高级氧化技术
- 格式:docx
- 大小:20.96 KB
- 文档页数:7
高级氧化技术名词解释高级氧化技术是指可使煤在一定的条件下充分氧化,形成合格炉渣并脱硫、脱硝的技术。
高级氧化技术原理:通过高压氧气与煤炭的高温还原反应,煤中的有机物在常温常压下直接变为可燃气体,从而达到完全燃烧,这是解决煤炭燃烧污染环境的有效途径。
但目前普遍采用的高级氧化工艺存在能耗高、运行成本高、反应温度难控制、副产物对空气污染严重等问题。
因此研究一种新型高级氧化技术具有十分重要的意义。
目前,国内外高级氧化主要分为两类,即高压气流催化高级氧化和热载体加速的高级氧化技术。
我们发现,加速的高级氧化技术正逐渐成为今后新型高级氧化技术的主流。
高级氧化技术具有明显的节能、低温氧化及环保等特点,已成为当今世界高级氧化的研究热点。
目前,在国内外高级氧化研究中,主要研究的对象为烟煤、褐煤及无烟煤。
对焦煤、贫煤、瘦煤、贫瘦煤等炼焦煤由于不能进行高温干馏,其高级氧化技术还处于实验室阶段。
1、气流床加压高温干馏气流床加压高温干馏是一种近年来兴起的一种高级氧化技术。
该技术以大流量气体作为加热介质,在高温、高压下,烟煤、褐煤等固体或液体的煤料,在气流中加压,可在一定时间内将其氧化。
这种方式属于强化氧化,加热速度快,氧化产物易控制。
因此它也是近年来我国各煤炭科研单位开展最多的一种高级氧化方式。
2、高温干馏煤气利用湿法高温干馏煤气得到的混合气中的大部分可燃成分,均被高温干馏加热至350 ℃以上,部分固定碳得到高温干馏分解,使煤气中二氧化碳含量提高,减少了废气排放,同时有效降低煤气输送系统的阻力。
这项技术技术工艺简单,投资小,运行费用低,便于操作,比较适合于中国广大农村煤气化站点的使用。
3、空气/富氧高级氧化技术该技术的原理是:将氮气引入气流中,氮气迅速吸收煤气中的二氧化碳,达到脱碳效果,同时由于氧气不足,煤气中的一氧化碳和氢气等不完全燃烧产物在催化剂作用下被氧化,生成二氧化碳、水、氨和硫化氢等副产物。
该技术的关键在于催化剂的选择和煤气中残余煤气量的控制。
1.高级氧化技术的定义:利用强氧化性的自由基来降解有机污染物的技术,泛指反应过程有大量羟基自由基参与的化学氧化技术。
其基础在于运用催化剂、辐射,有时还与氧化剂结合,在反应中产生活性极强的自由基(一般为羟基自由基,·OH),再通过自由基与污染物之间的加合、取代、电子转移等使污染物全部或接近全部矿质化。
·OH反应是高级氧化反应的根本特点2.高级氧化方法及其作用机理是通过不同途径产生·OH自由基的过程。
·OH自由基一旦形成,会诱发一系列的自由基链反应,攻击水体中的各种有机污染物,直至降解为二氧化碳、水和其它矿物盐。
可以说高级氧化技术是以产生·OH自由基为标志3.高级氧化技术有什么特点?1)反应过程中产生大量氢氧自由基·OH2)反应速度快3)适用范围广,·OH几乎可将所有有机物氧化直至矿化,不会产生二次污染4)可诱发链反应5)可作为生物处理过程的预处理手段,使难以通过生物降解的有机物可生化性提高,从而有利于生物法的进一步降解;6)操作简单,易于控制和管理4.·OH自由基的优点1)选择性小,反应速度快;2)氧化能力强;3)处理效率高;5)氧化彻底5.高级氧化技术分为哪几类?1)化学氧化法:臭氧氧化/Fenton氧化/高铁氧化2)电化学氧化法3)湿式氧化法:湿式空气氧化法/湿式空气催化氧化法4)超临界水氧化法 5)光催化氧化法6)超声波氧化法7)过硫酸盐氧化法6.自由基与污染物反应的四种主要方式:氢抽提反应、加成反应、电子转移、(氧化分解)。
自由基反应的三个阶段:链的引发、链的传递、链的终止自由基反应具有无选择性,反应迅速的特点。
7. 产生羟基自由基的途径:Fe2+/H2O2、 UV/H2O2、 H2O2/O3、 UV/O3、UV/H2O2/O3、光催化氧化(TiO2光催化氧化反应机理:产生空穴和电子对),对有机物降解速率由快到慢依次为UV-Fenton、 Fenton、 O3/US、O3、O3/UV、UV/H2O2、UV。
高级氧化技术名词解释原指用空气和氧的混合物(氧化剂)来处理废水,后又将其改进为指用空气、臭氧、光和微生物等介质作为氧化剂来处理废水。
是指氧化剂与废水中的还原性物质在高温下发生氧化还原反应,从而破坏废水中有毒有害物质的化学反应。
该法具有反应条件温和,能耗少,成本低廉等优点。
缺点是易产生臭氧、光化学烟雾,对环境有一定影响。
故这类废水通常采用的氧化方法主要是微生物氧化法和臭氧氧化法。
(1)水解-好氧处理法当废水中有机物的可生化降解性差时,将其投加于微生物的生长繁殖过程中,可使大部分有机物转变为易生化降解的物质,从而提高废水的可生化性。
(2)厌氧-好氧生物处理法废水中有机物浓度高、可生化降解性差时,先将废水进行厌氧预处理,使废水中的可生化降解有机物数量大大减少,然后将高浓度的废水进入好氧生物处理系统,在好氧菌的作用下将有机物彻底氧化分解。
高级氧化技术常用于处理含有有机污染物质的废水。
如用COD法处理造纸废水。
在有机物和氧的作用下,废水中的有机物首先被氧化分解,产生酸性气体并逸出,这时,被氧化的有机物质在分解中逐渐形成水和二氧化碳,氧化反应则不断进行下去。
