高级氧化技术
一、概述 二、电化学基本原理 三、电催化氧化技术降解有机物的机理 四、动力学参数-反应机理的判据 五、典型电催化反应的机理 六、电催化电极 七、影响电催化氧化技术效率的因素 八、几种典型高级氧化技术及其比较 九、电催化与常规化学催化的区别 十、在环境污染控制中的应用 十一、应用前景及存在问题
返回
间接氧化是通过阳极在高电势下产生的羟基等自由基 与污染物分子作用,这种自由基是具有高度活性的强氧 化剂C(也可以是催化剂),通过对有机物产生脱氢、 亲电子和电子转移作用,形成活化的有机自由基,产生 连锁自由基反应,使有机物迅速完全降解,故也称为电 化学燃烧。间接氧化在一定程度上既发挥了阳极直接 氧化的作用,又利用了产生的氧化剂,使处理效率显著 提高。
返回
二、电化学基本原理
电化学技术的基本原理是使污染物在电极上发生直接 电化学反应或利用电极表面产生的强氧化性活性物种 使污染物发生氧化还原转变,后者被称为间接电化学 转化,见下图:
返回
直接电化学转化通过阳极氧化可使有机污染物和部分 无机污染物转化为无害物质,阴极还原则可从水中去 除重金属离子。这两个过程同时伴生放出H2和O2的副 反应,使电流效率降低,但通过电极材料的选择和电 位控制可加以防止,且很少产生羟基自由基,处理效率 不理想。
五、典型电催化反应的机理
1、氢析反应与分子氢的氧化 氢析出反应是非常重要的电极反应,不仅因为水电解制 备氢是获取这种洁净能源的有效途径,而且它是水溶液 中其他阴极过程的伴随反应。其反应机理可表示为:
2 H O 2 eH 2 H O ( 酸 性 溶 液 中 ) 3 2 2
2 H O 2 eH 2 O H ( 碱 性 溶 液 中 ) 2 2
返回