七年级数学第四章线段与角习题精选(word文档良心出品)
- 格式:doc
- 大小:139.50 KB
- 文档页数:2
七年级上册《数学》第4章线段相关练习题第1课时直线、射线、线段一、能力提升1.下列说法错误的是()A.过一点可以画无数条直线B.过已知三点可以画一条直线C.三条直线两两相交,有一个或三个交点D.两点确定一条直线2.射线OA、射线OB表示同一条射线,下面图形正确的是()3.如图,下列叙述不正确的是()A.点O不在直线AC上B.图中共有5条线段C.射线AB与射线BC是指同一条射线D.直线AB与直线CA是指同一条直线4.看图填空:(1)点C在直线AB;(2)点O在直线BD,点O是直线与直线的交点;(3)过点A的直线共有条,它们分别是.5.如图,在线段AB上任取D,E,C三个点,则这个图中共有条线段.6.木工检验木条的边线是不是直的,常常用眼睛从木条的一端向另一端望去,如果看到两个端点及这条边线中的各点都重合于一点,那么这条边线就是直的,你可以同伙伴试一试这种方法,并说一说其中的道理.7.按下列语句画出图形.(1)直线l经过A,B,C三点,点C在点A与点B之间;(2)经过点O的三条直线a,b,c;(3)两条直线AB与CD相交于点P;(4)P是直线a外一点,有一条直线b经过点P且与直线a相交于点Q.二、创新应用8.如图所示:(1)试验观察:如果每过两点可以画一条直线,那么:第①组最多可以画条直线;第②组最多可以画条直线;第③组最多可以画条直线.(2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在同一条直线上,那么最多可以画条直线.(用含n的式子表示)(3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握次手.答案:一、能力提升1.B过三点画直线,要看这三点在不在一条直线上,若不在,则无法画出直线.2.B射线自端点向一方无限延伸,因为表示射线时字母有顺序性,即端点字母写在前面,因此点A、点B应在点O的同侧且三点在同一条直线上.3.C4.(1)外(2)上AC BD(3)3直线AD、直线AB、直线AC这类题,必须认真观察图形,弄清各元素的位置关系,用精练、准确的语言表达.5.10只要有一个端点不相同,就是不同的线段.6.解:经过两点有且只有一条直线.7.解:(1)(2)(3)(4)二、创新应用.(3)990.8.(1)3;6;10.(2)n(n-1)2第2课时线段的比较与性质一、能力提升1.如图,要在直线PQ上找一点C,使PC=3CQ,则点C应在()A.P,Q之间B.点P的左边C.点Q的右边D.P,Q之间或在点Q的右边2.(2020·陕西西安模拟)已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC等于() A.11cm B.5cmC.11cm或5cmD.8cm或11cm3.已知C为线段AB的一个三等分点,D为线段AB的中点.若AB的长为6.6cm,则CD的长为()A.0.8cmB.1.1cmC.3.3cmD.4.4cm4.如图,C是线段AB的中点,D是CB上一点,下列说法错误的是()BCA.CD=AC-BDB.CD=12AB-BD D.CD=AD-BCC.CD=125.如图,作出线段a,b,则线段AB的长等于()A.a-bB.2a+bC.2a-bD.b-2a6.已知A,B是数轴上的两点,点A表示的数是-1,且线段AB的长度为6,则点B表示的数是.7.如图,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.8.如图,点C是线段AB上一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=20cm,AM=6cm,求NC的长;(2)如果MN=6cm,求AB的长.9.在桌面上放了一个正方体盒子,如图,一只蚂蚁在顶点A处,它要爬到顶点B处找食物,你能帮助蚂蚁设计一条最短的爬行路线吗?要是食物在顶点C 处呢?10.已知线段AB=12cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,求线段AM的长.二、创新应用11.1条直线把平面分成2部分,2条直线最多可以把平面分成4部分,3条直线最多可以把平面分成7部分,那么4条直线最多可以把平面分成几部分?6条直线呢?10条直线呢?n条直线呢?答案: 一、能力提升1.D 注意本题中的条件是在直线PQ 上找一点C ,所以C 可以在P ,Q 之间,也可以在点Q 的右侧.2.C3.B 如图,AD=12AB=3.3cm,AC=13AB=2.2cm.所以CD=AD-AC=3.3-2.2=1.1(cm). 4.B5.C 由作图可知,AN=2a ,BN=b ,故AB=AN-BN=2a-b.6.-7或5.点B 可能在点A 的左侧,也有可能在点A 的右侧.若点B 在点A 的左侧,则点B 表示的数比点A 表示的数小6,此时点B 表示的数为-7;若点B 在点A 的右侧,则点B 表示的数比点A 表示的数大6,此时点B 表示的数为5.7.解:连接AC ,BD ,交点P 即为购物中心的位置.理由:根据“两点之间,线段最短”,要使购物中心到A ,B ,C ,D 的距离和最小,购物中心既要在AC 上,又要在BD 上. 8.解:(1)因为M 为AC 的中点,所以MC=AM. 又因为AM=6cm, 所以AC=2×6=12(cm). 因为AB=20cm,所以BC=AB-AC=20-12=8(cm). 又因为N 为BC 的中点,所以NC=12BC=4(cm).(2)因为M 为AC 的中点,所以MC=AM. 因为N 为BC 的中点,所以CN=BN.所以AB=AC+BC=2(MC+CN )=2MN=2×6=12(cm).9.解:该正方体的侧面展开图如图所示.食物在B 处时的最短路线为线段AB ,食物在C 处时的最短路线为线段AC.10.解:(1)当点C 在线段AB 上时.如图①,图①因为M 是AC 的中点,所以AM=12AC.又因为AC=AB-BC ,AB=12cm,BC=6cm. 所以AM=12(AB-BC )=12×(12-6)=3(cm).(2)当点C 在线段AB 的延长线上时,如图②,图②因为M 是AC 的中点,所以AM=12AC.又因为AC=AB+BC ,AB=12cm,BC=6cm.所以AM=12AC=12(AB+BC )=12×(12+6)=9(cm).故线段AM 的长为3cm 或9cm .二、创新应用11.解:4条直线最多可以把平面分成11部分;6条直线最多可以把平面分成22部分;10条直线最多可以把平面分成56部分;n 条直线最多可以把平面分成12n 2+12n+1部分.。
第一学期七年级数学 第四章线段与角单元测试卷学号 姓名 得分 一.选择题.(每小题3分,共30分)1.下列说法中,正确的个数有( ).(1)射线AB 和射线BA 是同一条射线 (2)延长射线MN 到C(3)延长线段MN 到A 使NA==2MN (4)连结两点的线段叫做两点间的距离A .1B .2C .3D .42.如图,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ). A .CD=AC-BD B .CD=21BC C .CD=21AB-BD D .CD=AD-BC 3.如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是( ).A .M 点在线段AB 上. B .M 点在直线AB 上.C .M 点在直线AB 外.D .M 点可能在直线AB 上,也可能在直线AB 外. 4.下列图形中,能够相交的是( ).5.如图,小华的家在A 处,书店在B 处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线( ).A .A →C →D →B B .A →C →F →B C .A →C →E →F →BD .A →C →M →B6.下列各角中是钝角的是 ( )A 、1/5周角B 、2/3平角C 、1/4周角D 、2直角 7.用一副三角板可以画出所有小于平角的有 ( )A 、9个B 、10个C 、11个D 、12个 8.锐角加上锐角的和是 ( )A 、锐角B 、直角C 、钝角D 、以上三种都有可能9.将一正方体纸盒沿下右图所示的线剪开,展开成平面图,其展开图的形状为( ).第2题图第4题图第5题图10.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( )A .长方体B .圆柱体C .球体D .三棱柱二.填空题.(每小题3分,共24分)11.我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________ .12.三条直线两两相交,则交点有_______________个.13.一个角等于它的补角的5倍,则这个角的补角的余角是 . 14.图中的锐角共有__________个.15.如图,该图形经过折叠可以围成一个正方体形,折好以后,与“静”字相对的字是 . 