反应式如下:是一种特殊的化学氧化方法。
在催化剂的作用下,加速有机物的氧化。
其反应式如下:(3)活性污泥法活性污泥法(activated sludge,简称A法)是近几十年发展起来的一种高效的污水处理技术,在国外已得到广泛应用。
它由曝气池、沉淀池、污泥回流系统等组成,以供氧和硝化为主,具有出水水质好,占地面积小,维护管理简单,操作方便等优点。
适用范围:适用于处理有机物浓度高、污水负荷大的城市生活污水,在石油、化工、冶金等部门也得到了广泛应用。
2)好氧生物处理法好氧生物处理法(OOC)主要用于处理低浓度、高色度、难生化降解的有机废水。
该方法具有处理效率高、成本低等优点,缺点是运行费用高、二次污染严重、产生消化污泥等问题。
主要应用于城市污水、医院污水和石化、纺织印染等高浓度工业废水。
12种高级氧化技术
1、臭氧氧化法:利用臭氧(O3)进行氧化反应,处理工艺污染
物的有效性很高。
2、脱溴的氧化法:工艺污水中的挥发性有机物通过添加脱溴剂,形成
有机酸,然后利用活性氧氧化反应来去除。
3、活性炭吸附氧化法:利用活性炭对污染物吸附后,再用氧化剂氧化
来达到净化目的。
4、臭氧-活性炭联合处理:采用活性炭和臭氧联合处理,可以有效去
除水中有机污染物。
5、光催化氧化法:利用可见光引起的光催化反应去除水中有机污染物。
6、水热氧化法:利用水热反应氧化,对于微量的有机物有很好的处理
效果。
7、气相自由基氧化法:利用空气中的自由基氧化剂作用于有机物,从
而去除水中的有机成分。
8、激光氧化法:利用激光的能量使水中的有机物氧化反应而分解掉。
9、高压氧气技术:有机物被高压氧气作用,使其分解,从而达到处理
污染物的目的。
10、电化学氧化法:利用微弱电流作用于污染物,使其发生氧化反应
而被氧化分解。
11、超高温氧化:利用高温的气态氧化反应,有效处理污染物,是一
种快速的技术。
12、臭氧/过氧化氢混合处理:利用臭氧和过氧化氢的混合反应,可以
有效去除水中的有机污染物。
高级氧化技术名词解释高级氧化技术又称为高温焚烧技术,主要是通过将污染物质在高温下直接氧化为二氧化碳和水。
高级氧化技术可适用于任何成分复杂、温度范围宽的有机废气。
①气氛控制与调节装置:保证燃烧产生的热量以一定的气体状态进入反应器内。
②焚烧炉体:焚烧炉体一般包括焚烧室和尾气吸收处理系统。
焚烧炉体有两种形式:其一是卧式设计,烟气从前端由炉顶入口进入,通过尾部排烟口引出;其二是立式设计,烟气通过设置在后端的吸烟室进入,经水冷或风冷后进入前端。
③锅炉与热交换器:用来储存燃料燃烧放出的热量,同时也作为热传递的介质。
④反应区:反应区是一个多空室结构的立式圆筒,燃烧室底部与反应区相连,燃料与高温烟气的混合物进入反应区。
⑤尾气吸收装置:通过布置在尾气吸收装置内的吸收剂,使废气中的CO2、 HCl、 SOx等物质发生化学反应,最终转化成CO2和H2O。
(3)二氧化碳?臭氧氧化技术:指高浓度二氧化碳在高温( 1000~1500 ℃)、高氧(纯度≥97%)条件下氧化去除有机物的工艺。
此法操作简便、经济安全,净化效率高,二次污染少,并具有一定的脱色能力。
不足之处是对高温易燃有机物氧化效率低,当温度≥1600 ℃,会引起聚合物降解,降低可靠性和寿命。
其他氧化技术还有氯化法、氯氧化法、氮氧化法、光催化氧化法、等离子体法等。
目前国内外研究、开发和应用较多的有氯氧化法、光催化氧化法和等离子体法等三种。
①焚烧:有的采用直接燃烧的方法,有的采用先将有机物分散在油、乳化液或水中,再送入焚烧炉的方法。
②燃烧室及反应区:焚烧室的焚烧温度一般在700 ℃以上,废气在焚烧室内停留时间约15秒~1分钟,然后进入高温分解区。
③燃烧及辅助装置:根据设计要求,在焚烧炉体内设置燃烧器、导流器、预热器、回转供料器等装置。
废气高温氧化工艺主要是利用废气中所含二氧化碳,在高温下氧化为无害气体,不需另外增加投资,且回收利用热能,但是能耗较高。
近年来,利用高温焚烧技术处理城市有机废气的方法正逐步得到重视。
高级氧化技术高级氧化技术(AOPs)是基于羟基自由基(·OH)的特殊化学性质,化学活性高且氧化无选择性,可以促进有毒有害生物难有机物的氧化分解,最终矿化,达到污染物的无害化处置的氧化技术。
其高氧化还原电位相对于常见的氧化剂,如表1-1所示[1]。
高级氧化技术主要是基于一系列产生羟基自由基的物化过程。
Fenton(1894)发现Fe2+和H202发生化学反应产生·OH,·OH通过电子转移等途径可使水中的有机污染物矿化为二氧化碳和水[2]。
Weiss(1935)得到了臭氧(03)在水体中可与氢氧根离子(OH-)反应生成羟基自由基(·OH )[3],随后,Taube和Bray(l945)在实验中发现H2O2在水溶液中会离解成HO2-离子,诱发产生羟基自由基[4]。
利用物理的方法,例如超声辐射(Ultrasonic Irradiation)、水力设备(阀、小孔(orifice)和文氏管(venturi)等)、电子束辐射(Electron Beam,EB)等,诱发产生羟基自由基(·OH)[5,6]。
