直驱风机机电暂态模型仿真研究
- 格式:pdf
- 大小:1.03 MB
- 文档页数:6
永磁直驱风电系统建模及其机电暂态模型参数辨识程玮;陈宏伟;石庆均【摘要】Aiming at the characters of direct-driven wind-power system with permanent magnet synchronous generator (PMSG) based on back-to-back pulse width modulation(PWM) converter, the wind turbine, the control strategies of turbine-side converter and grid-side con verter were analyzed. PMSG detail model using Matlah/Simulink was established. Based on this, electromechanical transient model for di rect-driven wind-turbine generator was constructed according to 3 orders synchronous generator model. Particle swarm optimization ( PSO) al gorithm was used to identify the parameter for the mathematical model. The simulation results show that the detail model can reflect direct- driven wind-power system' s operation as wind speed changing, while it can track the maximum power point. The electromechanical transient model coincides with the detail model well. It reflects the active and reactive power of the direct-driven wind-power system when grid voltage is changed. The parameter identification using PSO is effective. The results indicate that the detail model can be used to refine power output control strategy, the electromechanical transient model can be used to study direct-driven wind-power system interacted with the grid.%针对基于双脉宽调制(PWM)变换器的永磁直驱风电系统的运行特性,分析了风力机特性、电机侧变换器和电网侧变换器的控制策略,利用Matla/Simulink建立了反映电力电子开关动作的永磁直驱风电系统详细模型,并在此基础上根据同步电机3阶暂态模型,建立了直驱风机的机电暂态数学模型,采用粒子群算法(PSO)对模型进行了参数辨识.仿真结果表明,该详细模型能够描述永磁直驱风电系统对不同风速的响应,实现风能的最大功率跟踪;机电暂态数学模型与详细模型特性接近,能够从总体上反映永磁直驱风电系统对端电压变化的有功、无功响应,PS0参数辨识有效.研究结果表明,所建立的详细模型能够用于控制方式的研究以改善输出特性,机电暂态模型能够用于研究电网与永磁直驱风电系统的相互影响.【期刊名称】《机电工程》【年(卷),期】2012(029)007【总页数】4页(P817-820)【关键词】双脉宽调制变换器;机电暂态;参数辨识;粒子群算法【作者】程玮;陈宏伟;石庆均【作者单位】浙江大学电气工程学院,浙江杭州310027;浙江大学电气工程学院,浙江杭州310027;浙江大学电气工程学院,浙江杭州310027【正文语种】中文【中图分类】TM6140 引言当前,变速恒频(variable-speed constant-frequency,VSCF)风力发电系统已被广泛应用,其特点是通过先进的变速和变桨技术,在风速变化时调节发电机转速处于相应的最佳值从而最大限度地捕获风能,提高了风力发电的效率,且低风速情况下风机转速下降,从而大大降低了系统的机械应力和装置成本。
直驱型风电机组动态建模及仿真分析随着可再生能源的发展,风电作为一种比较成熟的清洁能源形式,越来越广泛地应用于各种场合。
为了更好地控制和优化风力发电系统的性能,需要对风电机组进行动态建模及仿真分析工作。
直驱型风电机组是一种新型的风力发电机组,其动态行为与传统驱动型风电机组有所不同。
本文将以直驱型风电机组为对象,介绍其建模及仿真分析方法,并通过仿真实验验证其有效性。
首先,建立直驱型风电机组的动态数学模型是动态建模及仿真分析的基础。
直驱型风电机组的运动方程可以描述为:$J\ddot{\theta} + b\dot{\theta} = Tem - Tl$其中,$J$为转动惯量,$\theta$为转子转角,$b$为摩擦系数,$Tem$为电磁转矩,$Tl$为负载转矩。
直驱型风电机组和传统风电机组不同之处在于其电磁转矩是直接产生在转子上的,因此需要建立电磁转矩的模型,通常采用如下形式:$Tem =\frac{3}{2}P(\frac{L_{ms}}{L_{s}+L_{r}})^2i^2\sin\delta$其中,$P$为极对数,$i$为转子电流,$L_{ms}$为互感,$L_{s}$和$L_{r}$分别为定子和转子的漏感,$\delta$为电角度。
该模型应考虑到磁场饱和、非线性等因素的影响。
在建立动态数学模型的基础上,需要进行仿真分析以验证模型的有效性和性能。
仿真分析的目的是得到风电机组的动态响应和控制策略,并进行有效性和性能评估。
仿真分析的主要步骤包括仿真建模、仿真实验、仿真结果处理等。
在仿真建模过程中,应根据实际情况选取合适的仿真工具和方法。
通常采用MATLAB等软件进行动态仿真建模,以及PSCAD等软件进行电磁仿真模拟。
在模型输入、仿真条件等方面,应考虑到实际工作环境和实验条件的影响,以保证仿真结果的准确性和可靠性。
在仿真实验过程中,主要是对所建立的仿真模型进行动态响应测试和控制策略验证。
通过针对不同的工况和工作状态进行仿真实验,可以得到不同工况下的动态响应和控制策略,从而评估风电机组的有效性和性能。