16."18'402642191530"'+= . 17.9"3'311100÷= .18.线段AB=5,延长AB 到C,使BC=2AB,若D 为AB 的中点,则DC 的长是 _________.(用小数表示)三.画图题.19.(5分)根据下列要求画图: (1)连接线段AB ; (2)画射线OA ,射线OB ;(3)在线段AB 上取一点C ,在射线OA 上取一点D(点C 、D 不与点A 重合),画直线CD ,使直线CD 与射线OB 交于点E .第10题图考应静 冷 着 沉第15题图第14题图A · B· O·20.(10分)根据下列要求画图(不写画法,保留作图痕迹): (1)已知线段a 、b ,求作线段AB ,使b a AB -=2.(2)已知α∠、β∠,求作AOB ∠,使βα∠-∠=∠AOB .21.(6分)如图所示,A ,B 两条海上巡逻艇同时发现海面上有一不明物体,A 艇发现该不明物体在它的东北方向,B 艇发现该不明物体在它的南偏东060的方向上,请你试着在图中确定这个不明物体的位置.四.解答题.22.(8分)如图,C 为线段AB 的中点,N 为线段CB 的中点,CN=1cm.求图中所有线段的长度的和.23.(8分)如图,OC 平分∠BOD ,∠AOD=110º,∠COD=35º,求∠AOB 的度数.24.(9分)线段MN 上有P 、Q 两点,cm MN 32=,cm MP 17=,cm PQ 6=.求NQ 的长. ba βα第22题图ODCBA第23题图附加题.(10分,当总分已达95分时,此题得分不计入总分;当总分不到95分时,计入总分.但计入总分后,总分不得超过95分.)如图为3×3的正方形,求∠1+∠2+∠3+…+∠7+∠8+∠9的和.参考答案一.1.A 2.B 3.D 4.D 5.B 6.B 7.C 8.D 9.B 10.C二.11.两点确定一条直线 12.1或3个 13.60014.15 15.着 16.180017.12016’47“18.12.5三.作图略。
(完整)初中数学线段与角练习题初中数学线段与角练题1. 已知线段AB的长度为5,线段BC的长度为3,求线段AC 的长度。
思路:根据线段的性质,线段AC的长度等于线段AB的长度加上线段BC的长度。
解答:线段AC的长度为5 + 3 = 8。
2. 已知线段DE的长度为4,点F是线段DE的中点,求线段EF的长度。
思路:根据线段的性质,线段EF的长度等于线段DE的长度除以2。
解答:线段EF的长度为4 ÷ 2 = 2。
3. 角XYZ的度数为37°,角YZW的度数为83°,求角XZW的度数。
思路:根据角度的性质,角XZW的度数等于角XYZ的度数加上角YZW的度数。
解答:角XZW的度数为37° + 83° = 120°。
4. 角ABC的度数为78°,角CDE的度数为42°,角BED的度数为90°,求角ABD的度数。
思路:根据角度的性质,角ABD的度数等于角ABC的度数加上角CDE的度数减去角BED的度数。
解答:角ABD的度数为78° + 42° - 90° = 30°。
5. 已知角MNO的度数为60°,角NOP的度数为120°,求角MOQ的度数。
思路:根据角度的性质,角MOQ的度数等于360°减去角MNO的度数减去角NOP的度数。
解答:角MOQ的度数为360° - 60° - 120° = 180°。
6. 已知角PQR是直角,角RPQ的度数为30°,求角RPQ的补角的度数。
思路:根据角度的性质,角RPQ的补角的度数等于90°减去角RPQ的度数。
解答:角RPQ的补角的度数为90° - 30° = 60°。
(word完整版)沪科版七年级上册数学第四章直线与角练习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)沪科版七年级上册数学第四章直线与角练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)沪科版七年级上册数学第四章直线与角练习题(word版可编辑修改)的全部内容。
学习吧七年级上册数学第四章直线与角练习题I1、已知和之和为,这两个角的平分线所成的角()A.一定是直角 B.一定是锐角 C.一定是钝角 D.是直角或锐角2、若把一个平角三等分,则两旁的两个角的平分线所组成的角等于( )A.平角 B.平角 C.平角 D.平角3、画一个钝角∠AOB,然后以O为顶点,以OA为一边, 在角的内部画一条射线OC,使∠AOC=90°,正确的图形是()4、如图所示,下列说法正确的是( )A.OA的方向是北偏东30° B.OB的方向是北偏西60°C.OC的方向是北偏西75° D.OC的方向是南偏西75°5、如图,射线OA表示的方向是()A.西北方向; B.西南方向; C.西偏南10°; D.南偏西10°;6、如图所示,C是AB的中点,D是BC的中点,下面等式不正确的是()A.CD=AC-BD B.CD=AD-BC C.CD=AB-BD D.CD=AB7、平面上有四点,过其中每两点画出一条直线,可以画直线的条数为( )A.1或4 B.1或6 C.4或6 D.1或4或68、M、N两点的距离是20厘米,有一点P,如果PM+PN=30厘米,那么下面结论正确的是 ( )A.点P必在线段MN上 B.点P必在直线MN外 C.点P必在直线MN上D.点P可能在直线MN上,也可能在直线 MN外9、如图所示,直线L,线段a,射线OA,能相交的几组图形是( )10、下列语句中正确的是( )A.延长射线AB到C,使BC=AB, B.延长线段AB到C,使BC=ABC.反向延长线段AB到C,使BC=AB D.反向延长射线AB到C,使BC=AB11、平面上有三点A、B、C,如果AB=8,AC=5,BC=3,则()A、点C在线段AB上B、点B在线段AC的延长线上C、点C在直线AB外D、点C可能在直线AB上,也可能在直线AB外12、关于直线、射线、线段的有关说法正确的有( )(1)、直线AB和直线BA是同一条直线(2)、射线AB和射线BA是同一条射线(3)、线段AB和线段BA是同一条线段(4)、线段一定比直线短(5)、射线一定比直线短(6)、线段的长度能够度量,而直线、射线的长度不可能度量。
七年级数学线段与角练习题1、 75° 40′ 30″的余角是,补角是。
角X的余角是,补角是。
2、一个角的补角加上10°后,等于这个角的余角的 3 倍,那么这个角是___________.3、∠与∠互余,且∠40 15’,那么∠的余角为_______,∠的补角为______.4、一个角的余角等于它的补角的1,那么这个角是______;一个角等于它的补角的5倍,那么这个角的补角的余角是35、钟表上8∶ 30 时,时钟上的时针与分针间的夹角是;钟表上2时25分时,时针与分针所成的角是6、线段 AB=5,延长 AB 到 C, 使 BC=2AB,假设 D为 AB 的中点 , 那么 DC的长是 _________ .7、如图 , D 为 AB的中点 , E 为 BC的中点 , AD=1cm,EC= 1.5cm,那么 DC= ____cm.8 如图,假设 C 为线段 AB的中点, D在线段 CB上,DA6,DB 4 ,AC D B 那么 CD=_____9、C为线段 AB上的一点,点D为 CB的中点,假设 AD=4,那么 AC+AB的长是。
10、把一条长 24cm的线段分成三段,使中间一段的长为6cm,那么第一段与第三段中点的距离是。
11、如图,点 C在线段 AB上, E 是 AC的中点, D是 BC的中点,假设 ED=6,那么 AB的长为.AE C D B F E D12、以以下列图,直线AB、 CD订交于点AB O,作∠ DOE=∠BOD, OF均分∠ AOE,假设∠AOC=20°,O那么∠ EOF=。
C图13、如图,直线AB, CD订交于点O, OA均分∠ EOC,∠ EOC=70,那么∠ BOD的度数等于 ______ .14、如图,∠ AOD=80°, ∠ AOB=30°,OB 是∠ AOC的均分线,那么∠ AOC的度数为 _________,∠ COD的度数为 ___________.DCBO图 3AA65015、如图,点 A 位于点 O的方向上.〔〕 .A、南偏东 35° B 、北偏西65° C、南偏东65° D、南偏西 65°O16、如图,点 A、 O、 E 在同素来线上,∠AOB=40°,∠ EOD=28°46’, OD均分BC∠ COE,那么∠ COB的度数为.DA O E17、以以下列图,将一幅三角板叠在一起,使直角的极点重合于点O,D那么∠ AOB+∠DOC的值〔〕A、小于 180° B 、等于180° C 、大于 180° D、不能够确定A CB18、如图,是由四个1×1的小正方形组成的大正方形,O那么∠ 1+∠ 2+∠ 3+∠ 4=〔〕A.180°B.150°C.135° D.120°解答题: 1、计算:(1);(2);(3)× 7;(4)÷9.2、以以下列图,线段AD=8cm,线段 BC=4cm, E、 F 分别是 AB、 CD的中点,且AB=CD,求 EF 的长度.3、将线段AB分为 2∶3∶4三局部 ,假设第一和第三局部的线段的中点间距离为 5.4 米 ,求AB的长.4、如图,∠ AOC=,OB是∠ AOC的均分线,OE,OF分别是∠ AOB,∠ BOC的均分线.求:∠BOF与∠ EOB 的和.5、如图,∠ AOB=90o,∠ AOC=30o,且 OM均分∠ BOC, ON 均分∠ AOC,(1〕求∠ MON的度数.(2〕假设∠ AOB=α其他条件不变,求∠ MON的度数.(3〕假设∠ AOC=β〔β为锐角〕其他条件不变,求∠ MON的度数(4〕从上面结果中看出有什么规律?6、如图。
