有理数的乘法(教师版+学生版)
- 格式:docx
- 大小:623.29 KB
- 文档页数:22
有理数的乘除与乘方一、课堂目标1.理解有理数的乘除运算法则,会用法则及运算律进行计算.2.理解有理数乘方的概念,会结合有理数的四则运算法则进行混合运算.二、知识引入小学我们学过正数和0之间的四则运算,比如我们会计算 、、、、、 等等这样的算式;进入初中,正负数的引入导致了数系的扩充、因此初中的计算要分为两部分——符号与绝对值——进行讨论,所有的运算都要先定符号、再定数值;当我们遇到正数与负数、负数与0的四则运算,比如 、 等等,该如何定号和定值呢?通过小学的学习我们知道可以理解为(即个相加),所以;也知道可以理解为的相反数;那么完成下面填空:=__________=__________;__________=__________;__________=__________.填完空你发现有理数乘法计算过程中有什么规律吗?三、知识讲解1. 有理数的乘法有理数乘法法则有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与 相乘,都得 .【运算步骤】先确定积的符号,再求积的绝对值、即把两个因数的绝对值相乘;因数中有 则积为 .【推广】多个数相乘时,先确定积的符号:负因数有奇数个则积为负数、负因数有偶数个则积为正数,再求积的绝对值、即把每个因数的绝对值相乘;因数中有 则积为.(简称:奇负偶正)经典例题1(1)(2)(3)(4)计算: .. ..思路梳理知识点:1、2、3、题目练习11..2.计算:.(1)(2)3.填空:..4.()有理数乘法运算律有理数乘法运算律()乘法交换律:.()乘法结合律:.()乘法分配律:.【易错点津】()乘法交换律和乘法结合律是指因数的位置交换、因数的结合,它们都包含自身符号.()运用乘法分配律时,不要漏乘,并要注意符号,如.经典例题2(1)(2)1.计算:..思路梳理知识点:1、2、3、2.运用简便方法计算:.思路梳理知识点:1、2、3、题目练习21.计算:.2.计算: .(1)3.计算:.4..2. 有理数的除法倒数倒数:乘积是的两个数互为倒数.负倒数:乘积是的两个数互为负倒数.【注意】没有倒数和负倒数.【知识拓展】()根据乘法法则中“同号得正”可知互为倒数的两个数符号相同,即正数的倒数是正数,负数的倒数是负数.()倒数是本身的数只有和,没有倒数.()的倒数可以用表示、负倒数可以用表示.经典例题3的倒数是 ,负倒数是 .思路梳理知识点:1、 2、 3、题目练习3(1)(2)(3)(4)1.求倒数:的倒数是 .的倒数是 .的倒数是 .的倒数是 .2.若两数之积为,则这两数互为 ;若两数之商为,则这两数 ;若两数之积为,则这两数互为 ;若两数之商为,则这两数互为 .有理数的除法与小学学过的除法一样,有理数的除法和乘法也是互逆的;。
有理数的乘法教案人教版有理数乘法运算是继加法和减法运算后的又一种运算,也是有理数除法运算和乘方运算的基础,学好有理数乘法运算是学好有理数运算的关键,接下来店铺为你整理了有理数的乘法教案人教版,一起来看看吧。
有理数的乘法教案人教版【教学目标】(一)知识技能1.使学生掌握多个有理数相乘的积的符号法则;2.掌握有理数乘法的交换律和结合律,并利用运算律简化乘法运算;(二)过程方法在师生互动、生生互动的系列活动中,学会与老师及与其他同学交流、沟通和合作,准确表达自己的思维过程。
培养学生观察、归纳、概括能力及运算能力.(三)情感态度通过例题与练习,体验“简便运算”带来的愉悦,懂得运算的每一步都必须有依据。
通过新知的导入和运用过程,感受到人们认识事物的一般规律是“实践、认识、再实践、再认识”。
培养学生的观察和分析能力,渗透转化的教学思想。
教学重点乘法的符号法则和乘法的运算律.教学难点几个有理数相乘的积的符号的确定.【复习引入】1.有理数乘法法则是什么?2.计算(五分钟训练):(1)(-2)×3; (2)(-2)×(-3); (3)4×(-1.5); (4)(-5)×(-2.4);(5)-2×3×(-4); (6) 97×0×(-6);(7)1×2×3×4×(-5); (8)1×2×3×(-4)×(-5);(9)1×2×(-3)×(-4)×(-5); (10)1×(-2)×(-3)×(-4)×(-5);(11)(-1)×(-2)×(-3)×(-4)×(-5).有理数的乘法教学过程1.几个有理数相乘的积的符号法则引导学生观察上面各题的计算结果,找一找积的符号与什么有关?(7),(9),(11)等题积为负数,负因数的个数是奇数个;(18),(20)等题积为正数,负因数个数是偶数个.是不是规律?再做几题试试:(1)3× (-5); (2)3×(-5)×(-2); (3)3×(-5)×(-2)×(-4);(4)3×(-5)×(-2)×(-4)×(-3);(5)3×(-5)×(-2)×(-4)×(-3)×(-6).同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正.