还有超临界水氧化(Supercritical Water Oxidation,SWO)、湿式氧化(Wet Air Oxidation,WAO)或催化湿式氧化(Catalytic Wet Air Oxidation,CWAO)等[7]。
20世纪70年代,Fujishima和Honda等发现光催化可产生·OH,从而揭开了光催化高级氧化技术研究的新领域[8]。
最近,混合型高级氧化技术(Hybrid Advanced Oxidation Ploeesses,HAOPs)成为研究的热点,其结合各种高级氧化技术的优点,弥补不足之处,成为高效的面向实际工程应用发展的新型高级氧化技术。
主要形式如下:超声/ H2O2 (或03)、03/ H2O2、超声光化学氧化(Sono- photochemical Oxidation)、光Fenton技术、催化高级氧化或结合生物氧化工艺、耦合氧化工艺,如SONIWO(SonoChemical Degradation followed by Wet Air Oxidation)等[9]。
工艺方法——高级氧化技术工艺简介高级氧化技术(Advanced Oxidation Process,简称AOPs),利用反应体系中产生的活性极强的羟基自由基(·OH)来进攻有机污染物分子,最终将有机污染物氧化为CO2和H2O以及其他无毒的小分子酸,是绿色环保、高效的废水处理技术。
目前,高级氧化技术主要有化学氧化、光化学氧化、光催化氧化、湿式催化氧化等。
由于AOPs 具有氧化性强、操作条件易于控制的优点,近年来引起越来越多的关注。
一、化学氧化法该法是用化学氧化剂将液态或气态的无机物或有机物转化成微毒物、无毒物,或将其转化成易分离形态。
水处理领域中常用的氧化剂为臭氧、过氧化氢、高锰酸钾等。
在苯酚废水处理工艺中,臭氧和过氧化氢的应用最为常见。
目前世界上已经有许多国家使用臭氧消毒,特别是欧洲在自来水厂水处理中多采用臭氧。
在臭氧氧化系统中加入固体催化剂,如具有较大表面积的活性炭等,臭氧、活性炭同时使用,起到催化作用,并可以吸附臭氧氧化后的小分子产物,两者联合增加溶液中的OH-,具有协同效果从而产生更多的羟基自由基。
过氧化氢是一种强氧化剂,在碱性溶液中氧化反应很快,不会给反应溶液带来杂质离子,因此被很好地应用于多种有机或无机污染物的处理。
过氧化氢用于去除工业废水中的COD已经有很长时间,虽然使用化学氧化法处理废水的价格比普通的物理和生物方法高,但这种方法具有其他处理方法不可替代的作用,比如有毒有害或不可生物降解废水的预消化、高浓度/低流量废水的预处理等。
单独使用过氧化氢降解高浓度的稳定型难降解化合物的效果并不好,可以通过使用过渡金属的盐类进行改进,最常见的方法是利用铁盐来激活,即芬顿试剂法。
可溶性亚铁盐和过氧化氢按一定的比例混合所组成的芬顿试剂,能氧化许多有机分子,且系统不需高温高压。
试剂中的Fe2+能引发并促进过氧化氢的分解,从而产生羟基自由基。
一些有毒有害物质如苯酚、氯酚、氯苯和硝基酚等也能被芬顿试剂和类芬顿试剂所氧化。
什么是高级氧化技术?有什么特点?
高级氧化技术是指任何以产生羟基自由基OH·为目的的过程的工艺技术,简称AOP(advanced oxidation process),或称AOT。
羟基自由基OH·的产生是利用H₂O₂、O₃等在一定的条件下,加入氧化剂、催化剂,或借助紫外线、超声波、电解等的作用而产生的。
例如法国科学家Fenton提出的以铁盐为催化剂,在H₂O₂存在下,能产生OH·;或用电解法,以铁为阳极,在阴极得到H₂O₂,利用Fenton试剂可得到OH·。
新近利用金刚石为阳极,使水在阳极氧化直接产生OH·。
OH·是活性中间体、强氧化剂,其氧化能力仅次于氟,其标准氧化还原电极电位(25℃)如下:
目前比较好的高级氧化技术有:H₂O₂/Fe²+(Fenton试剂
法);UV/TiO₂/H₂O₂(过氧化氢与多相光催化结合);UV/TiO₂/O₂(多相光催化氧化);UV/H₂O₂(过氧化氢加紫外线)等。
高级氧化技术的特点有:
①由于OH·具有极强的氧化性,因此,几乎能与废水中大部分有机物起反应,使其断裂为小分子,或者彻底氧化为CO₂、H₂O、O₂、无机盐等。
一般都不会产生新的污染。
尤其处理废水中难降解的有机污染物可优先选用。
②OH·反应速率快,与废水有机污染物作用非常迅速,去除效果好、速度快。
③对废水有机污染物的破坏程度能达到完全或接近完全。
对多种有机污染物可以达到十分有效去除。
④可以实行自动控制,操作性强。
高级氧化技术已在废水和循环水处理中成功应用。
污水处理技术中的高级氧化技术方法你知道几种高级氧化技术(Advanced Oxidation Processes,AOPs)是一种用于处理难降解有机污染物的先进水处理技术。
它在水处理过程中通过氧化反应来去除有机污染物,并降低水体中有毒物质的浓度。
以下是几种常见的高级氧化技术方法:1. 臭氧氧化法(Ozone Oxidation):臭氧被广泛应用于水处理过程中,可以有效去除有机物、微生物和色度等污染物。
臭氧氧化采用氧化反应,生成具有较高氧化能力的活性氧物种,如超氧自由基(O2-)、羟基自由基(·OH)等,从而有效降解有机污染物。
2. Fenton反应(Fenton Reaction):Fenton反应是一种通过加入过氧化氢和铁盐催化剂来产生高度活性羟基自由基(·OH)的氧化方法。