几何初步--线段与角的经典题一.解答题(共45小题)1.如图,已知线段AB(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB,②延长线段BA到D,使AD=AC(不写画法,当要保留画图痕迹)(2)请直接回答线段BD与线段AC长度之间的大小关系(3)如果AB=2cm,请求出线段BD和CD的长度.2.已知线段MN=3cm,在线段MN上取一点P,使PM=PN;延长线段MN到点A,使AN=MN;延长线段NM到点B,使BN=3BM.(1)根据题意,画出图形;(2)求线段AB的长;(3)试说明点P是哪些线段的中点.3.如图(1),线段上有3个点时,线段共有3 条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有条.4.已知,如图B,C两点把线段AD分成3:5:4三部分,M为AD的中点,BM=9cm,求CM和AD的长5.如图,已知线段AB=16 cm,点M在AB上,AM:BM=1:3,P、Q分别以AM,AB的中点,求PQ的值.6.在数轴上点A表示的数是8,B是数轴上一点,且AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数,②写出点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P,Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的情况下,若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN的长..7.已知线段AB,在AB的延长线上取一点C,使BC=2AB,在BA的延长线上取一点D,使DA=AB,取AB中点E,若DE=7.5cm,求DC的长.8.如图,已知线段AB的长为x,延长线段AB至点C,使BC=AB.(1)用含x的代数式表示线段BC的长和AC的长;(2)取线段AC的中点D,若DB=3,求x的值.9.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.(1)若AB=12cm,则MN的长度是;(2)若AC=3cm,CP=1cm,求线段PN的长度.10.已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长.11.如图,延长线段AB到点F,延长线BA到点E,点M、N分别是线段AE、BF 的中点,若AE:AB:BF=1:2:3,且EF=18cm,求线段MN的长.12.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.13.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD 的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.14.如图,已知线段AB和CD的公共部分为BD,且BD=AB=CD,线段AB、CD的中点E、F之间距离是20,求AB、CD的长.15.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?并说明理由;16.如图所示,点A在线段CB上,AC=AB,点D是线段BC的中点.若CD=3,求线段AD的长.17.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.18.如图,点A、M、B、N、C在同一直线上顺次排列,点M是线段AB的中点,点N是线段MC的中点,点N在点B的右边.(1)填空:图中共有线段条;(2)若AB=6,MC=7,求线段BN的长;(3)若AB=a,MC=7,将线段BN的长用含a的代数式表示出来.19.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C 是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.20.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.21.已知数轴上有三点A、B、C,其位置如图1所示,数轴上点B表示的数为﹣40,AB=120,AC=2AB(1)图1中点C在数轴上对应的数是(2)如图2,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒,点P在点Q左侧运动时,经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度(3)如图3,若T点是A点右侧一点,点T在数轴上所表示的数为n,TB的中点为M,N为TA的4等分点且靠近于T点,若TM=2AN,求n的值.22.如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.23.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?25.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B 匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由26.如图,C是线段AB上一点,AB=20cm,BC=8cm,点P从A出发,以2cm/s 的速度沿AB向右运动,终点为B;点Q从点B出发,以1cm/s的速度沿BA 向左运动,终点为A.已知P、Q同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P运动时间为xs.(1)AC=cm;(2)当x=s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.27.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米.甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变.请解答下面问题:(1)B、C两点之间的距离是米.在4≤t≤6分钟时,甲机器人的速度为米/分.(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t >6时,甲、乙两机器人之间的距离S.(用含t的代数式表示)28.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.29.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD 的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.24.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?30.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.31.如图①,已知线段AB=20cm,CD=2cm,线段CD在线段AB上运动,E、F 分别是AC、BD的中点.(1)若AC=4cm,则EF=cm.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出.32.点O 是直线AB上一点,∠COD 是直角,OE平分∠BOC.(1)①如图1,若∠DOE=25°,求∠AOC 的度数;②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);(2)将图1中的∠COD 绕点O按顺时针方向旋转至图 2 所示位置.探究∠DOE 与∠AOC 的度数之间的关系,写出你的结论,并说明理由.33.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E 分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.34.如图①,∠AOB=∠COD=90°,OM平分∠AOC,ON平分∠BOD.(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.35.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.初步尝试:(1)如图1,若∠AOC=30°.