再看两题:(1)(-2)×(-3)×0×(-4); (2)2×0×(-3)×(-4).结果都是0.引导学生由以上计算归纳出几个有理数相乘时积的符号法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个有理数相乘,有一个因数为0,积就为0.说明:(1)这样以后进行有理数乘法运算时必须先根据负因数个数确定积的符号后,再把绝对值相乘,即先定符号后定值.(2)第一个因数是负数时,可省略括号.2.乘法运算律在做练习时我们看到如果像小学一样能利用乘法的交换律和结合律计算:(1)5×(-6); (2)(-6)×5;(3)[3×(-4)]×(-5); (4)3×[(-4)×(-5)];由上面计算结果,可以说明有理数乘法也同样有交换律,结合律,(1)乘法交换律文字叙述:两个数相乘,交换因数的位置,积不变.代数式表达:ab=ba.(2)乘法结合律文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.代数式表达:(ab)c=a(bc).例2,用简便方法计算:(1)(-5)×89.2×(-2)(2)(-8)×(-7.2)×(-2.5)×解:(1)原式=5×2×89.2……交换因数位置,决定积的符号=892………………按顺序依次运算(2)原式=-(8×2.5)×(7.2× )……交换因数位置,决定积的符号=-60………………按顺序依次运算有理数的乘法课堂作业1.确定积的符号:积的符号 ;积的符号 ;积的符号。
初中数学集体备课活页纸学科初中数学主备人节次第周第节课题2.2.1第2课时有理数的乘法课时 1 课型新授课教学目标1.理解和掌握乘法交换律,乘法结合律和乘法分配律;能应用运算律使运算简便;2.培养学生分析、推理能力,培养学生探索规律的欲望和学习数学的兴趣.3.能够利用有理数的运算律进行简便计算.教学重点理解和掌握乘法交换律,乘法结合律和乘法分配律教学难点灵活运用乘法的运算律简化运算.课堂教学设计教学环节教学过程二次备课情景引入问题1:有理数的乘法法则是什么?两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数和零相乘,都得0问题2:如何进行多个有理数的乘法运算?(1)定号(奇负偶正)(2)算值(积的绝对值)问题3:小学时候大家学过乘法的哪些运算律?乘法交换律、乘法结合律、乘法分配律新知探究探究1 计算下列各题:5×(-6)= (-4)×(-8)= (-9)×4=(-6)×5= (-8)×(-4)= 4×(-9)=从上述计算中,你能得出什么结论?探究2 计算下列各题:[3×(-4)]×(-5)= [2×(-3)]×(-6)= 3×[(-4)×(-5)]= 2×[(-3)×(-6)]= 从上述计算中,你能得出什么结论?探究3 计算下列各题:5×[3+(-7)]= 10×[4+(-3)]=5×3+5×(-7)= 10×4+10×(-3)= 从上述计算中,你能得出什么结论?巩固练习例3 (1)计算2×3×0.5×(-7); (2)用两种方法计算(216141-+)×12.1.计算:(1) (6541121-+-) ×36.(2)161519×(-8).探究4 改变例3(1)的乘积式子中某些乘数的符号,得到下列一些式子观察这些式子,它们的积是正的还是负的?2×3×(-0.5)×(-7),2×(-3)×(-0.5)×(-7),(-2)×(-3)×(-0.5)×(-7).思考:几个不为0的数相乘,积的符号与负的乘数的个数之间有什么关系? 如果有乘数为0,那么积有什么特点?2.[2024·绍兴越城区月考]4个非零有理数相乘,积的符号是负号,则这4个有理数中,正数有( )A.1个B.2个C.3个D.1个或3个拓展提高1.计算:(1)(125-)×158×21×(32-);(2)(-1)×(45-)×158×23×(32-)×0×(-1)2. [2024上海宝山区期末]若-3,5,a的积是一个负数,则a的值可以是( )A.-15B.-2C.0D.153. 【新考向·知识情境化】小阳在计算65-×71×■时,不小心将一滴墨水滴在了本子上,盖住了其中一个数字,导致他无法计算,在求助老师时,老师告诉他:“被盖住的数字是4,7,10,11中的一个,并且这道题直接用乘法结合律来计算会非常简便”,则被盖住的数字最可能是( )A.4B.7C.10D.11课堂小结有理数乘法运算律1.乘法交换律:两个数相乘,交换两个因数的位置,积不变.ab=ba2.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变.(ab)c=a(bc)3.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=a(b+c)板书设计2.2.1第2课时有理数的乘法1.ab=ba2. (ab)c=a(bc)3.a(b+c)=a(b+c)教学后记。