在Fenton反应中,过氧化氢和铁盐在适宜的条件下反应,产生大量的羟基自由基,进一步降解有机污染物。
3. 光催化氧化(Photocatalytic Oxidation):光催化氧化是利用半导体催化剂吸收光能进行氧化反应的技术。
常用的光催化剂有二氧化钛(TiO2)、锌氧化物(ZnO)等。
当光催化剂吸收光能后,激发电子从价带跃迁至导带,并在催化剂表面发生氧化还原反应,生成高度活性的羟基自由基和超氧自由基等。
这些活性物种可以降解或转化有机污染物。
4. 过氧化氢氧化法(Hydrogen Peroxide Oxidation):过氧化氢是一种氧化性较强的物质,在高级氧化技术中广泛应用。
过氧化氢氧化法通过加入适量的过氧化氢来氧化有机污染物,产生氢氧自由基(·OH)等活性物种,进而降解污染物。
5. 电化学氧化法(Electrochemical Oxidation):电化学氧化法采用电化学反应来将有机污染物氧化为无害的产物。
主要有两种方式:电化学氧化还原(Electrochemical Redox)和电解(Electrolysis)。
高级氧化技术高级氧化技术又称深度氧化技术,其基础在于运用电、光辐照、催化剂,有时还与氧化剂结合,在反应中产生活性极强的自由基(如HO•),再通过自由基与有机化合物之间的加合、取代、电子转移、断键等,使水体中的大分子难降解有机物氧化降解成低毒或无毒的小分子物质,甚至直接降解成为CO2和H2O,接近完全矿化目前的高级氧化技术主要包括化学氧化法、电化学氧化法、湿式氧化法、超临界水氧化法和光催化氧化法等。
1、化学氧化技术化学氧化技术常用于生物处理的前处理。
一般是在催化剂作用下,用化学氧化剂去处理有机废水以提高其可生化性,或直接氧化降解废水中有机物使之稳定化。
1.1 Fenton 试剂氧化法该技术起源于19世纪90年代中期,由法国科学家H. J. Fenton提出,在酸性条件下,H2O2在Fe2+离子的催化作用下可有效的将酒石酸氧化,并应用于苹果酸的氧化。
长期以来,人们默认的Fenton主要原理是利用亚铁离子作为过氧化氢的催化剂,反应产生羟基自由基式为:Fe2++ H2O2 ——Fe3++OH-+•OH,且反应大都在酸性条件下进行。
在化学氧化法中,Fenton法在处理一些难降解有机物(如苯酚类、苯胺类)方面显示出一定的优越性。
随着人们对Fenton法研究的深入,近年来又把紫外光(UV)、草酸盐等引入Fenton 法中,使Fenton法的氧化能力大大增强。
用UV + Fenton法对氯酚混合液进行了处理,在1h内TOC去除率达到83.2%。
Fenton法氧化能力强、反应条件温和、设备也较为简单,适用范围比较广,但存在处理费用高、工艺条件复杂、过程不易控制等缺点,使得该法尚难被推广应用。
1.2 臭氧氧化法臭氧氧化体系具有较高的氧化还原电位,能够氧化废水中的大部分有机污染物,被广泛应用于工业废水处理中。
臭氧能氧化水中许多有机物,但臭氧与有机物的反应是有选择性的,而且不能将有机物彻底分解为CO2和H2O,臭氧氧化后的产物往往为羧酸类有机物。
高级氧化技术一(芬顿试剂氧化)正文:1高级氧化技术高级氧化技术(AdvancedOxidationProcesses)定义为可产生大量的•OH自由基过程,利用高活性自由基进攻大分子有机物并与之反应,从而破坏油剂分子结构达到氧化去除有机物的目的,实现高效的氧化处理。
Fenton法处理含有羟基有机化合物的废水时存在明显的选择性。
羟基取代基类型、羟基数量、羟基取代位置、主链链长及主链的饱和度对Fenton法处理效果均存在不同程度的影响。
实验结果表明:一元酚羟基对Fenton反应有着促进作用,而一元醇羟基对其有强烈的抑制作用;当碳原子数相同而羟基数不同时,随羟基数量的增加其对Fenton反应的影响逐渐下降;饱和一元醇主链碳原子个数越多,则其对Fenton反应的抑制作用越明显;主链的不饱和度对Fenton反应的影响也是不同的,脂肪族不饱和羟基化合物的Fenton法处理效果很差,而对苯环类羟基化合物有着很好的氧化处理效果;链长与醇羟基个数都不同时,随主链的增长和羟基数量的增加,其对Fenton反应的抑制作用随之下降,表现出良好的氧化降解效果。
不同体系中的羟基自由基产生量可用来直接判断底物对芬顿试剂的抑制效应及抑制程度。
脉冲式加温对室温下芬顿试剂的氧化效果有着促进作用,且加热频率越大,效果越明显。
2芬顿试剂机理研究当Fenton发现芬顿试剂时,尚不清楚过氧化氢与二价铁离子反应到底生成了仕么氧化剂具有如此强的氧化能力。
20多年后,有人假设可能反应中产生了经基自由基,由于H2O:在催化剂Fe3+(Fe2+)的存在下,能高效率地分解生成具有强氧化能力和高电负性或亲电子性(电子亲和能力569.3KJ的经基自由基(・OH),・OH可以氧化降解水体中的有机污染物,使其最终矿化为C02,H20及无机盐类等小分子物质。
据计算在pH=4的溶液中,-OH的氧化电位高达2.73V,其氧化能力在溶液中仅次于氢氟酸。
因此,通常的试剂难以氧化持久性有机物,特别是芳香类化合物及一些杂环类化合物,芬顿试剂对其中的绝大部分都可以无选择地氧化降解。