求∠DOE的度数;类比探究:(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);解决问题:(3)如图2时,O是直线AB上的一点,∠COD是直角,OE平分∠BOC,探究∠AOC和∠DOE的度数之间的数量关系.直接写出你的结论.36.如图,∠AOB=100°,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=40°,求∠MON的度数;(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来;若不能,说明为什么?37.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.则∠MON的大小为;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.38.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?39.如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,OE平分∠AOD.(1)若∠COE=20°,则∠BOD=;若∠COE=α,则∠BOD=(用含α的代数式表示)(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE 与∠BOD之间有怎样的数量关系?并说明理由.40.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.41.阅读解答过程,回答问题:如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.解:过O作射线OM,使点M,O,A在同一直线上,因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=180°﹣∠MOD=180°﹣∠BOC=180°﹣30°=150°.(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.42.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O 在∠AOD内旋转时求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.43.如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB=;若∠ACB=130°,则∠DCE=;(2)猜想∠ACB与∠DCE大大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB 与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O 重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.44.如图,两条直线AB、CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕O点顺时针方向旋转,速度为12°/s.两射线OM、ON同时运动,运动时间为t秒.(本题出现的角均指小于平角的角)(1)图中一定有个直角;当t=2时,∠MON的度数为,∠BON 的度数为,∠MOC的度数为.(2)当0<t<12时,若∠AOM=3∠AON﹣60°,试求出t的值;(3)当0<t<6时,探究的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值.45.已知,如图(1),∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD 的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β(1)如图(2),若α=90°,β=30°,则,∠MON=(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示)(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O 同时逆时针旋转,转速为1°/秒(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.线段与角的经典题一.解答题(共45小题)1.【解答】解:(1)如图所示,BC、AD即为所求;(2)由图可得,BD>AC;(3)∵AB=2cm,∴AC=2AB=4cm,∴AD=4cm,∴BD=4+2=6cm,∴CD=2AD=8cm.2.【解答】解:(1)如图所示:(2)∵MN=3cm,AN=MN,∴AN=1.5cm,∵BN=3BM,∴BM=MN=1.5cm,∴AB=BM+MN+AN=6cm;(3)∵点P在线段MN上,PM=PN,∴点P是线段MN 的中点,∵BM=AN=1.5cm,PM=PN=1.5cm,∴BP=AP=3cm,∴点P是线段AB 的中点.3.【解答】解:(1)当线段上有6个点时,线段共有=15条;(2)当线段(3)当n=100时,线段共有=4950上有n个点时,线段共有条;条;故答案为:15,,4950.4.【解答】解:设AB=3xcm,BC=5xcm,CD=4xcm,∴AD=AB+BC+CD=12xcm,∵M是AD的中点,∴AM=MD=AD=6xcm,∴BM=AM﹣AB=6x﹣3x=3xcm,∵BM=9 cm,∴3x=9,解得,x=3,∴CM=MD﹣CD=6x﹣4x=2x=2×3=6(cm),AD=12x=12×3=36(cm).5.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q 分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm.6.【解答】解:(1)①8﹣12=﹣4,8=12=20,∴数轴上点B表示的数﹣4或20,②动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,则点P表示的数8﹣6t;(2)分两种情况:当点B在点A的左侧时,点P运动追上点Q,即8﹣6t=﹣4﹣4t,解得t=6;当点B在点A的右侧时,点P运动追上点Q,即8﹣6t=20﹣4t,解得t=﹣6(舍去),∴点P运动6秒追上点Q;(3)∵M为AP的中点,∴M点表示的数为(8+8﹣6t)÷2=8﹣3t,∵N为PB的中点,∴N点表示的数为(﹣4+8﹣6t)÷2=2﹣3t,∴MN=8﹣3t﹣(2﹣3t)=6,∴点P在运动的过程中,MN的长度不会发生变化.7.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).8.【解答】解:(1)∵AB=x,BC=AB,∴BC=x,∵AC=AB+BC,∴AC=x+x= x.(2)∵AD=DC=AC,AC=x,∴DC=x,∵DB=3,BC=x,∵DB=DC﹣BC,∴3=x﹣x,∴x=12.9.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=MC+CN=AC+BC=(AC+BC)=AB=6cm.故答案为6cm;(2)∵AC=3cm,CP=1cm,∴AP=AC+CP=4cm,∵P是线段AB的中点,∴AB=2AP=8cm.∴CB=AB ﹣AC=5cm,∵N是线段CB的中点,CN=CB=2.5cm,∴PN=CN﹣CP=1.5cm.10.【解答】解:如图1所示,∵AP=2PB,AB=6,∴PB=AB=×6=2,AP=AB=×6=4;∵点Q为PB的中点,∴PQ=QB=PB=×2=1;∴AQ=AP+PQ=4+1=5.如图2所示,∵AP=2PB,AB=6,∴AB=BP=6,∵点Q为PB的中点,∴BQ=3,∴AQ=AB+BQ=6+3=9.故AQ的长度为5或9.11.【解答】解:设EA=xcm,则AB=2xcm,BF=3xcm,EF=6xcm.∵点M,N分别是线段EA,BF的中点,∴EM=MA=xcm,BN=NF=xcm.∵AB=2xcm,∴MN=MA+AB+BN=4xcm.∵EF=18cm,∴6x=18,解得:x=3,∴MN=4x=12cm.12.【解答】解:∵AC=20cm,BC=3AB,∴BC=×20=15cm,∴AB=5cm,∵N为BC的中点,∴BN=CN=7.5cm,∵BM:MN=2:3,∴MN=×7.5=4.5cm.13.【解答】解:(1)①∵B是线段AD上一动点,沿A→D以2cm/s的速度运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)不变;∵AB 中点为E,C是线段BD的中点,∴EB=AB,BC=BD,∴EC=EB+BC=(AB+BD)=AD=×10=5cm.14.【解答】解:设BD=x,则AB=3x,CD=4x.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5x,CF=CD=2x,AC=AB+CD﹣BD=3x+4x﹣x=6x.