新人教七年级上册第一单元1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法【知识与技能】1.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.2.会进行有理数的乘法运算.【过程与方法】通过对问题的变式探索,培养观察、分析、抽象的能力.【情感态度】通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.【教学重点】能按有理数乘法法则进行有理数乘法运算.【教学难点】含有负因数的乘法.一、情境导入,初步认识做一做 1.出示一组算式,让学生算出结果.(1)2.5×4=;(2)31×61=; (3)7.7×1.5=;(4)92×27=. 【教学说明】教师出示上面的算式,让学生通过口算和计算器计算的方式算出结果,从而使学生回顾小学时学过的正数的乘法.2.再出示一组算式,让学生思考.(1)5×(-3)=;(2)(-5)×3=;(3)(-5)×(-3)=;(4)(-5)×0=.【教学说明】上面的算式只要求学生通过思考产生疑问,不要求写出结果.教师适时引出新内容.二、思考探究,获取新知【教学说明】让学生阅读教材第28~30页的内容,让学生进行小组交流与讨论,然后教师与学生一起进行探讨.师:刚刚同学们阅读了一下教材的内容,现在让我们先看看教材第28页第一个思考题;先观察上面正数部分的乘法算式,每个算式的后一乘数再逐次递减1,它们的积有什么变化?学生:它们的积逐次递减3.师:那么要使这规律在引入负数后仍然成立,下面的空应填什么?【教学说明】此处学生可能有点疑问,教师可让学生回顾前几个课时学的有理数的加减法内容再填.学生:应填-6和-9.师:现在我们交换一下乘法算式因数的位置,再看第二个思考题,你觉得应该怎样填?学生:应填-3、-6和-9.【教学说明】师生共同探讨此两个思考题后,教师可向学生提问:比较3×(-1)=-3和(-1)×3=-3两个等式,你能总结出正数与负数相乘的法则吗?(教师可提示让学生从符号和绝对值的方面去考虑.)学生可能会有以下答案:①正数与负数相乘或负数与正数相乘的结果都是负数.②积的绝对值和各乘数绝对值的积相等.教师再对学生的回答予以补充,形成以下结论.【归纳结论】正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积也是负数,积的绝对值等于各乘数绝对值的积.【教学说明】在完成以上结论后,师生共同探究第三个思考题,用同样的方法和学生一起归纳,最后得到有理数乘法法则.【归纳结论】有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.回到栏目一“做一做”第2题,教师让学生算出结果,并结合教材第29~30页的内容,师生一起总结应注意的问题:①有理数相乘,可以先确定积的符号,再确定积的绝对值.②在有理数中,乘积是1的两个数互为倒数.这个结论仍然成立.③负数乘0仍得0.试一试 教材第30页练习.三、典例精析,掌握新知例1 判断题.(1)两数相乘,若积为正数,则这两个因数都是正数.( )(2)两数相乘,若积为负数,则这两个数异号.( )(3)两个数的积为0,则两个数都是0.( )(4)互为相反数的数之积一定是负数.( )(5)正数的倒数是正数,负数的倒数是负数.( )【答案】(1)X 2)√(3)X 4)X 5)√【教学说明】根据有理数和乘法运算法则来作出判断.例2 填空题.(1)-141×-54=________; (2)(+3)×(-2)=________;(3)0×(-4)=_________;(4)132×-151=________; (5)(-15)×(-31)=________; (6)-|-3|×(-2)=________;(7)输入值a=-4,b=43,输出结果:①ab=_______,②-a ·b=________,③a ·a=________,④b ·(-b )=________.【答案】(1)1 (2)-6 (3)0 (4)-2 (5)5 (6)6(7)①-3 ②3 ③16 ④-169 【教学说明】乘号“×”也可用“·”代替,或省略不写,但要以不引起误会为原则,如a ×b 可表示成a ·b 或ab ,而(-2)×(-5)可表示成(-2)(-5)或(-2)·(-5),凡数字相乘,如果不用括号,用“×”为好,例如2×5不宜写成2·5或25.例3 计算下列各题:(1)35×(-4);(2)(-8.125)×(-8);(3)-174×114;(4)1592×(-1); (5)(-132.64)×0;(6)(-6.1)×(+6.1).【分析】按有理数乘法法则进行计算.第(6)题是两个相反数的积,注意与相反数的和进行区别.解:(1)35×(-4)=-140;(2)(-8.125)×(-8)=65;(3)(-174)×114=-711×114=-74; (4)1592×(-1)=-1592; (5)(-132.64)×0=0;(6)(-6.1)×(+6.1)=-37.21.