高级氧化技术高级氧化技术(AOPs是基于羟基自由基(• OH)的特殊化学性质,化学活性高且氧化无选择性,可以促进有毒有害生物难有机物的氧化分解,最终矿化,达到污染物的无害化处置的氧化技术。
其高氧化还原电位相对于常见的氧化剂,如表1-1所示[1]。
高级氧化技术主要是基于一系列产生羟基自由基的物化过程。
Fenton(1894)发现Fe2■和H2O2发生化学反应产生• OH, • OH通过电子转移等途径可使水中的有机污染物矿化为二氧化碳和水[2]。
Weiss(1935)得到了臭氧(03)在水体中可与氢氧根离子(OH-)反应生成羟基自由基(• 0H )[3],随后,Taube和Bray(l945)在实验中发现H2O2在水溶液中会离解成H02-离子,诱发产生羟基自由基[4]。
利用物理的方法,例如超声辐射(Ultraso nic Irradiation)、水力设备(阀、小孔(orifice)和文氏管(venturi)等)、电子束辐射(Electron Beam , EB)等,诱发产生羟基自由基(• OH)[5,6]。
还有超临界水氧化(Supercritical Water Oxidation , SWO)、湿式氧化(Wet Air Oxidation , WAO)或催化湿式氧化(Catalytic Wet Air Oxidation , CWAO)等⑺。
20世纪70年代,Fujishima和Honda等发现光催化可产生•OH,从而揭开了光催化高级氧化技术研究的新领域[8]。
最近,混合型高级氧化技术(Hybrid Advaneed Oxidation Ploeesses, HAOPs)成为研究的热点,其结合各种高级氧化技术的优点,弥补不足之处,成为高效的面向实际工程应用发展的新型高级氧化技术。
主要形式如下:超声/ H2O2 (或03)、03/ H2O2、超声光化学氧化(So no-photochemical Oxidatio n)、光Fen to n 技术、催化高级氧化或结合生物氧化工艺、耦合氧化工艺,女口SONIWO(So no Chemical Degradation followed byWet Air Oxidation)等[9]。
高级氧化技术名词解释高级氧化技术是指在水泥或钢铁制品表面覆盖有一层含有碳、氮、硫等元素的催化剂,使金属制品表面形成钝化膜而防止金属制品被腐蚀的工艺。
又称表面处理技术。
生锈的原因是水泥、钢铁制品暴露于大气中,由于吸收了空气中的水分和氧气,从而导致金属表面与空气中的氧进行接触反应,这时钢铁制品表面就会逐渐形成一层细微而牢固的氧化物保护膜。
我们知道,金属材料经历一个从普通状态到半钝化状态再到全钝化状态的过程,其中表面发生了一系列的变化,即由表面状态转变为钝化状态的过程,称为钝化。
但实际上只有钝化程度较大的金属才能转变为完全钝化,金属钝化膜对钢铁制品具有良好的保护作用,延长了钢铁制品的使用寿命。
在实际生产中,为提高氧化层质量,使其结构更加紧密,常常要在金属表面涂刷一层耐蚀性极强的涂料。
钢铁制品的腐蚀现象还是相当普遍的。
为防止这种情况的发生,采取合适的保护措施,以减少或消除腐蚀对钢铁制品造成的损失,高级氧化技术就是一种行之有效的保护手段。
经高级氧化处理后的钢铁制品,其抗腐蚀能力可达到甚至超过普通油漆的效果。
高级氧化技术包括机械法和化学法两类。
化学法的特点是投资少、速度快、设备简单。
如水解除油法、酸性溶液除锈法、碱性溶液除锈法等,机械法是利用清洗剂或表面活性剂的化学作用将铁锈从制品表面去除。
机械法除锈的方法主要有钢丝刷法、喷射清洗法、超声波清洗法等,化学法是在制品表面均匀地覆盖一层很薄的含有钝化剂的化学处理层。
人类为了使用方便,往往会给各种制品穿上衣服,例如衣服的帽子,过去人们往往会在帽子上添加一顶装饰性很强的帽子,以增加美观。
但是,现代人往往将自己的想法强加于衣服上,有时候这些装饰性很强的帽子显得不伦不类,但在某些场合它确实必不可少,所以在那种场合下也只能带上那顶装饰性的帽子。
在这种情况下,人们就利用高级氧化技术来给各种衣服增加附加功能,从而使衣服的实用价值得到提升。
随着科学技术的不断发展,越来越多的高新技术正在被人们所运用。
【最新整理,下载后即可编辑】1.高级氧化技术的定义:利用强氧化性的自由基来降解有机污染物的技术,泛指反应过程有大量羟基自由基参与的化学氧化技术。
其基础在于运用催化剂、辐射,有时还与氧化剂结合,在反应中产生活性极强的自由基(一般为羟基自由基,·OH),再通过自由基与污染物之间的加合、取代、电子转移等使污染物全部或接近全部矿质化。
·OH反应是高级氧化反应的根本特点2.高级氧化方法及其作用机理是通过不同途径产生·OH自由基的过程。
·OH自由基一旦形成,会诱发一系列的自由基链反应,攻击水体中的各种有机污染物,直至降解为二氧化碳、水和其它矿物盐。