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5x.∵EF=20,∴2.5x=20,解得:x=8.∴AB=3x=24,CD=4x=32.15.【解答】解:(1)∵点M、N分别是AC、BC的中点,AC=8cm,CB=6cm,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7cm,即线段MN的长是7cm;(2)∵点M、N分别是AC、BC的中点,AC+CB=acm,∴CM=AC,CN= BC,∴MN=CM+CN=AC+BC=(AC+BC)=acm,即线段MN的长是acm;(3)如图:MN=b,理由是:∵点M、N分别是AC、BC的中点,AC﹣CB=bcm,∴CM=AC,CN=BC,∴MN=CM ﹣CN=AC﹣BC=(AC﹣BC)=bcm,即线段MN的长是bcm.16.【解答】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC=AB,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1.17.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=m(m ﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行×45×(45﹣1)=990次握手.18.【解答】解:(1)图中共有线段1+2+3+4=10条;故答案为:10;(2)∵AB=6,点M是线段AB的中点,∴BM=AB=3,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣3=4,∴BN=BC﹣NC=4﹣3.5=0.5;(3)∵AB=a,点M是线段AB的中点,∴BM=AB=a,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣a,∴BN=BC﹣NC=7﹣a﹣3.5=3.5﹣a.19.【解答】解:(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综(2)①根据题意得:(1+2)t=15,解得:t=5.答:上所述:DP的长为5cm或10cm.当t=5秒时,点P与点Q重合.②(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、秒或10秒时,点P是线段AQ的三等分点.20.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.21.【解答】解:(1)∵AB=120,点B表示的数为﹣40,∴点A表示的数为80.∵AC=2AB,∴点C表示的数为80﹣120×2=﹣160.(2)设点R的速度为x个单位长度/秒,则点P的速度为3x个单位长度/秒,点Q的速度为(2x﹣5)个单位长度/秒,当点P在点Q左边时,P、R相遇时QP=QR,5(3x+x)=AC=240,解得x=12,2x﹣5=24﹣5=19,∴点Q的速度为19个单位长度/秒,(3)设AT=y,∵TB的中点为M,∴TM=TB=(120+y)=60+y,∵N为TA的4等分点且靠近于T点,∴AN=y,∵TM=2AN,∴60+y=y,解得x=60,∴n=80+60=140.故答案为:﹣160.22.【解答】解:(1)如图1,由题意得:AP=2t,则PB=12﹣2t,∵M为AP的中点,∴AM=t,由PB=2AM得:12﹣2t=2t,t=3,答:出发3秒后,PB=2AM;(2)如图1,当P在线段AB上运动时,BM=12﹣t,2BM﹣BP=2×(12﹣t)﹣(12﹣2t)=24﹣2t﹣12+2t=12,∴当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①;如图2,由题意得:MA=t,PB=2t﹣12,∵N为BP的中点,∴PN=BP=(2t﹣12)=t﹣6,①MN=PA﹣MA﹣PN=2t﹣t﹣(t﹣6)=6,∴当P在AB延长线上运动时,MN长度不变;所以选项①叙述正确;②MA+PN=t+(t﹣6)=2t﹣6,∴当P在AB延长线上运动时,MA+PN的值会改变.所以选项②叙述不正确.23.【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC 的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN= AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.24.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30;(2)∵OE 平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.25.【解答】解:(1)∵线段的长是线段中线长度的2倍,∴线段的中点是这条线段的“巧点”.故答案为:是;(2)∵AB=12cm,点C是线段AB的巧点,∴AC=12×=4cm或AC=12×=6cm或AC=12×=8cm;故答案为:4或6或8;(3)t秒后,AP=2t,AQ=12﹣t(0≤t≤6)①由题意可知A不可能为P、Q两点的巧点,此情况排除.②当P为A、Q的巧点时,Ⅰ.AP=AQ,即,解得s;Ⅱ.AP=AQ,即,解得s;Ⅲ.AP=AQ,即,解得t=3s;③当Q为A、P的巧点时,Ⅰ.AQ=AP,即,解得s(舍去);Ⅱ.AQ=AP,即,解得t=6s;Ⅲ.AQ=AP,即,解得s.26.【解答】解:(1)AC=AB﹣BC=20﹣8=12(cm),(2)20÷(2+1)=(s).故当x=s时,P、Q重合;(3)存在,①C是线段PQ的中点,得2x+20﹣x=2×12,解得x=4;②P为线段CQ的中点,得12+20﹣x=2×2x,解得x=;③Q为线段PC的中点,得2x+10=2×(20﹣x),解得x=7;综上所述:x=4或x=或x=7.故答案为:12;.27.【解答】解:(1)∵乙机器人从B点出发,以50米/分的速度行走9分钟到达C点,∴B、C两点之间的距离是50×9=450(米).∵在4≤t≤6分钟时,甲、乙两机器人之间的距离保持不变,∴在4≤t≤6分钟时,甲机器人的速度为50米/分.(2)设甲机器人前3分钟的速度为x米/分,则3x﹣50×3=90,解得x=80.答:甲机器人前3分钟的速度为80米/分.(3)当t=4时,两人相距80﹣50=30米,且4≤t≤6时,两人相距总是30米.分三种情况说明:①甲在AB间时,90﹣80t+50t=28,解得t=>,此情形不存在.②甲乙均在B右侧,且甲在乙后时,90+50t﹣80t=28,解得t=.③甲乙均在B右侧,且乙在甲后时,80t﹣90﹣50t=28,解得t=.答:两机器人前6分钟内出发分钟或分钟相距28米.(4)S=.故答案为:450,50;28.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.29.【解答】解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°;(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°.②当∠MON=90°时,n°+25°=90°,∴n=65°.(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.30.【解答】解:(1)①∵OD平分∠AOC,∠AOC=130°,∴∠AOD=∠DOC=∠AOC=×130°=65°,∴∠BOD=180°﹣∠AOD=180°﹣65°=115°;②∵∠DOE=90°,又∵∠DOC=65°,∴∠COE=∠DOE﹣∠DOC=90°﹣65°=25°,∵∠BOD=115°,∠DOE=90°,∴∠BOE=∠BOD﹣∠DOE=115°﹣90°=25°,∴∠COE=∠BOE,即OE平分∠BOC.(2)若∠BOE:∠AOE=2:7,设∠BOE=2x,则∠AOE=7x,又∵∠BOE+∠AOE=180°,∴2x+7x=180°,∴x=20°,∠BOE=2x=40°,∵∠DOE=90°,∴∠AOD=90°﹣40°=50°.31.【解答】解:(1)∵AB=20cm,CD=2cm,AC=4cm,∴DB=14cm,∵E、F分别是AC、BD的中点,∴CE=AC=2cm,DF=DB=7cm,∴EF=2+2+7=11cm,故答案为:11;(2)EF的长度不变.∵E、F分别是AC、BD的中点,∴EC= AC,DF=DB,∴EF=EC+CD+DF=AC+CD+DB===,∵AB=20cm,CD=2cm,∴EF==11cm;(3).理由:∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COE+∠COD+∠DOF=∠AOC+∠COD+∠BOD=(∠AOC+∠BOD)+∠COD=(∠AOB﹣∠COD)+∠COD=(∠AOB+∠COD).