x
[a,b]时g(x)=f(x)且g(x)的值域为[
1 b
,1 a
]?
若存在,求出a、b的值;若不存在,说明理由.
典例分析
引例 已知定义在[1,m]上的函数
f(x)=
1 2
x2
-x+
3 2
的值域也是[1,m],
则实数m的值为. 3
典例分析
例3 二次函数f(x)= log3
x2
ax x
b
,
x (0, ),是否存在实数a,b,使f a(x-1)-x+3的 图象经过点(5,-4),求证:f(x)在 其定义域上仅有一个零点.
典例分析
例2 已知定义在R上的函数y=f(x)满足
f(x)+f(-x)=0,且x 0时,f(x)=2x-x2.
(1)求x<0时,函数f(x)的解析式;
(2)是否存在这样的正实数a、b,使得当
(2)当且仅当x [4,m](m>4)时,f(x-t) x 恒成立,试求t、m的值.
方法提炼
1.理解函数的概念,掌握函数的图象和 性质是解决函数综合问题的基础,也是 历年高考的重点、热点和难点。
2.解决函数的综合问题,要认真分析,把 握问题的主线,把问题化归为基本问题来 解决.
3.注意等价转化,数形结合等思想的运用.
同时满足下列两个条件: ① f(x)在
(0,1]上单调递减,在[1,+)上
单调递增: ② 最小值为1.若存在,
求出a、b的值;若不存在,说明理由.
典例分析
例4 二次函数f(x)=ax2 +bx(a 0) 满足条件: ① 对任意x R,均有f(4-x)=f(2-x); ② 函数f(x)的图象与直线y=x相切. (1)求f(x)的解析式;