【教学说明】通过例2和例3的训练和讲解(例3和例2类似,教师可根据教学实际进行选讲),教师向学生进一步强调在进行有理数运算时应注意的问题:①当乘数中有负数时要用括号括起来;②一个数乘1等于它本身,一个数乘-1等于它的相反数.例4 求下列各数的倒数:3,-2,32,-411,0.2,-5.4. 【分析】不等于0的数a 的倒数是a1,再化为最简形式. 解:3的倒数是31,-2的倒数是-21,32的倒数是23,-411的倒数是-114,0.2的倒数是5,-5.4的倒数是-275.【教学说明】负数求倒数与正数求倒数的原理是一样的,教师讲解此例应引导学生回顾小学时学过的求倒数方法:若a ≠0,则a 的倒数为a1.求一个整数的倒数,直接按这个数分之一即可;求分数的倒数,把分数的分子、分母颠倒位置即可;求小数的倒数,先将小数转化成分数,再求其倒数;求一个带分数的倒数,先将带分数化为假分数,再求其倒数.例5 用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km 气温的变化量为-6℃.攀登3km 后,气温有什么变化?(教材第30页例2)【答案】(-6)×3=-18,即下降了18℃.例6 在整数-5,-3,-1,2,4,6中任取二个数相乘,所得的积的最大值是多少?任取两个数相加,所得的和的最小值又是多少?【答案】6×4=24,为最大的积;-5+(-3)=-8,是最小的两数之和.例7 以下是一个简单的数值运算程序:输入x →×(-3)→-2→输出.当输入的x 值为-1时,则输出的数值为.【分析】程序运算式是有理数运算的新形式,该程序所反映的运算过程是-3x-2.当输入x 为-1时,运算式为(-3)×(-1)-2=1.四、运用新知,深化理解1.(-2)×(-3)=_______,(-32)·(-121)=_______. 2.(1)若ab>0,则必有( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a ,b 同号(2)若ab=0,则必有( )A.a=b=0B.a=0C.a 、b 中至少有一个为0D.a 、b 中最多有一个为0(3)一个有理数和它的相反数的积( )A.符号必为正B.符号必为负C.一定不大于0D.一定大于0(4)有奇数个负因数相乘,其积为( )A.正B.负C.非正数D.非负数(5)-2的倒数是( ) A.21 B.- 21 C.2D.-23.计算题.(1)(-321)×(-4); (2)-732×3. 4.观察按下列顺序排列的等式.9×0+1=1 9×1+2=119×2+3=21 9×3+4=319×4+5=41 ……猜想,第n 个等式(n 为正整数)用n 表示,可以表示成______.5.现定义两种运算“*”和“”:对于任意两个整数a 、b ,有a*b=a+b-1,a b=ab-1,求4[(6*8)*(35)]的值. 6.若有理数a 与它的倒数相等,有理数b 与它的相反数相等,则2012a+2013b 的值是多少?【教学说明】以上几题先由学生独立思考,然后教师再让学生举手回答1~2题,第3题让4位学生上台板演,教师评讲.【答案】1.6 12.(1)D (2)C (3)C (4)B (5)B3.(1)14 (2)-234.9(n-1)+n=10(n-1)+15.1036.根据已知可求出a=±1,b=0,所以2012a+2013b的值为2012或-2012.五、师生互动,课堂小结1.引导学生理解本节课所学内容:有理数的乘法法则.2.自己操作实践如何应用计算器来计算有理数的乘法.阅读课本第37页内容,并练习用计算器来计算:(1)74×59=4366;(2)(-98)×(-63)=6174;(3)(-49)×(+204)=-9996;(4)37×(-73)=-2701.1.布置作业::从教材习题1.4中选取.2.完成练习册中本课时的练习.本课时是学生在小学学习的数的乘法及刚接受有理数加减法的基础上,进一步学习有理数的基本运算,它既是对前面知识的延续,又是后面有理数除法的铺垫,所以,教学时强调学生自主探索,在互相交流的过程中理解和掌握有理数乘法法则的本质;另外,要求学生在探索有理数乘法法则的过程中,初步体验分类讨论的数学思想,鼓励学生归纳和总结,形成良好的数学心理品质.。
【有理数的乘法教案人教版】有理数的乘法教案优秀6篇初中数学《有理数的乘法》教学设计篇一掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性一、重点:熟练进行有理数的乘除运算二、难点:正确进行有理数的乘除运算预习导学通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律一、创设情景,谈话导入我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律二、精讲点拨质疑问难根据预习内容,同学们回答以下问题:1、有理数的乘法法则:(1)同号两数相乘___________________________________(2)异号两数相乘___________________________________(3)0与任何自然数相乘,得____2、有理数的乘法运算律:(1)乘法交换律:ab=_________(2)乘法结合律:(ab)c=_______(3)乘法分配律:(a+b)c=________3、有理数的除法法则:除以一个不等于0的数,等于乘这个数的__________比较有理数的乘法,除法法则,发现_________可能转化为__________初中数学《有理数的乘法》教学设计篇二1、知识与技能使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便。