故答案为:.32.【解答】解:(1)①∵∠COD=90°,∠DOE=25°,∴∠COE=∠COD﹣∠DOE=90°﹣25°=65°,又∵OE平分∠BOC,∴∠BOC=2∠COE=130°,∴∠AOC=180°﹣∠BOC=180°﹣130°=50°;②∵∠COD=90°,∠DOE=α,∴∠COE=∠COD﹣∠DOE=90°﹣α,又∵OE平分∠BOC,∴∠BOC=2∠COE=180°﹣2α,∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;(2)∠DOE=∠AOC,理由如下:如图2,∵∠BOC=180°﹣∠AOC,又∵OE平分∠BOC∴∠COE=∠BOC=(180°﹣∠AOC)=90°﹣∠AOC,又∵∠COD=90°,∴∠DOE=90°﹣∠COE=90°﹣(90°﹣∠AOC)=∠AOC.33.【解答】解:(1)∵AB=14cm,点D、E分别是AC和BC的中点,∴DE=DC+EC= AC+BC=AB=7cm故答案为:7;(2)∵AC=4cm,AB=14cm,∴BC=AB﹣AC=10cm,又∵D为AC中点,E为BC中点,∴CD=2cm,CE=5cm,∴DE=CD+CE=7cm;(3)∵AC=acm,∴BC=AB﹣AC=(14﹣a)cm,又∵D为AC 中点,E为BC中点,∴CD=acm,CE=(14﹣a)cm,∴DE=CD+CE=a+(14﹣a)=7cm,∴无论a取何值(不超过14)DE的长不变;(4)设∠AOC=α,∠BOC=120﹣α,∵OD平分∠AOC,OE平分∠BOC,∴∠COD=,∠COE=(120°﹣α),∴∠DOE=∠COD+∠COE=+(120°﹣α)=60°,∴∠DOE=60°,与OC位置无关.34.【解答】解:(1)∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOC=∠BOD=90°﹣20°=70°.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=35°,∴∠MON=∠MOC+∠COB+∠BON=35°+20°+35°=90°;(2)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°﹣α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°﹣α,∴∠MON=∠MOC+∠COB+∠BON=45°﹣α+α+45°﹣=90°;(3)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°+α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°+α,∴∠MON=∠MOC﹣∠COB+∠BON=45°+α﹣α+45°+=90°.35.【解答】解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∠COD是直角,OE 平分∠BOC,∴∠DOE=∠COD﹣∠BOC=90°﹣×150°=15°.(2)由(1)知∠DOE=∠COD﹣∠BOC,∴∠DOE=90°﹣(180°﹣∠AOC)=90°﹣90°+∠AOC=∠AOC=α.(3)∠AOC=2∠DOE.理由如下:∵∠COD是直角,OE 平分∠BOC,∴∠COE=∠BOE,∠COB=2∠COE,∴∠AOC=180°﹣∠COB=180°﹣2∠COE=2(90°﹣∠COE),∵∠DOE=90°﹣∠COE,∴∠AOC=2∠DOE.36.【解答】解:(1)因为OM平分∠BOC,ON平分∠AOC所以∠MOC=∠BOC,∠NOC=∠AOC 所以∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(100°+40°﹣40°)=50°.(2)可以.同理,∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(∠BOA+∠AOC﹣∠AOC)=∠BOA=50°.37.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°,故答案为:80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA 逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.38.【解答】解:(1)因为OB平分∠AOC,∠AOB=20°,所以∠AOC=40°,因为OD平分∠AOE,∠AOE=110°,所以∠AOD=55°,因为∠COD=∠AOD﹣∠AOC,所以∠COD=55°﹣40°=15°;(2)因为90°﹣55°=35°,所以射线OD的方位角是北偏东35°;(3)设经过x秒时,∠AOE=30°,①如图1所示,当OA未追上OE时,依题意,得5x﹣110=3x﹣30,解得,x=40;②如图2所示,当OA超过OE时,依题意,得5x﹣110=3x﹣305x﹣110=3x+30,解得,x=70.39.【解答】解:(1)若∠COE=20°,∵∠COD=90°,∴∠EOD=90°﹣20°=70°,∵OE平分∠AOD,∴∠AOD=2∠EOD=140°,∴∠BOD=180°﹣140°=40°;若∠COE=α,∴∠EOD=90﹣α,∵OE平分∠AOD,∴∠AOD=2∠EOD=2(90﹣α)=180﹣2α,∴∠BOD=180°﹣(180﹣2α)=2α;故答案为:40°;2α;(2)如图2,∠BOD=2∠COE,理由是:设∠BOD=β,则∠AOD=180°﹣β,∵OE平分∠AOD,∴∠EOD=∠AOD==90°﹣,∵∠COD=90°,∴∠COE=90°﹣(90°﹣)=,即∠BOD=2∠COE.40.【解答】解:(1)如图2,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵∠BOC=110°,∴∠MOB=55°,∵∠MON=90°,∴∠BON=∠MON﹣∠MOB=35°;(2)分两种情况:①如图2,∵∠BOC=110°∴∠AOC=70°,当直线ON恰好平分锐角∠AOC 时,∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得,5t=55°解得t=11(s);②如图3,当NO平分∠AOC时,∠NOA=35°,∴∠AOM=55°,即逆时针旋转的角度为:180°+55°=235°,由题意得,5t=235°,解得t=47(s),综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;(3)∠AOM﹣∠NOC=20°.理由:∵∠MON=90°,∠AOC=70°,故答案为:11或47;∴∠AOM=90°﹣∠AON,∠NOC=70°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(70°﹣∠AON)=20°,∴∠AOM与∠NOC的数量关系为:∠AOM﹣∠NOC=20°.41.【解答】解:(1)∵∠AOB=90°,∠BOC=60°.∴∠AOC=∠AOB﹣∠BOC=30°.∴∠AOD=∠AOC+∠COD=30°+90°=120°.若∠BOC=n°,则∠AOC=∠AOB﹣∠BOC=(90﹣n)°.∴∠AOD=∠AOC+∠COD=(90﹣n)°+90°=(180﹣n)°.(2)∵∠AOB=x°,∠AOD=y°.∴∠BOD=∠AOD﹣∠AOB=(y﹣x)°.∴∠BOC=∠DOC ﹣∠BOD=x°﹣(y﹣x)°=(2x﹣y)°.42.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD所以∠MOB=∠AOB,∠BON=∠BOD即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°;(2)因为OM平分∠AOC,ON平分∠BOD所以∠MOC=∠AOC,∠BON=∠BOD即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.答:t为21秒.43.【解答】解:(1)∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE﹣∠DCE=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB﹣∠ACD=130°﹣90°=40°,∵∠BCE=90°,∴∠DCE=∠BCE﹣∠BCD=90°﹣40°=50°,故答案为:155°,50°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCE,∴∠ACB+∠DCE=∠ACE+∠DCE+∠DCE+∠DCE=∠ACD+∠BCE=180°;(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,∴∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°;(4)∠AOD+∠BOC=α+β,理由如下:∵∠AOD=∠AOC+∠COB+∠BOD,∴∠AOD+∠BOC=∠AOC+∠COB+∠BOD+∠BOC=∠AOB+∠COD=α+β.44.