可以说高级氧化技术是以产生·OH自由基为标志3.高级氧化技术有什么特点?1)反应过程中产生大量氢氧自由基·OH2)反应速度快3)适用范围广,·OH几乎可将所有有机物氧化直至矿化,不会产生二次污染4)可诱发链反应5)可作为生物处理过程的预处理手段,使难以通过生物降解的有机物可生化性提高,从而有利于生物法的进一步降解;6)操作简单,易于控制和管理4.·OH自由基的优点1)选择性小,反应速度快;2)氧化能力强;3)处理效率高;5)氧化彻底5.高级氧化技术分为哪几类?1)化学氧化法:臭氧氧化/Fenton氧化/高铁氧化2)电化学氧化法3)湿式氧化法:湿式空气氧化法/湿式空气催化氧化法4)超临界水氧化法5)光催化氧化法6)超声波氧化法7)过硫酸盐氧化法6.自由基与污染物反应的四种主要方式:氢抽提反应、加成反应、电子转移、(氧化分解)。
自由基反应的三个阶段:链的引发、链的传递、链的终止自由基反应具有无选择性,反应迅速的特点。
7. 产生羟基自由基的途径:Fe 2+/H 2O 2 、 UV/H 2O 2 、 H 2O 2/O 3 、 UV/O 3 、 UV/H 2O 2/O 3 、光催化氧化(TiO 2光催化氧化反应机理:产生空穴和电子对),对有机物降解速率由快到慢依次为UV-Fenton 、 Fenton 、 O 3/US 、O 3、O 3/UV 、UV/H 2O 2、UV 。
高级氧化技术的定义及特点高级氧化技术(Advanced Oxidation Technologies,AOTs)是一种通过引入强氧化剂来处理废水和废气的技术。
它是一种高效的水处理方法,可以将有机污染物转化为无害的物质。
高级氧化技术具有以下几个特点。
高级氧化技术的核心是强氧化剂的使用。
常见的强氧化剂包括臭氧、过氧化氢、过氧化二氧化氮等。
这些强氧化剂具有很强的氧化能力,可以将有机污染物分解为无害的物质或低毒的物质。
强氧化剂的使用可以有效地去除废水和废气中的有机污染物,改善水体和空气的质量。
高级氧化技术具有高效性。
由于强氧化剂具有很强的氧化能力,它们可以在较短的时间内将有机污染物完全分解或转化为无害的物质。
相比传统的水处理方法,高级氧化技术能够更快速地去除有机污染物,提高水处理的效率。
高级氧化技术具有广泛的适用性。
它可以处理各种类型的废水和废气,包括工业废水、农业废水、城市污水等。
无论是有机物浓度较高的废水还是有机物浓度较低的废水,高级氧化技术都可以有效地去除有机污染物。
此外,高级氧化技术还可以处理多种有机污染物,包括酚类、酮类、醛类、氯代烷烃等。
高级氧化技术还具有较低的操作成本。
与其他水处理方法相比,高级氧化技术的设备和操作成本较低。
强氧化剂的制备和使用成本相对较低,而且高级氧化技术不需要额外的化学药剂。
因此,高级氧化技术在实际应用中具有较低的运行成本,可以为企业和政府节省资金。
高级氧化技术还具有环保性。
由于强氧化剂的使用,高级氧化技术可以将有机污染物完全分解或转化为无害的物质。
这意味着高级氧化技术处理后的废水和废气不会对环境造成二次污染。
而且,高级氧化技术不会产生大量的污泥,减少了对土壤和水体的污染。
高级氧化技术是一种通过引入强氧化剂来处理废水和废气的技术。
它具有高效性、广泛的适用性、较低的操作成本和环保性等特点。
高级氧化技术在水处理领域具有广阔的应用前景,可以有效地改善水体和空气的质量,保护环境和人民的健康。
几种主流的高级氧化技术原理及优缺点!高级氧化工艺(AdvancedOxidationProcesses,简称AOPS)是20世纪80年代开始形成的处理有毒污染物技术,它的特点是通过反应产生羟基自由基(middot;OH),该自由基具有极强的氧化性,通过自由基反应能够将有机污染物有效的分解,甚至彻底的转化为无害的无机物,如二氧化碳和水等。
由于高级氧化工艺具有氧化性强、操作条件易于控制的优点,因此引起世界各国的重视,并相继开展了该方向的研究与开发工作。
高级氧化技术主要分为Fenton 氧化法、光催化氧化法、臭氧氧化法、超声氧化法、湿式氧化法和超临界水氧化法。
一、几种高级氧化技术1.Fenton氧化法过氧化氢与催化剂Fe2+构成的氧化技术体系称为Fenton试剂。
它是100多年前由H.J.H.Fenton发明的一种不需要高温和高压而且工艺简单的化学氧化水处理技术。
近年来研究表明,Fenton的氧化机理是由于在酸性条件下过氧化氢被催化分解所产生的反应活性很高的羟基自由基所致。
在Fe2+催化剂作用下,H2O2能产生两种活泼的氢氧自由基,从而引发和传播自由基链反应,加快有机物和还原性物质的氧化。
其一般历程为:Fenton氧化法一般在PH为2~5的条件进行,该方法优点是过氧化氢分解速度快,因而氧化速率也较高。
但此方法也存在许多问题,由于该系统Fe2+浓度大,处理后的水可能带有颜色;Fe2+与过氧化氢反应降低了过氧化氢的利用率及其PH限制,因而在一定程度上影响了该方法的推广应用。
近年来,有人研究把紫外光(UV),氧气等引入Fenton试剂,增强了Fenton试剂的氧化能力,节约了过氧化氢的用量。
由于过氧化氢的分解机理与Fenton与Fenton试剂极其相似,均产生middot;OH,因此将各种改进了的Fenton试剂称为类Fenton试剂。
主要有H2O2+UV系统、H2O2+UV+Fe2+系统、引入氧气的Fenton系统。
高级氧化技术目前废水处理最常用的生物法对可生化性差、相对分子质量从几千到几万的物质处理较困难,而化学氧化可将其直接矿化或通过氧化提高污染物的可生化性,同时还对环境类激素等微量有害化学物质的处理方面有很大的优势。
