第9章 液晶高分子
- 格式:ppt
- 大小:5.17 MB
- 文档页数:77
液晶高分子课件1.引言液晶高分子(LiquidCrystalPolymer,简称LCP)是一类具有液晶相态的高分子材料,因其独特的物理和化学性质,在众多领域得到广泛应用。
本文将对液晶高分子的基本概念、性质、制备方法及应用进行详细介绍。
2.液晶高分子的基本概念(1)分子链在液晶相中具有一定的取向有序性;(2)液晶高分子具有各向异性,即在不同方向上具有不同的物理和化学性质;(3)液晶高分子具有热塑性,可通过加热熔融进行加工;(4)液晶高分子具有良好的热稳定性和力学性能。
3.液晶高分子的性质3.1热稳定性3.2力学性能液晶高分子的力学性能优异,具有高强度、高模量等特点。
这主要得益于分子链的取向有序性以及分子链间的紧密排列。
3.3各向异性液晶高分子的各向异性表现为在不同方向上具有不同的物理和化学性质。
这种各向异性使得液晶高分子在特定应用领域具有独特优势。
4.液晶高分子的制备方法4.1溶液聚合溶液聚合是将液晶单体溶解在特定溶剂中,通过引发剂引发聚合反应,制备液晶高分子。
该方法操作简便,但需选用适宜的溶剂和引发剂。
4.2悬浮聚合悬浮聚合是将液晶单体分散在非溶剂介质中,通过引发剂引发聚合反应,制备液晶高分子。
该方法可实现较高分子量液晶高分子的制备,但聚合过程较复杂。
4.3乳液聚合乳液聚合是将液晶单体分散在水相中,通过乳化剂和引发剂引发聚合反应,制备液晶高分子。
该方法适用于制备具有特定形态的液晶高分子。
5.液晶高分子的应用液晶高分子在众多领域具有广泛的应用,主要包括:5.1电子电器液晶高分子具有良好的绝缘性能和热稳定性,适用于制备高性能电子元器件,如电路板、连接器等。
5.2高性能纤维液晶高分子纤维具有高强度、高模量等特点,可应用于航空航天、军工等领域。
5.3生物医学液晶高分子具有良好的生物相容性和降解性能,可用于制备药物载体、生物支架等。
6.结论液晶高分子作为一种具有独特性质的高分子材料,在众多领域具有广泛的应用前景。
第九章液晶高分子第一节概述一、高分子液晶的进展史人们早已熟知液晶本身和液晶在电子显示器件方面、非线性光学方面的应用。
液晶显示的腕表、计算器、笔记本电脑和高清楚度彩色液晶电视都已做生意品化,液晶的商业用途多大百余种,各类商品多达数千种,它使显示等技术领域发生重大的革命性转变。
液晶的科学史已愈百年,液晶现象是1888年奥地利植物学家Reinitzer在研究胆甾醇苯甲酯时第一观看到的。
他发觉,当该化合物被加热时,在145℃和179℃时有两个灵敏的“熔点”。
在145℃时,晶体转变成混浊的各向异性的液体,继续加热至179℃时,体系又进一步转变成透明的各向同性的液体,而处于145℃和179℃之间的液体部份保留了晶体物质分子的有序排列,因此被称为“动的晶体”或“结晶的液体”。
1889年,德国科学家正式将处于这种状态的物质命名为“液晶”。
尔后,很多人对液晶的研究和进展作出了重要奉献。
Friedle确立了液晶的概念及分类,即液晶是集液体和晶体二重性质为一体的物质。
Wiener等进展了液晶的双折射理论。
Bose提出了液晶的相态理论。
Grandiean等研究了液晶分子的取向机理及其结构。
1908年德国化学家Vorlande:提出了第一个关于液晶化合物的体会法那么:能产生液晶态的化合物,其分子应尽可能成直线状。
Vorlander法那么成了那时设计和合成液晶化合物的依据。
1923年,Vorlander在其论文中提出了高分子液晶的假想,他以为:只要还能熔化,而又不发生分解,液晶分子不存在长度的限制。
假设干年后,直到1937年Brawden和Pirie在研究烟草花叶病毒的悬浮液时,发觉其悬浮液具有液晶的特性,这是人们第一次发觉生物高分子的液晶特性。
其后1950年,Elliott与Ambrose第一次合成了高分子液晶。
1956年,Flory将其闻名的格子理论用来处置溶致型高分子液晶体系,推导出了刚性或半刚性聚合物溶液的液晶相显现的临界浓度。
