件,是王师傅每天做的6倍,王师傅每天做( )个零件。
A.m+6B.m÷6C.6m代数式练习题二:1.不能表示代数式“4a”的意义的是( )2.下列式子:①a+b=c;②5√2;③a>0;④a2a,其中属于代数式的是( )3.用语言叙述代数式a2-b2,正确的是( )4.对于代数式-丨a-b丨,叙述表达的是( )7.代数式√3-2x2 5是( )8.某商场举办促销活动,将原价x元的衣服改为(x+1)元出售.叙述可作为此商场的促销标语的是( )9.(1)根据生活经验,对代数式3x+2y作出解释.(2)两个有理数的和是负数,那么这两个数一定都是负数,这种说法对吗?如果不对,请举例说明?10.根据代数式50a-40b自编一道应用题.。
《代数式》典型例题
例1 列代数式,并求值.
有两种学生用本,一种单价是0.25元,另一种单价是0.28元,买这两种本的数分别是m 和n .(1)问共需要多少元?(2)如果单价是0.25元的本和单价是0.28元的本分别买了20和25本,问共花了多少钱?
例2 某城市居民用电每千瓦时(度)0.33元,某户本月底电能表显示数m ,上月底电能表显示数为n ,(1)用m 和n 把本月电费表示出来;(2)若本月底电能表显示数是1601,上月底电能表显示数为1497,问本月的电费是多少?
例3 春节前夕,铁路为了控制客流,使其卧铺票票价上浮20%,春节期间按原价下浮10%,若某地到北京的卧铺票原价是x 元,如果在春节期间乘坐要比春节前少花多少钱,用x 表示出;当228=x 时,求这个代数式的值。
例4 22b a -可以解释为___________.
例5 一个三位数,百位数上的数是a ,十位上的数是b ,个位上的数是c .
(1)用代数式表示这个三位数.
(2)把它的三位数字颠倒过来,所得的三位数又该怎样表示?
例6 选择题
1.x 的3倍与y 的2倍的和,除以x 的2倍与y 的3倍的差,写成的代数式是( )
A .y x y x 3223-+
B .x
y y x 2323-+ C .y x y x 3223-+ D .y x
y x 2223-+ 2.如图,正方形的边长是a ,圆弧的半径也是a ,图中阴影部分的面积是( )
A .224a a -π
B .22a a π-
C .22a a -π
D .224a a π
-
例7 通过设20031413121,20021413121++++=++++= b a 来计算: ).20021413121()200314131211()20031413121()200214131211(++++⋅+++++-++++⋅+++++
例8 按给的例子,把输出的数据填上
例9 对于正数,运算“*”定义为b
a a
b b a +=*,求)333**(.
参考答案
例1 分析 已知单价和商品数量,求商品的总价,就是用单价乘以商品数量.
解:(1)共需要n m 28.025.0+(元);
(2)把25,20==n m 代入上式,得
122528.02025.028.025.0=⨯+⨯=+n m (元)
所以,共花了12元钱.
说明:在列代数式时经常要用到小学学过的常用数量关系,然后和小学列算式基本相似,把数量关系中的各量用已知数和表示该量的字母表示出来,就列出了代数式.
例2 分析:根据电费=电费 / 度×电量,就可以把本月的电费表示出来.
解:(1)本月电费可表示为)(33.0n m -元;
(2)把1497,1601==n m 代入上式,得
32.34)14971601(33.0)(33.0=-=-n m (元)
. 说明:本月底电能表显示的电量应包含以前的用电费,所以)(n m -才是本月的用电量. 例3 分析:把春节前夕的票价和春节期间的票价分别用x 表示出来,就可求出春节期间乘坐比春节前夕乘坐少花的钱数。
解:x x x x 9.02.1%)101(%)201(-=--+
当228=x 时,.4.682289.02282.19.02.1=⨯-⨯=-x x
说明:像这个代数式以后将可以化简。
例4 分析:该式从整体看是两个数的差,而被减数和减数都是数的平方,所以可以解释为两个数的平方差.
解:a 和b 的平方差
说明:在解释代数式时,必须准确反应运算关系,这和小学的读算式比较类似,要按代数式中给定的运算顺序去读.
例5 分析:a 、b 、c 都是小于10的大于0的整数,把a 放在百位上之后,它表示的意义将是a 的100倍,把b 放在十位上之后,它表示的是b 的10倍.
解:(1)c b a ++10100 (2)a b c ++10100.
说明:初学者容易把百位上是a 、十位上是b 、个位上是以c 的三位数表示为abc ,学过本节之后,见到代数式abc 应该马上想到它表示的是a 、b 、c 三个数的乘积.
上面所谈的错误也说明对各种问题应该多想一想.
例6 分析:1.“除以x的2倍与y的3倍的差”不同于“除以x的2倍的商与y的3
倍的差”.前者的分母是y
x3
2+,后者的分母是x
2.
2.阴影部分面积等于正方形的面积与空白部分的面积之差.空白部分的面积等于以a
为半径的圆的面积等于以a为半径的圆的面积的
4
1
,可以利用圆和正方形的面积公式来解.解:(1)A (2)D.
说明:审题必须细心.
例7 分析:设
2002
1
4
1
3
1
2
1
+
+
+
+
=
a,就是说把
2002
1
4
1
3
1
2
1
+
+
+
+ 看做是一个整体,看做和一个字母a是一回事,从而就可以把2001个分数的和用a来表示,b的情形与此相似.
解:原式a
b
b
a)
1(
)
1(+
-
+
=
.
2003
1
=
-
=
-
-
+
=
a
b
ab
a
ab
b
说明:上面计算中利用了分配律,还利用了相同的两个数的差是0(0
=
-ab
ab),读者可暂不追求对此运算过程的透彻理解.这里只是为了使读者对字母表示数的意义“略见一斑”.如果不利用字母表示数,简直不敢设想这道题怎么去算,写出运算过程又该是多么冗长。
例8 分析:从输出的例子可以发现,输入的元素,在方程中按给定的运算,经加工后输出,而给定的运算就是2(输入的元素)2+3(输入的元素)+4.
解:
例9 分析:这里“*”告诉我们一个运算关系,
b
a
ab
b
a
+
=
*,就是说:数*数数
数
数
数
+
⨯
=,按这个运算求)3
3
3*
*(.
解:因为b
a a
b b a +=* 所以1333
33333
33333333)333=+⨯++⨯⨯
=*+*⨯=**)()(( 说明:(1)“*”就应理解成给出的运算,具体运算就是b
a a
b +;(2)在具体做题时应注意“*”和“×”不能混淆.。