然而O3、H2O2和Cl2等氧化剂的氧化能力不强且有选择性等缺点难以满足要求。
1987年Gaze等人提出了高级氧化法(AdvancedOxidation processible, 简称AOPs),它克服了普通氧化法存在的问题,并以其独特的优点越来越引起重视。
特点高级氧化法最显著的特点是以羟基自由基为主要氧化剂与有机物发生反应,反应中生成的有机自由基可以继续参加·HO的链式反应,或者通过生成有机过氧化自由基后,进一步发生氧化分解反应直至降解为最终产物CO2和H2O,从而达到氧化分解有机物的目的。
与其他传统的水处理方法相比,高级氧化法具有以下特点:产生大量非常活泼的羟基自由基·HO其氧化能力(2.80v)仅次于氟(2.87),它作为反应的中间产物,可诱发后面的链反应,羟基自由基与不同有机物质的反应速率常数相差很小,当水中存在多种污染物时,不会出现一种物质得到降解而另一种物质基本不变的情况;HO无法选择地直接与废水中的污染物反应将其降解为二氧化碳、水和无害物,不会产生二次污染;普通化学氧化法由于氧化能力差,反应有选择性等原因,往往不能直接达到完全去除有机物降低TOC和COD的目的,而高级氧化法则基本不存在这个问题,氧化过程中的中间产物均可以继续同羟基自由基反应,直至最后完全被氧化成二氧化碳和水,从而达到了彻底去除TOC、COD的目的。
由于它是一种物理化学过程,很容易加以控制,以满足处理需要,甚至可以降低10-9级的污染物;同普通的化学氧化法相比,高级氧化法的反应速度很快,一般反应速率常数大于109mol-1Ls-1,能在很短时间内达到处理要求;既可作为单独处理,又可与其他处理过程相匹配,如作为生化处理的预处理,可降低处理成本。
发展方向高级氧化技术可将有机污染物矿化成二氧化碳和水,是环境友好型工艺,但其降解污染物时处理成本过高是制约其推广的“瓶颈”。
在我国高级氧化技术中除少数如芬顿法、臭氧氧化技术等已在实际水处理中有所应用,其余还多处于实验室研究或小型试验阶段。
只有解决了高级氧化技术投资处理成本高、设备腐蚀严重、处理水量小等缺点,才能加快其在实际工业中的应用。
高级氧化技术的发展方向可总结为以下几点:一是部分技术例如光催化氧化技术、臭氧氧化技术能够提高废水的可生化性,但单独处理焦化废水难度大、成本高,可将其与生化技术结合,降低焦化废水的生物毒性,提高可生化性,再采用低耗高效的生化法进行处理。
二是湿式催化氧化、超临界水氧化等技术对设备要求高,处理成本高,可针对反应器材质和低廉催化剂进行专项研发。
在焦化废水处理中,难处理的废水如剩余氨水不要混入其他废水中,增加其废水量,进而采用上述高级氧化剂进行处理。
三是设计结构简单、效率高、能应用自然光并可长期稳定运行的反应器,提高光化学氧化、光催化氧化技术的处理效率,并将其与混凝法、吸附法等技术联合。
技术介绍【光化学氧化法】由于反应条件温和、氧化能力强光化学氧化法近年来迅速发展,但由于反应条件的限制,光化学法处理有机物时会产生多种芳香族有机中间体,致使有机物降解不够彻底,这成为了光化学氧化需要克服的问题。
光化学氧化法包括光激发氧化法(如03/UV)和光催化氧化法(如Ti02/UV)。
光激发氧化法主要以03、H202、02和空气作为氧化剂,在光辐射作用下产生-OH;光催化氧化法则是在反应溶液中加入一定量的半导体催化剂,使其在紫外光的照射下产生-OH,两者都是通过-OH的强氧化作用对有机污染物进行处理。
【催化湿式氧化法】催化湿式氧化法(CWAO)是指在高温(123℃~320℃)、高压(0.5~10MPa)和催化剂(氧化物、贵金属等)存在的条件下,将污水中的有机污染物和NH3-N氧化分解成C02、N2和H20等无害物质的方法。
基本原理:该处理工艺在一定温度和压力条件下,在填充专用催化剂的反应器中,保持废水在液体状态。
在氧气作用下,利用催化氧化的原理,一次性地对高浓度有机废水的COD、TOC、氨、氰等污染物进行氧化分解的深度处理,使之转变为CO2、N2、水等无害成分,并同时脱臭、脱色及杀菌消毒。
从而达到净化处理水的目的。
该工艺不产生污泥,只有少量装器内部的清洗废液需要单独处理。
当达到处理规模时,还以热能形式收大赞能量。
催化湿式氧化法主要指标及条件【技术指标】(1)处理水水质:高浓度的废水水质(COD≥10000mg/L、NH3-N≥500mg/L,T-CN>5000mg/L)。
(2)高温高压反应的操作指标:温度200-300度、压力1.0~10MPa、反应空气比1.0-2.0(3)污染物去除率:COD≥95%、NH3-N≥97%,T-CN≥99%,挥发酚≥99%。
(4)污染物的处理成本:通常情况下去除每kgCOD需0.5-3.0元。
【条件要求】高COD浓度的进水水顺适用于厂泛的氨氮和pH范围。
废水中不得含有大量的可污染催化剂的物质(如金属).以及易造成设备或管道堵塞的物质。
此类物质在进行反应前需做相应的处理。
【声化学氧化】声化学氧化中主要是超声波的利用。
超声波法用于垃圾渗滤液的处理主要有两个方面:一是利用频率在15kHz~1MHz的声波,在微小的区域内瞬间高温高压下产生的氧化剂(如-OH)去除难降解有机物。