液晶高分子04300006 杜伟享一 概念功能高分子材料主要指那些能对物质、能量和信息具有传递转换或贮存作用的高分子材料。
我介绍的液晶高分子是有光学性能的高分子。
某些物质的结晶受热熔融或溶剂溶解后,虽然失去故态物质的刚性,而获得液态物质的流动性,却仍然部分的保村着晶态物质分子的有序排列,从而在物理性质上呈现各向异性,形成一种兼有晶体和液体的部分性质的过度态,这种中间状态为液晶态,处在这种状态的物质是液晶。
高分子液晶材料是近年来研究较多的一种功能高分子材料,它是介于液体和晶体之间的一种中介态,具有独特的结构与性能。
二 发展历史液晶现象是1888年奥地利植物学家F.Reintizer在研究胆甾醇苯甲酯时首先发现的。
它既具有晶体的各相异性,又有液态的流动性。
小分子液晶的这种神奇状态引起了人们浓厚兴趣,现已发现多种液晶材料。
这些主要是一些有机材料,形成液晶的物质通常具有刚性的分子结构,分子的长宽比例大于一,呈棒状构象,同时还具有在液相下维持分子某种排序所必需的凝聚力。
这种凝聚力通常是由结构中的强极性基团,高度可极化基团或氢键提供1937年Bawden和Pirie在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性。
这是人们第一次发现生物高分子的液晶特性,其后1950年,Elliott 与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。
50年代到70年代,美国Duponnt公司投入大量人力才力进行高分子液晶发面的研究,取得了极大成就,1959年推出芳香酰胺液晶,但分子量较低,1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex,1972年研制出强度优于玻璃纤维的超高强.高模量的Kevlar纤维,并付注实用,以后,高分子液晶的研究则从溶致型转向为热致型。
在这一方面Jackson等作出了较大贡献,他们合成了对苯二甲酸已二醇酯与对羟基苯甲酸的共聚物,可注塑成型,这是一种模量极高的自增强液晶材料。
•液晶高分子概述•液晶高分子结构与性质•液晶高分子合成与制备•液晶高分子材料性能评价•液晶高分子在显示技术中应用•液晶高分子在其他领域应用拓展•总结与展望contents目录定义光学性质分子排列可调控性定义与特点20世纪初20世纪60年代现状液晶高分子已成为显示技术、光电子器件等领域的重要材料。
随着科技的不断发展,液晶高分子的性能和应用领域仍在不断拓展。
显示技术光电子器件•生物医学:用于制造生物芯片、生物传感器等医疗器械。
前景随着科技的不断发展,液晶高分子的性能和应用领域仍在不断拓展。
未来,液晶高分子有望在柔性显示、可穿戴设备、智能家居等领域发挥更大作用。
分子结构特点有序排列刚性分子链液晶高分子的分子链在空间中呈现有序排列,形成特定的晶体结构,这是液晶性质的基础。
各向异性液晶相变行为温度诱导相变随着温度的变化,液晶高分子可以发生从晶态到液晶态,再到各向同性液态的相变过程。
压力诱导相变在某些情况下,压力也可以诱导液晶高分子发生相变。
电场和磁场诱导相变液晶高分子在电场和磁场作用下也可以发生相变,这种相变行为在显示器件等领域有重要应用。
物理化学性质光学性质液晶高分子具有独特的光学性质,如双折射、旋光性等,这些性质使得液晶高分子在显示器件、光学器件等领域有广泛应用。
力学性质由于分子链的刚性和有序排列,液晶高分子通常具有较高的力学强度和模量。
热学性质液晶高分子的热学性质也表现出各向异性,如热膨胀系数、热导率等在不同方向上有所不同。
电学性质液晶高分子在电场作用下可以发生取向变化,表现出一定的电学性质,如介电常数、电导率等。
活性聚合缩聚反应开环聚合030201合成方法与路线设计原料选择与反应条件优化选用高纯度、低杂质含量的单体和引发剂,确保产物质量和性能。
根据单体和引发剂的活性,选择合适的反应温度,提高聚合速率和产物分子量。
控制反应时间,确保聚合反应充分进行,同时避免过度聚合导致产物性能下降。