2、过程与方法通过对问题的探索,培养观察、分析和概括的能力。
3、情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心。
重点:熟练运用运算律进行计算。
难点:灵活运用运算律。
(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好。
2.2.1有理数的乘法第1课时【教学目标】1.理解有理数的乘法法则.2.能利用乘法法则熟练进行有理数的乘法运算.3.理解倒数的意义,会求一个有理数的倒数.4.在经历探究有理数乘法法则的过程中,通过观察、分析、归纳、概括,得出有理数乘法的规律,建立数感和符号感;体验数形结合思想、分类讨论思想、归纳法在数学中的应用.【教学重点难点】重点:有理数的符号法则.难点:利用法则熟练进行有理数的乘法运算.【教学过程】一、创设情境前面学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:1.2×3等于多少?表示什么?答案:2×3=6,表示3个2相加,即2×3=2+2+2.2.请将(-2)+(-2)+(-2)写成乘法算式.答案:(-2)+(-2)+(-2)=(-2)×3.我们已经熟悉正数和0的乘法运算,但是在实际问题中还会遇到超出正数范围的乘法运算,它怎么计算呢?这就是我们今天要研究的有理数的乘法.二、探究归纳探究点1:有理数的乘法运算问题1:一只蜗牛,沿一条东西方向的跑道,以每分钟3分米的速度一直向东爬行.记蜗牛原来的位置为点O,那么在3分钟后、2分钟后、1分钟后、0分钟、1分钟前、2分钟前、3分钟前,它位于这一点的哪个方向?相距多少米?分别用算式表示.填一填:(1)如果这只蜗牛向右爬行2厘米记为+2厘米,那么向左爬行2厘米应记为.(2)如果3分钟后记为+3分钟,那么3分钟前应记为.追问1:观察下面的四个乘法算式,你能发现什么规律吗?3×3=9,3×2=6,3×1=3,3×0=0.规律:随着后一乘数逐次递减1,积逐次递减3.追问2:观察下面的三个乘法算式,说明以上规律在引入负数后是否仍然成立?(结合蜗牛1分钟前、2分钟前、3分钟前的位置思考) 3×(-1)=-3;3×(-2)=-6;3×(-3)=-9.问题2:两只小虫,在同一地点O处,它们沿一条东西方向的跑道爬行.若一只分别以每分钟3米、2米、1米、0米的速度向东爬行3分钟,另一只分别以每分钟1米、2米、3米的速度向西爬行3分钟,那么它们爬行后的位置分别在这一点的哪个方向?相距多少米?追问1:观察下面的算式,你又能发现什么规律吗?3×3=9,2×3=6,1×3=3,0×3=0.师生活动:规律是随着前一乘数逐次递减1,积逐次递减3.追问2:要使这个规律在引入负数后仍成立,那么应有(-1)×3=-3;(-2)×3=-6;(-3)×3=-9.追问3:从符号和绝对值两个角度观察上述算式,你发现有什么规律?【归纳总结】①从符号角度观察,可归纳积的特点是:正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积为负数.②从绝对值角度观察,可归纳积的特点是:积的绝对值等于各乘数绝对值的积.问题3:一只小虫,沿一条东西方向的跑道,以每分钟3米的速度一直向西爬行.记小虫原来的位置为点O,那么在3分钟后、2分钟后、1分钟后、0分钟、1分钟前、2分钟前、3分钟前,它分别位于这一点的哪个方向?相距多少米?追问1:利用上面归纳的结论计算下面的算式,你发现什么规律?(-3)×3=-9,(-3)×2=-6,(-3)×1=-3,(-3)×0=0.师生活动:规律:随着后一乘数逐次递减1,积逐次增加3.追问2:按照上述规律,下面的空格可以各填什么数,从中可以归纳出什么结论?(-3)×(-1)=;(-3)×(-2)=;(-3)×(-3)=.【归纳总结】负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积.问题4:你能从中归纳有理数乘法的法则吗?(也就是结果的符号怎么定?绝对值怎么算?)有理数乘法法则:两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.任何数与0相乘,都得0.符号表示如下:设a,b为正有理数,c为任意有理数,则(+a)×(+b)=a×b,(-a)×(-b)=a×b,(-a)×(+b)=-(a×b),(+a)×(-b)=-(a×b),c×0=0,0×c=0.