另外一种是超声波吹脱,主要用于废水中高浓度的难降解有机物的处理。
臭氧氧化法臭氧氧化法主要通过直接反应和间接反应两种途径得以实现。
其中直接反应是指臭氧与有机物直接发生反应,这种方式具有较强的选择性,一般是进攻具有双键的有机物,通常对不饱和脂肪烃和芳香烃类化合物较有效;间接反应是指臭氧分解产生-OH,通过-OH与有机物进行氧化反应,这种方式不具有选择性。
臭氧氧化法虽然具有较强的脱色和去除有机污染物的能力,但该方法的运行费用较高,对有机物的氧化具有选择性,在低剂量和短时间内不能完全矿化污染物,且分解生成的中间产物会阻止臭氧的氧化进程。
可见臭氧氧化法用于垃圾渗滤液的处理仍存在很大的局限性。
用途①水的消毒:臭氧是一种广谱速效杀菌剂,对各种致病菌及抵抗力较强的芽孢、病毒等都有比氯更好的杀灭效果,水经过臭氧消毒后,水的浊度、色度等物理、化学性状都有明显改善.化学需氧量(COD)一般能减少50~70%。
用臭氧氧化处理法还可以去除苯并(a)芘等致癌物质。
②去除水中酚、氰等污染物质:用臭氧法处理含酚、氰废水实际需要的臭氧量和反应速度,与水中所含硫化物等污染物的量和水的pH值有关,因此应进行必要的预处理。
把水中的酚氧化成为二氧化碳和水,臭氧需要量在理论上是酚含量的7.14倍。
用臭氧氧化氰化物,第一步把氰化物氧化成微毒的氰酸盐,臭氧需要量在理论上是氰含量的1.84倍;第二步把氰酸盐氧化为二氧化碳和氮,臭氧需要量在理论上是氰含量的4.61倍。
臭氧氧化法通常是与活性污泥法联合使用,先用活性污泥法去除大部分酚、氰等污染物,然后用臭氧氧化法处理。
此外,臭氧还可分解废水中的烷基苯磺酸钠(ABS)、蛋白质、氨基酸有机胺、木质素、腐殖质、环状化合物及链式不饱和化合物等污染物。
③水的脱色:印染、染料废水可用臭氧氧化法脱色。
这类废水中往往含有重氮、偶氮或带苯环的环状化合物等发色基团,臭氧氧化能使染料发色基团的双价键断裂,同时破坏构成发色基团的苯、萘、蒽等环状化合物,从而使废水脱色。
臭氧对亲水性染料脱色速度快、效果好,但对疏水性染料脱色速度慢、效果较差。
含亲水性染料的废水,一般用臭氧20~50毫克/升,处理10~30分钟,可达到95%以上的脱色效果。
④除去水中铁、锰等金属离子:铁、锰等金属离子,通过臭氧氧化,可成为金属氧化物而从水中离析出来。
理论上臭氧耗量是铁离子含量的0.43倍,是锰离子含量的0.87倍。
⑤除异味和臭味:地面水和工业循环用水中异味和臭味,是放线菌、霉菌和水藻的分解产物及醇、酚、苯等污染物产生的。
臭氧可氧化分解这些污染物,消除使人厌恶的异味和臭味。
同时,臭氧可用于污水处理厂和污泥、垃圾处理厂的除臭。
电化学氧化法电化学氧化法是指通过电极反应氧化去除污水中污染物的过程,该法也可分为直接氧化和间接氧化。
直接氧化主要依靠水分子在阳极表面上放电产生的-OH的氧化作用,-OH亲电进攻吸附在阳极上的有机物而发生氧化反应去除污染物;间接氧化是指通过溶液中C12/C10。
的氧化作用去除污染物。
电化学氧化对垃圾渗滤液中的COD和NH3一N 都有很好的去除效果,缺点是能耗较大。
①直接电解氧化直接电解氧化电化学氧化法不使用化学氧化剂可以最大限度地减少三废污染。
电化学氧化法的耗电费用和化学氧化相比常常是较低的。
另外电化学氧化法还具有选择性好、产率高、产品纯度高、副产物少、温室和常压操作等优点。
各种新颖的电极材料、工程塑料和隔膜材料的出现又对有机电氧化的工业化提供了条件。
例如苯和苯酚的氧化制取苯醌、菲氧化制取菲醌、甲苯和邻甲苯的氧化制取相应的醛等。
②间接电解氧化间接电解氧化是指在化学反应器中,用可变价金属的盐类水溶液将有机反应物氧化成目的产物,然后将用过的盐类水溶液送到电解槽中,在转变成所需要的氧化剂的过程。
以甲苯氧化制备苯甲醛为例,在化学反应器中用高价铈或高价锰将甲苯氧化成苯甲醇。
然后将用过的低价铈盐水溶液送到电解槽中的阳极室氧化成高价铈,再循环使用。
在间接电解氧化过程中,为了使化学反应物只被氧化到一定的程度,必须选择合适的氧化离子对。
由于反应的选择性、收率和目的产物的分离等因素的限制,目前在工业生产中间接电解氧化法只适用于甲苯及其衍生物的氧化制取苯甲醛及其衍生物、萘的氧化制取1,4-萘醌,淀粉的氧化制取双醛淀粉、对硝基甲苯的氧化制取对硝基苯甲酸等过程。
Fenton法Fenton法是一种深度氧化技术,即利用Fe和H202之间的链反应催化生成-OH自由基,而-OH自由基具有强氧化性,能氧化各种有毒和难降解的有机化合物,以达到去除污染物的目的。
特别适用于生物难降解或一般化学氧化难以奏效的有机废水如垃圾渗滤液的氧化处理。
Fenton法处理垃圾渗滤液的影响因素主要为pH、H202的投加量和铁盐的投加量。
普通Fenton法H2O2在Fe2+的催化作用下分解产生·OH,其氧化电位达到2.8V,是除元素氟外最强的无机氧化剂,它通过电子转移等途径将有机物氧化分解成小分子。
同时,Fe2+被氧化成Fe3+产生混凝沉淀,去除大量有机物。
可见,Fenton试剂在水处理中具有氧化和混凝两种作用。
Fenton试剂在黑暗中就能降解有机物,节省了设备投资,缺点是H2O2的利用率不高,不能充分矿化有机物。