选用合适的溶剂,提高单体和引发剂的溶解度,促进聚合反应的进行。
第九章液晶高分子第一节概述一、高分子液晶的进展史人们早已熟知液晶本身和液晶在电子显示器件方面、非线性光学方面的应用。
液晶显示的腕表、计算器、笔记本电脑和高清楚度彩色液晶电视都已做生意品化,液晶的商业用途多大百余种,各类商品多达数千种,它使显示等技术领域发生重大的革命性转变。
液晶的科学史已愈百年,液晶现象是1888年奥地利植物学家Reinitzer在研究胆甾醇苯甲酯时第一观看到的。
他发觉,当该化合物被加热时,在145℃和179℃时有两个灵敏的“熔点”。
在145℃时,晶体转变成混浊的各向异性的液体,继续加热至179℃时,体系又进一步转变成透明的各向同性的液体,而处于145℃和179℃之间的液体部份保留了晶体物质分子的有序排列,因此被称为“动的晶体”或“结晶的液体”。
1889年,德国科学家正式将处于这种状态的物质命名为“液晶”。
尔后,很多人对液晶的研究和进展作出了重要奉献。
Friedle确立了液晶的概念及分类,即液晶是集液体和晶体二重性质为一体的物质。
Wiener等进展了液晶的双折射理论。
Bose提出了液晶的相态理论。
Grandiean等研究了液晶分子的取向机理及其结构。
1908年德国化学家Vorlande:提出了第一个关于液晶化合物的体会法那么:能产生液晶态的化合物,其分子应尽可能成直线状。
Vorlander法那么成了那时设计和合成液晶化合物的依据。
1923年,Vorlander在其论文中提出了高分子液晶的假想,他以为:只要还能熔化,而又不发生分解,液晶分子不存在长度的限制。
假设干年后,直到1937年Brawden和Pirie在研究烟草花叶病毒的悬浮液时,发觉其悬浮液具有液晶的特性,这是人们第一次发觉生物高分子的液晶特性。
其后1950年,Elliott与Ambrose第一次合成了高分子液晶。
1956年,Flory将其闻名的格子理论用来处置溶致型高分子液晶体系,推导出了刚性或半刚性聚合物溶液的液晶相显现的临界浓度。
第九章液晶高分子第一节概述一、高分子液晶的进展史人们早已熟知液晶本身和液晶在电子显示器件方面、非线性光学方面的应用。
液晶显示的腕表、计算器、笔记本电脑和高清楚度彩色液晶电视都已做生意品化,液晶的商业用途多大百余种,各类商品多达数千种,它使显示等技术领域发生重大的革命性转变。
液晶的科学史已愈百年,液晶现象是1888年奥地利植物学家Reinitzer在研究胆甾醇苯甲酯时第一观看到的。
他发觉,当该化合物被加热时,在145℃和179℃时有两个灵敏的“熔点”。
在145℃时,晶体转变成混浊的各向异性的液体,继续加热至179℃时,体系又进一步转变成透明的各向同性的液体,而处于145℃和179℃之间的液体部份保留了晶体物质分子的有序排列,因此被称为“动的晶体”或“结晶的液体”。
1889年,德国科学家正式将处于这种状态的物质命名为“液晶”。
尔后,很多人对液晶的研究和进展作出了重要奉献。
Friedle确立了液晶的概念及分类,即液晶是集液体和晶体二重性质为一体的物质。
Wiener等进展了液晶的双折射理论。
Bose提出了液晶的相态理论。
Grandiean等研究了液晶分子的取向机理及其结构。
1908年德国化学家Vorlande:提出了第一个关于液晶化合物的体会法那么:能产生液晶态的化合物,其分子应尽可能成直线状。
Vorlander法那么成了那时设计和合成液晶化合物的依据。
1923年,Vorlander在其论文中提出了高分子液晶的假想,他以为:只要还能熔化,而又不发生分解,液晶分子不存在长度的限制。
假设干年后,直到1937年Brawden和Pirie在研究烟草花叶病毒的悬浮液时,发觉其悬浮液具有液晶的特性,这是人们第一次发觉生物高分子的液晶特性。
其后1950年,Elliott与Ambrose第一次合成了高分子液晶。
1956年,Flory将其闻名的格子理论用来处置溶致型高分子液晶体系,推导出了刚性或半刚性聚合物溶液的液晶相显现的临界浓度。