【解答】解:(1)如图所示,∵两条直线AB,CD相交于点O,∠AOC=∠AOD,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°﹣30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°﹣12t°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(90°﹣12t°)﹣60°,解得t=;如图所示,当7.5<t<12时,∠AON=12t°﹣90°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(12t°﹣90°)﹣60°,解得t=10;综上所述,当∠AOM=3∠AON﹣60°时,t的值为s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=,①如图所示,当0<t<时,∠COM=90°﹣15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴==(不是定值),。
七年级数学上册《第四章 角》同步练习及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若23A ∠=︒,则A ∠的补角是( )A .57︒B .67︒C .157︒D .167︒ 2.由3点15分到3点30分,时钟的分针转过的角度是( )A .90°B .60°C .45°D .30°3.如图,若∠AOC=∠BOD ,则有( )A .∠1>∠2B .∠1<∠2C .∠1=∠2D .∠1与∠2的大小不能确定4.已知,AB 为直线,OE 平分∠AOC ,OD 平分∠BOC ,则图中互补的角有( )对.A .3B .4C .5D .65.如图,已知∠AOB=120°,从∠AOB 的内部引两条射线OM 、ON ,使得夹角∠MON=60°,则∠AON 与∠BOM 一定满足的关系是( )A .∠AON+∠BOM=120°B .∠AON+∠BOM=180°C .∠AON=∠BOMD .∠AON=2∠BOM6.将一副直角三角尺按如图放置,若∠AOD=20°,则∠BOC 的大小是( )A .110°B .120°C .140°D .160°7.如图90AOB COD ∠=∠=︒ , OE 平分 AOC ∠ , 120AOD ∠=︒ 则 BOE ∠ 的度数为( )A .15°B .20°C .25°D .30°8.如图,已知∠1=∠2,∠3=∠4,∠BOD = 12∠AOB =90°.下列判断:①射线OF 是∠BOE 的角平分线;②∠DOE 的补角是∠BOC ;③∠AOC 的余角只有∠COD ;④∠DOE 的余角有∠BOE 和∠COD ;⑤∠COD =∠BOE .其中正确的有( )A .5个B .4个C .3个D .2个二、填空题9.若15837∠=︒,24355∠=︒则12∠+∠= .10.已知一个角的补角比这个角的三倍多20°,则这个角的度数为 .11.在同一平面内,∠AOB=70°,∠BOC=40°,则∠AOC 的度数为 .12.比较图中∠BOC 、∠BOD 的大小:因为OB 和OB 是公共边,OC 在∠BOD 的内部,所以∠BOC ∠BOD.(填“>”,“<”或“=”)13.如图,∠AOB 与∠COD 都是直角,∠AOD= 14021︒', 则∠COB= °.三、解答题14.如图,OC 是∠AOD 的平分线,OE 是∠DOB 的平分线,∠AOB=130°,∠COD=20°,求∠AOE 的度数.15.如图,∠1=15°,∠AOC=90°,点B 、O 、D 在同一直线上,求∠2的度数.16.16.如图,E 是直线CA 上一点40FEA ∠=︒,EB 平分CEF GE EF ∠⊥,求GEB ∠的度数.17.我们规定,如果两个角的差是一个直角,那么这两个角互为足角. 其中的一个角叫做另一个角的足角.(1)如图,直线经过点 O , OE 平分 ,COB OF OE ∠⊥ 请直接写出图中 BOF ∠ 的足角;(2)如果一个角的足角等于这个角的补角的 23,求这个角的度数.18.如图,将一副直角三角板的直角顶点C 叠放在一起.(1)若35DCE ∠=︒,则BCA ∠= ;若150ACB ∠=︒,则DCE ∠= ;(2)猜想∠ACB 与∠DCE 的大小有何特殊关系?并说明理由.(3)若27DCE ACB ∠∠=::,求∠DCE 的度数.参考答案:1.【答案】C 2.【答案】A 3.【答案】C 4.【答案】C5.【答案】B 6.【答案】D 7.【答案】A 8.【答案】B9.【答案】102º32′10.【答案】40︒11.【答案】30°或 110°12.【答案】<13.【答案】3939'︒14.【答案】解:∵OC 是∠AOD 的平分线,∠COD =20°,∴∠AOD =40°,∴∠BOD =130°﹣40°=90°.∵OE 是∠DOB 的平分线,∴∠DOE =45°,∴∠AOE =40°+45°=85°.15.解:∵∠1=15°,∠AOC=90°,∴∠BOC=∠AOC-∠1=90°-15°=75°∵∠BOC+∠2=180°∴∠2=180°-75°答:∠2的度数为105°16.【答案】解:∵GE EF ⊥∴90GEF ∠=︒∵180CEG GEF FEA ∠∠∠++=︒又∵40FEA ∠=︒∴50CEG ∠=︒∵EB 平分CEF ∠∴CEB BEF ∠=∠设GEB x ∠=,则50CEB BEF x ∠∠==︒+∵GEF GEB BEF ∠=∠+∠∴9050x x ︒=+︒+,解得20x =︒∴20GEB ∠=︒17.【答案】(1)解:∵OE 平分 ,COB OF OE ∠⊥∴BOE COE ∠=∠ 90FOE ∠=︒∴90BOF BOE BOF COE FOE ∠-∠=∠-∠=∠=︒∴BOF ∠ 的足角为: COE BOE ∠∠、(2)解:设这个角的度数为 x ︒当 090x << 时 ()2901803x x +=-解得: 18x = . 当 90180x << 时 ()2901803x x -=-解得: 126x = . ∴这个角的度数为: 18︒ 或 126︒ 18.(1)145°;30°(2)解:=180ACB ECD ∠+∠︒,理由如下ACD BCE ECD ACB ∠+∠-∠=∠ 9090180ACD BCE ∠+∠=︒+︒=︒∴180ACD BCE ACB ECD ∠+∠=∠+∠=︒(3)解:=180ACB ECD ∠+∠︒ 27DCE ACB ∠∠=::2180409DCE ∴∠=⨯︒=︒。
北师大版七年级数学第四章线段、角的相关计算专题练习题一、选择题1.如图,在直线上作线段AB=a,在AB的延长线上作BC=a,在线段AC上作线段CD=b,这样作图得到的线段AD的长是( )(第1题)A.a+2bB. 2a+bC.b-2aD. 2a-b(第2题)2.如图,点O在直线AB上,∠EOD=90°,∠COB=90°,那么下列说法中,错误的是( )A.∠1与∠2相等B.∠AOE与∠2互余C.∠AOE与∠COD互余D.∠AOC与∠COB互补3.钟表上12时15分时,时针与分针的夹角为( )A. 90°B. 82.5°C. 67.5°D. 60°4.甲地离学校4 km,乙地离学校1 km,记甲、乙两地之间的距离为d(km),则d的取值是( )A. 3B. 5C. 3或5D. 3~55.在同一平面内,若∠BOA=62.7°,∠BOC=21°30′,则∠AOC的度数为( ) A. 84.2°B. 41.2°C. 84.2°或41.2°D. 74.2°或39.8°6.如图,线段AC上依次有D,B,E三点,其中点B为线段AC的中点,AD =BE.若DE=4,则AC等于( )A. 6B. 7C. 8D. 9(第6题)(第7题)7.为了解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路.现已知各村及电厂之间的距离如图所示(距离单位:km),则能把电力输送到这四个村庄的输电线路的总长度最短应该是( )A. 19.5 kmB. 20.5 kmC. 21.5 kmD. 25.5 km8.已知∠α,∠β都是钝角,甲、乙、丙、丁四人计算16(∠α+∠β)的结果依次为28°,48°,88°,60°,其中只有一个结果正确,那么算得正确结果的是( )A.甲B.乙C.丙D.丁二、填空题9.已知点C在线段AB上,线段AC=7,BC=5,M,N分别是AC,BC的中点,则MN=_______.10.已知∠α和∠β互为余角,且∠β比∠α大40°,则∠β=_______.(第11题)11.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOC=80°,那么∠BOC=_______.