高炉冶炼过程能量利用计算分析
- 格式:docx
- 大小:69.37 KB
- 文档页数:7
4 高炉热平衡计算4.1热平衡计算的目的热平衡计算的目的,是为了了解高炉热量供应和消耗的状况,掌握高炉内热能的利用情况,研究改善高炉热能利用和降低消耗的途径。
通过计算调查高炉冶炼过程中单位生铁的热量收入与热量支出,说明热量收支各项对高炉冶炼的影响,从而寻找降低热消耗与提高能量利用的途径,达到使高炉冶炼过程处于能耗最低和效率最高的最佳运行状态。
同时还可以绘制热平计算表研究高炉冶炼过程的基本方法[2]。
4.2热平衡计算方法热平衡计算的量论依据是能量守恒定律,即单位生铁投入的能量总和应等于中位个铁各项热消耗总和。
热平衡计算采用差值法,即热损失是以总的热量收入减去各项热量的消耗而得到的,即把热量损失作为平衡项,所以热平衡表面上没有误差,因为一切误差都集中掩盖在所有热损失之中。
根据计算的目的和分析的需要,热平衡可分为全炉热平衡与区域热平衡。
全炉热平衡是把整个高炉作为研究对象、计算它的各项热收入与支出,用来分析高炉冶炼过程令的能量利用情况。
而区域热平衡是把高炉的某一个区域作为研究对象,计算和分析这个区域内的能量利用情况。
虽然计算热平衡的部位与方法不向,但计算的目的都是为寻找降低能耗的途径和确定一定冶炼条件下的能耗指标。
理论上可以以把高炉内的任何一个部位当作区域热平衡的计算对象,但由于决定向炉冶炼能耗指标的主要因素存在于高炉下部的高温区。
因此,常用高炉下部属温区热平衡进行计算。
本例采用第一热平衡法计算进行热平衡计算。
第一种热平衡法,亦称热工法热平衡。
它是根据羔斯定则,不考虑炉内的实际反应过程.耍以物料最初与最终状态所具有的热力学参数为依据,确定高炉内的过程中所提供和消耗的热量。
它的热收入规定为焦炭和喷吹物的热值(即全部C完全燃烧成CO2和H2全部燃烧成H2O时放出的热量)、热风与炉料带入的物理热及少量成渣热。
而热支出为氧化物、硫化物和碳酸盐的分解热,喷吹燃料的分解热,水分分解热。
脱S反应耗热,渣铁和炉顶煤气热焓与热值,冷却水代走的热量和炉体散热损失等项。
480高炉最大利用系数概述说明以及解释1. 引言1.1 概述在现代工业生产中,高炉是一种重要的冶金设备,广泛应用于钢铁行业。
然而,在高炉的运行过程中,存在着能源消耗和物料利用率不足的问题。
为了提高高炉的效益和降低生产成本,许多研究机构和企业致力于提高高炉的最大利用系数。
本文将对480高炉最大利用系数进行概述说明和解释。
首先我们将介绍480高炉最大利用系数的定义与意义,包括其作为评估指标的科学性和实用性。
接着,我们将分析影响480高炉最大利用系数的主要因素,包括原料配比与质量控制、燃料选择与燃烧技术以及炉况管理与操作优化。
然后,我们将介绍提高480高炉最大利用系数的方法与实践,包括工艺优化、设备改造与升级以及制度建设与人员培训。
最后,在结论部分,我们将总结文章主要观点和论点,并展望未来480高炉最大利用系数发展的可能性,并提出相关建议。
1.2 文章结构本文共分为五个部分。
首先是引言部分,下面将介绍480高炉最大利用系数的定义与意义。
第二部分将详细讨论影响480高炉最大利用系数的因素。
第三部分将介绍提高480高炉最大利用系数的方法与实践。
在第四部分,我们将总结文章的主要观点和论点,并展望未来480高炉最大利用系数发展的可能性。
最后,在第五部分,我们将提出相关建议。
1.3 目的本文旨在全面了解和探讨480高炉最大利用系数的概念及其应用。
通过深入分析影响其变化的因素,可以帮助企业在生产经营中更好地优化工艺和管理,提高生产效益和资源利用率。
此外,本文还旨在为相关技术人员提供参考,以促进钢铁行业的可持续发展和节能减排工作的推进。
2. 480高炉最大利用系数的定义与意义:2.1 定义:480高炉最大利用系数是指在高炉冶炼过程中,通过优化原料配比、燃料选择和操作管理等手段,使得高炉的生产能力充分发挥,实现高效率、低能耗、环保节能的一个指标。
该系数可以通过测量高炉的产能输出与设计产能之间的比值来计算。
具体而言,将设计产能除以实际产出得到一个百分比值,即为480高炉最大利用系数。
高炉炼铁工序能耗计算方法日前,中国钢铁企业网特邀专家顾问王维兴就高炉炼铁工序能耗计算方法作了以下解析:1.高炉炼铁工序能耗计算统计范围原燃料供给:矿槽卸料、称量料斗和计量、料车或皮带上料、仪表显示和控制、照明等用电;空调用电、冬季取暖用蒸汽等能源用量。