显然,两个有理数相乘,积是一个有理数.问题5:讨论,进一步深化理解有理数乘法的符号法则.(1)若a<0,b>0,则ab0.(2)若a<0,b<0,则ab0.(3)若ab>0,则a,b应满足什么条件?(4)若ab<0,则a,b应满足什么条件?【典例剖析】例1:教材P39【例1】归纳:有理数乘法的求解步骤:先确定积的符号,再确定积的绝对值.【解题反思】观察T(1)8×(-1)=-8.你有什么发现?结论:一个数同-1相乘,得原数的相反数.【针对性训练】教材P40练习T1探究点2:倒数问题1:观察例1T(2),有什么特点?要点归纳:有理数中仍然有:乘积是1的两个数互为倒数.问题2:数a(a≠0)的倒数是什么?在这里为什么规定a≠0?【针对训练】教材P40练习T3.【典例剖析】例2:用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1 km气温的变化量为-6 ℃,攀登3 km后,气温有什么变化?【针对性训练】教材P40练习T2【解题反思】利用有理数乘法解决实际问题,先要把实际问题转化为数学问题,建立有理数乘法算式,再根据有理数乘法的法则进行计算得出结论.三、检测反馈1.一个有理数与其相反数的积()A.符号必定为正B.符号必定为负C.一定不大于零D.一定不小于零2.下列说法错误的是()A.任何有理数都有倒数B.互为倒数的两个数的积为1C.互为倒数的两个数同号D.1和-1互为负倒数3.填空:(1)-7的倒数是,它的相反数是,它的绝对值是 .(2)-225的倒数是 ,-2.5的倒数是 . (3)倒数等于它本身的有理数是 .4.计算:(1)212×(-4).(2)(-710)×(-521). (3)(-10.8)×(-527).(4)(-312)×0. 四、交流反思1.有理数乘法法则:两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.任何数与0相乘,都得0.2.有理数乘法的求解步骤:有理数相乘,先确定积的符号,再确定积的绝对值.3.乘积是1的两个数互为倒数.五、布置作业P47T1,2,3六、板书设计七、教学反思本节课通过比较数字算式蕴含的规律性,类比发现有理数乘法法则,教学中,应该让学生推敲与比较这些算式,发现其中存在的规律,并会从符号、绝对值两个方面描述这种规律,体会有理数乘法法则的合理性.有理数乘法法则涉及运算结果的符号与绝对值两个方面,因此,学生在初期进行有理数乘法运算时,要求他们从这两个方面分层次、有步骤地思考,即先考虑两个乘数的符号,然后决定积的符号,再考虑两个乘数的绝对值,进而决定积的绝对值大小.第2课时【教学目标】1.掌握乘法的分配律,并能灵活地运用.2.掌握有理数乘法的运算律,并利用运算律简化乘法运算.3.经历探索积的符号的过程,锻炼学生观察、分析、总结的能力.【教学重点难点】重点:熟练进行多个有理数的乘法运算,探索有理数的乘法运算律并熟练运用运算律进行计算.难点:有理数的乘法运算律的正确、灵活运用.【教学过程】一、创设情境温故而知新你会计算下列各题吗?试试看!(1)5×(-6).(2)(-6)×5.(3)[3×(-4)]×(-5).(4)3×[(-4)×(-5)].师:那么多个有理数相乘应如何进行?【通过简单的旧知识复习,让学生快速进入学习情境,引出课题,激发学生的学习兴趣】二、探究归纳探究点1:乘法的运算律问题1:比较创设情境中的结果,你有什么发现?追问:请再举几个例子验证你的发现.问题2:计算过程能够使用简便方法,这样做有没有依据?小学里数的运算律在有理数中是否适用?【归纳总结】乘法交换律:两个数相乘,交换乘数的位置,积不变.ab=ba.乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.(ab)c=a(bc).(推广:abc=(ab)c=a(bc)=(ac)b)师生活动:教师解释用公式表示的形式中:这里的a,b可以取任意的有理数,讲解“a×b→a•b→ab”的过程.这也是培养学生的符号意识、抽象思维的机会.问题3:计算:(1)5×[3+(-7)];(2)5×3+5×(-7).追问:你有什么发现?请再举几个例子验证你的发现.从上述的计算中,你能得出什么结论?【归纳总结】分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac.【典例剖析】例1:教材P41【例3】比较T(2)两种解法,它们在运算顺序上有什么区别?解法二运用了什么运算律?哪种解法运算简便?找出错误,并改正.特别提醒:1.不要漏掉符号.2.不要漏乘.注意:1.乘法的交换律、结合律只涉及一种运算,而分配律要涉及两种运算.2.分配律还可写成:a×b+a×c=a×(b+c),利用它有时也可以简化计算.3.字母a ,b ,c 可以表示正数、负数,也可以表示零,即a ,b ,c 可以表示任意有理数.【针对性训练】教材P43练习T1探究点2:多个有理数相乘问题4:改变例3(1)的乘积式子中某些乘数的符号,得到下列的一些式子.