(2)如果∠AOC=80°,∠COE=50°,那么∠BOD=_______.12.如果线段AB=6 cm,BC=4 cm,且点A,B,C在同一条直线上,那么A,C间的距离是_______cm.13.如图,线段AB=BC=CD=DE=1,那么图中所有线段的长度之和为_______.(第13题)14.以∠AOB的顶点O为端点引射线OP,使∠AOP∶∠BOP=3∶2,若∠AOB =17°,∠AOP的度数为_______.三、解答题15.如图,已知∠AOC=30°,∠BOC=50°,OD是∠AOB的平分线,求∠AOB,∠COD的度数.(第15题)16.如图,已知AB∶BC∶CD=2∶3∶4,E,F分别是AB,CD的中点,且EF=24 cm,求线段AD的长.(第16题)17.如图,已知O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE在∠BOC 内部,∠BOE =12∠EOC ,∠DOE =70°,求∠EOC 的度数.(第17题)18.已知线段AB =m ,CD =n ,线段CD 在直线AB 上运动(点A 在点B 左侧,点C 在点D 左侧),且|m -2n |=-(6-n )2.(1)求线段AB ,CD 的长.(2)若M ,N 分别为线段AC ,BD 的中点,BC =4,求线段MN 的长.(3)当CD 运动到某一时刻时,点D 与点B 重合,P 是线段AB 的延长线上任意一点,有下面两个结论:①PA -PB PC 是定值;②PA +PB PC 是定值.请判断哪个结论是正确的,并说明理由.。
第 1 页 M N BA 1.如图所示,AB=12厘米,25AM AB =,13BN BM =,求MN 的长. 2.如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度。
3.如图,AB=20cm,C 是AB 上一点,且AC=12cm,D 是AC 的中点,E 是BC 的中点,求线段DE 的长.4.如图,AB=8cm,O 为线段AB 上的任意一点, C 为AO 的中点,D 为OB 的中点,你能求出线段CD 的长吗?并说明理由。
5.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF 。
6.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点。
(1)求线段MN 的长;AB 上任一点,满足AB CB acm +=,其它条件不变,你能猜想MN 的长度(2)若C 为线段吗?并说明理由。
(3)若C 在线段AB 的延长线上,且满足AC CB bcm -=,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由。
7. 已知线段AB ,反向延长AB 至C ,使AC =13BC ,点D 为AC 的中点,若CD =3cm ,求AB 的长. 8. 已知线段AB =12cm ,直线AB 上有一点C ,且BC =6cm ,M 是线段AC 的中点,求线段AM 的长.9. 在直线l 上取 A ,B 两点,使AB=10厘米,再在l 上取一点C ,使AC=2厘米,M ,N 分别是AB ,AC 中点.求MN 的长度。
10.如图,已知线段AB 和CD 的公共部分BD=31AB=41CD,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB ,CD 的长 11.如图,,,点B 、O 、D 在同一直线上,则的度数为__________12.如图,已知AOB 是一条直线,∠1=∠2,∠3=∠4,OF ⊥AB .则(1)∠AOC 的补角是 ;(2) 是∠AOC 的余角;(3)∠DOC 的余角是 ;(4)∠COF 的补角是 .13.如图,点A 、O 、E 在同一直线上,∠AOB=40°,∠EOD=28°46’,OD 平分∠COE , 求∠COB 的度数AOE ∠,34COF =∠,求14.如图,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分BOD ∠的度数.15.如图,点O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,若∠AOD =14°,求∠DOE 、∠BOE 的度数.16.如图10,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE,求∠ACF的度数.17.把一张正方形纸条按图中那样折叠后,若得到∠AOB /=700,则∠B /OG =______.18.如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD .19.有一张地图(如图),有A 、B 、C 三地,但地图被墨迹污损,C 地具体位置看不清楚了,但知道C 地在A 地的北偏东30°,在B 地的南偏东45°,你能确定C•地的位置吗?20.如图,东西方向的海岸线上有A 、B 两个观测站,在A 地发现它的北偏东30°方向上有一条渔船,同一时刻,在B 地发现这条渔船在它的北偏西60°方向上,试画图说明这条渔船的位置.21.已知:如图,B 、C 是线段AD 上两点,且AB :BC :CD =2:4:3,M 是AD 的中点,CD =6㎝,求线段MC 的长。
1
七年级数学第四章线段与角习题精选
1、如图,,
,点B 、O 、D 在同一直线上,则
的度数
为( (A )
(B )
(C )
(D )
2、如图,已知AOB 是一条直线,∠1=∠2,∠3=∠4,OF ⊥AB .
(1)∠AOC 的补角是 ; (2) 是∠AOC 的余角; (3)∠DOC 的余角是 ;
(4)∠COF 的补角是 .
3、如图,点A 、O 、E 在同一直线上,∠AOB=40°,∠EOD=28°46’,OD 平分∠COE , 求∠COB 的度数
E
D
C
B A
O
4、如图10,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,34COF ∠,求BOD ∠ 的度数.
5.如图9,点O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,若∠AOD =14°,求∠DOE 、∠BOE 的度数.
6、如图10,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE,求∠ACF的度数______.
7、如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD .
8、如图14,将一副三角尺的直角顶点重合在一起. (1)若∠DOB 与∠DOA 的比是2∶11,求∠BOC 的度数.
(2)若叠合所成的∠BOC =n°(0<n<90),则∠AOD 的补角的度数与∠BOC 的度数之比是多少?
9.如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度。
10.如图9,AD=
1
2
BD,E是BC的中点,BE=2cm,AC=10cm,求线段DE的长.
图10
A C
B
E
F
B '
图9
A
D
C
B
E
2
11.如图,点C 在线段AB 上,AC = 8厘米,CB = 6厘米,点M 、N 分别是AC 、BC 的中点。
A
B
C
M
N
(1)求线段MN 的长;
(2)若C 为线段AB 上任一点,满足AC + CB = a 厘米,其它条件不变,你能猜想MN 的长度吗?并
说明理由。
(3)若C 在线段AB 的延长线上,且满足AC BC = b 厘米,M 、N 分别为AC 、BC 的中点,你能猜想
MN 的长度吗?请画出图形,写出你的结论,并说明理由。
12.有一张地图(如图),有A 、B 、C 三地,但地图被墨迹污损,C 地具体位置看不清楚了,但知道C 地在A 地的北偏东30°,在B 地的南偏东45°,你能确定C•地的位置吗?
13.如图,OA 的方向是北偏东15°,OB 的方向是西偏北50°。
(1)若∠AOC=∠AOB ,则OC 的方向是___________; (2)OD 是OB 的反向延长线,OD 的方向是_________; (3)∠BOD 可看作是OB 绕点O 逆时针方向至OD,
作∠BOD 的平分线OE,并用方位角表示OE 的方向是_____________。
(4)在(1)、(2)、(3)的条件下,求∠COE 。
14.如图,分别从正面、左面、上面观察这个图形,请画出你看到的平面图形。
15.如下图,在已知角内画射线,画1条射线,图中共有 个角;画2条射线,图中共有
个角;画3条射线,图中共有 个角,求画n 条射线所得的角的个数 。
16.已知:如图(6)∠ABC =30°,∠CBD =70°BE 是∠ABD 的平分线,求∠DBE 的度数。
17.已知:如图(7),B 、C 是线段AD 上两点,且AB :BC :CD =2:4:3,M 是AD 的中点,CD =6㎝,求线段MC 的长。
图(7)。