高炉本体:焦炭(包括小块焦)、煤粉、电力、蒸汽、压缩空气、氧气、氮气、水(新水、软水等)等。
渣铁处理:炉渣处理用电和水,冲渣水余热要进行回收利用。
鼓风:分电力鼓风或气动鼓风。
鼓风能耗一般占炼铁总能耗的10%。
1m?风需要用能耗0.030kgce/ m?.正常冶炼条件下,高炉消耗1吨燃料,需要2400m?的风量。
热风炉:要求漏风率?2%、漏风损失应?5%、总体热效率?80%、风温大于1200?,寿命大于25年。
烧炉用高炉煤气折标煤系数0.1143kgce/m?;转炉煤气折标煤系数0.2286kgce/m?;焦炉煤气折标煤系数0.6kgce/m?。
热风炉用电力和其它能源工质:蒸汽、压缩空气、水等。
煤粉喷吹:煤粉制备干燥介质,宜优先采用热风炉废气;用电力、氮气、蒸汽、压缩空气、空调和采暖用能等。
设计喷煤能力要大于180kg/t.碾泥:用电力和其它能源工质。
除尘和环保:主要是电力(大企业环境保护用电力占炼铁用电的30%左右)、水等。
,铸铁机:电力、水等。
扣除项目:回收利用的高炉煤气,热值按实际回收量计算;TRT余压发电量(电力0.1229kgce/kwh)2.炼铁工序能耗计算方法炼铁工序能耗=(C+I+E-R)?T式中:T-合格生铁产量,铸造铁产量要用折算系数进行计算(见表1);C-焦炭(干全焦,包括小块焦)用量。
折热量,28435kJ。
标煤量0.9714kgce/t 焦炭. I-喷吹煤折热量,20908kJ ; 折标煤量0.7143kgce/t原煤。
E-加工能耗(煤气、电、耗能工质等)折标煤量:煤气折标煤系数见热风炉栏目。
电力折标煤系数0.1229kgce/kwh.. 耗能工质折标煤系数:氧气0.1796kgce/m?;氮气0.0898 kgce/kwh. 压缩空气0.040kgce/m?,新水0.257 kgce/kwh软水0.500 kgce/m?,蒸汽0.12 kgce/kwh.R-回收高炉煤气、电力折热量. 高炉煤气折标煤系数0.1143kgce/Nm? 电力折标煤系数0.1229kgce/kwh。
高炉炼铁过程中的能源消耗与管理一、前言与背景高炉炼铁作为现代钢铁工业的基础,自19世纪末以来,一直是铁钢生产的主要方法。
高炉炼铁技术的出现和发展,对社会、经济和科技产生了深远影响。
它使得钢铁生产实现了规模化、低成本,极大地促进了工业革命和现代工业社会的形成。
同时,高炉炼铁过程也伴随着能源的消耗,据统计,能源消耗占到了高炉炼铁成本的很大一部分。
因此,研究和分析高炉炼铁过程中的能源消耗和管理,对于提高我国钢铁工业的能源利用效率,降低生产成本,提升竞争力具有重要意义。
二、高炉炼铁行业/领域的核心概念与分类高炉炼铁的概念高炉炼铁是一种利用焦炭和氧气反应产生的高温,将铁矿石还原成铁的过程。
其基本原理是在高温下,铁矿石中的氧化铁与一氧化碳反应,生成铁和二氧化碳。
高炉炼铁过程中,能源主要用于提供热能和动力能,其中热能主要用于维持高炉内的温度,动力能主要用于推动炉内物质的流动和完成各项机械作业。
高炉炼铁的分类高炉炼铁可以根据炉型、操作方式、燃料种类等不同标准进行分类。
按炉型可分为小型高炉、中型高炉和大型高炉;按操作方式可分为连续操作高炉和间歇操作高炉;按燃料种类可分为焦炭高炉和煤气高炉。
高炉炼铁的特征与应用领域高炉炼铁具有生产规模大、原料利用率高、产品品质好、能耗高等特征。
其应用领域广泛,几乎涵盖了所有钢铁生产领域。
高炉炼铁与其他领域的交叉与融合随着科技的发展,高炉炼铁技术与自动化、信息化、环保等领域日益交叉与融合。
例如,高炉炼铁过程的自动化控制,使得生产过程更加稳定,效率更高;信息化技术的应用,使得高炉炼铁过程的监测和控制更加精细;环保技术的应用,则有助于降低高炉炼铁过程中的污染排放。
三、关键技术或性能原理剖析高炉炼铁的关键技术高炉炼铁的关键技术主要包括燃料燃烧技术、还原反应技术、热量交换技术、原料处理技术等。
其中,燃料燃烧技术是高炉炼铁过程中能源消耗的主要部分,其效率的高低直接影响到高炉炼铁的能耗。
高炉炼铁的最新技术突破与创新成果近年来,高炉炼铁技术取得了许多重要突破和创新成果,如低焦比炼铁技术、高风温技术、煤气净化技术等。