它们的积是正的还是负的?2×3×(-0.5)×(-7);2×(-3)×(-0.5)×(-7);(-2)×(-3)×(-0.5)×(-7);师:请注意观察这3个式子,积的符号与哪种因数的个数有关系?积的绝对值与各因数的绝对值的积有什么关系?要点归纳:1.几个不是0的数相乘,负的乘数的个数是偶数时,积为正数;负的乘数的个数是奇数时,积为负数.积的绝对值是各个乘数的绝对值的积.2.几个数相乘,如果其中有乘数为0,那么积等于0.【典例剖析】例2:计算:(1)(-2)×6×(-2)×(-7).(2) (-313)×(-0.12)×(-214)×3313. (3)2 0112 012×(-0.359 8)×793×(-14)×0×(-2 0137964). 【思路点拨】观察乘数中有无0→有0则积为0,无0则先确定积的符号→再计算绝对值.【自主解答】(1)(-2)×6×(-2)×(-7)=-2×6×2×7=-168.(2) (-313)×(-0.12)×(-214)×3313. =-103×325×94×1003=-30.(3)原式=0.【总结提升】多个有理数乘法的运算步骤1.观察乘数中有没有0,若有,则积等于0.2.若乘数中没有0,观察负的乘数的个数,确定积的符号.3.各乘数的绝对值的积即为积的绝对值.【针对性训练】教材P43练习T2三、检测反馈1.4个有理数相乘,积的符号是负号,则这四个有理数中,正数有( )A.1个或3个B.1个或2个C.2个或4个D.3个或4个2.若两个有理数的和与它们的积都是正数,则这两个数 ( )A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数3.计算(-2)×(3-12),用分配律计算过程正确的是 ( )A.(-2)×3+(-2)×(-12) B.(-2)×3-(-2)×(-12)C.2×3-(-2)×(-12) D.(-2)×3+2×(-12) 4.计算:(1)(-85)×(-25)×(-4).(2)(910-115)×30. (3)(-78)×15×(-117). (4)(-65)×(-23)+(-65)×(+173). 5.(1)(-100)×(310-12+15-0.1). (2)(-78)×15×(-117). (3)(910-115)×30. (4)992425×(-25). (5)(-7)×(42.07)+(-2.07)×(-7).四、本课小结项目内容 乘法的运算律 (1)乘法交换律: . (2)乘法结合律: .(3)乘法对加法的分配律: .多个有 理数 相乘几个不为0的数相乘,积的符号由 决定.当负因数有 个时,积为 .当负因数有 个时,积为 .几个数相乘,其中有一个因数为0,积就为 . 五、布置作业P48T4,5六、板书设计七、教学反思1.在使用有理数乘法的三条运算律时,与加法的运算律一样,一定要注意将有理数的符号进行整体的移动,不能将符号丢掉或弄错.两个或三个有理数相乘的运算律,可以推广到三个以上有理数相乘的情况,通过编制若干个具体的非零有理数相乘的练习题,引导学生加深对多个有理数相乘时可以使用交换律、结合律、分配律的理解.2.有理数乘法的三条运算律,通常需要综合和同时使用,还可以从正、反两个方向应用,进而可以使有理数乘法运算更快捷、更准确.特别是乘法的分配律,涉及有理数的乘法、加法两种运算.正向运用去掉了括号,逆向运用提取了公因数,因此,乘法的分配律有着广泛的应用.教材例3就是乘法分配律正向运用提高运算速度和准确率的例子.乘法分配律逆向运用可以变和为积,使得运算简便,可以应用于以后要学习的合并同类项、代数式化简等问题.因此,要通过编制一些正、反向使用的练习题,让学生体会学习乘法运算律的必要性,争取让学生能够熟练、灵活地应用乘法的运算律.。
2.7.1有理数的乘法教案一、教学目标:知识与技能:使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性;培养学生的运算能力。
过程与方法:在探索有理数乘法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力;培养学生数形结合和分类的思想方法,形象地理解有理数乘法,会进行运算。
情感态度价值观:使学生感受生活中处处有数学,体验数学的价值,激发学生探究数学的兴趣。
二、教学重难点:教学重点:有理数乘法的运算。
教学难点:有理数乘法中的符号法则。
三、教学方法:分层次教学,讲授、练习相结合,小组合作学习。
四、教学过程:(一)课前研究:自学教材p49-51,探索出有理数的乘法法则;小结本节课知识点。
创设情境议一议(-3)×4=-12 (-3)×3=_____;(-3)×2=_____;(-3)×1=_____;(-3)×0=_____.当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:(-3)×(-1)=______;(-3)×(-2)=______;(-3)×(-3)=______;(-3)×(-4)=______.正数乘正数积为______数。
负数乘正数积为______数。
正数乘负数积为______数。
负数乘负数积为_____数。
结论:这样有理数乘法怎么乘呢?(二)课中展示:例题解析计算 (1)()5)10(-⨯- (2)41158⨯- (3) 06⨯-(4)⎪⎭⎫⎝⎛-⨯-313(5)⎪⎭⎫⎝⎛-⨯⨯-3102.1)34(分析:两个有理数相乘时,先确定积的符号,再把绝对值相乘,带分数相乘时,要先把带分数化成假分数,分数与小数相乘时,要统一成分数或小数。
在第(4)题的基础上,给出倒数的概念:如果两个有理数的乘积为1,那么称其中的一个数是另一个数的倒数,也称这两个数互为相反数。
第08讲倒数、有理数的乘法一、倒数1.倒数的意义:乘积是1的两个数互为倒数.(1)“互为倒数”的两个数是互相依存的.如-2的倒数是-12,-2和-12是互相依存的;(2)0和任何数相乘都不等于1,因此0没有倒数;(3)倒数的结果必须化成最简形式,使分母中不含小数和分数;(4)互为倒数的两个数必定同号(同为正数或同为负数).二、有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.注意:(1)不为0的两数相乘,先确定符号,再把绝对值相乘.(2)当因数中有负号时,必须用括号括起来,如-2与-3的乘积,应列为(-2)×(-3),不应该写成-2×-3.2. 有理数的乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;(2)几个数相乘,如果有一个因数为0,那么积就等于0.注意:(1)在有理数的乘法中,每一个乘数都叫做一个因数.(2)几个不等于0的有理数相乘,先根据负因数的个数确定积的符号,然后把各因数的绝对值相乘.(3)几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么至少有一个因数为0.3. 有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.题型一、倒数例1.与15互为倒数的数是()A.-15 B.15C.5D.-5【答案】【答案】C【分析】根据乘积为1的两个数互为倒数,可得答案.【详解】解:与15互为倒数的数是5;故选:C .例2.-ǀ-5ǀ的倒数是()A.5B.-5C.15D.-15【答案】【答案】D 【分析】根据倒数的定义:指与某数相乘的积为1的数,直接作答即可.【详解】解:∵--5 =-5,-5 ×-15 =1,∴--5 的倒数为-15.故选D .例3.-2021的倒数是( )A.2021B.12021C.-2021D.-12021【答案】【答案】D【分析】根据倒数的定义,直接得出结果.·【详解】解:-2021×-12021 =1,∴2021的倒数是-12021,故选:D 例4.-15的倒数是__________,相反数是________,绝对值是_______.【答案】【答案】-1151515例5.如果一个有理数的绝对值等于这个数的倒数,那么这个有理数是__________.【答案】【答案】1例6.已知:a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是5,则代数式2019(a +b )-3cd +2m 的值为____.【答案】【答案】7或-13【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【详解】解:根据题意得:a +b =0,cd =1,m =5或-5,当m =5时,原式=0-3+10=7;当m =-5时,原式=0-3-10=-13.故答案为:7或-13.例7.已知不相等的两数a ,b 互为相反数,c ,d 互为倒数,m =3,求a +b -cd -m 的值.【答案】【答案】-4或2【分析】根据相反数之和为0,倒数之积等于1,可得a +b =0,cd =1,再根据绝对值的性质可得m =±3,然后代入计算即可.【详解】解:由题意可得:a +b =0,cd =1,m =±3,当m =3时,a +b -cd -m =0-1-3=-4,当m =-3时,a +b -cd -m =0-1-(-3)=2.题型二、有理数的乘法例8.下列计算正确的有()①(-3)×(-4)=-12;②(-2)×5=-10;③(-41)×(-1)=41;④0×(-5)=-5A.1个B.2个C.3个D.4个【答案】【答案】B【分析】根据有理数的乘法法则进行计算,可得正确答案.【详解】①(-3)×(-4)=12,故此项不符合题意;②(-2)×5=-10,故此项符合题意;③(-41)×(-1)=41,故此项符合题意;④0×(-5)=0,故此项不符合题意;所以正确的有②,③故选:B.例9.若a+b>0,且ab<0,则()A.a>0,b>0B.a,b异号且其中负数的绝对值较大C.a<0,b<0D.a,b异号且其中正数的绝对值较大【答案】【答案】D【分析】根据有理数的乘法法则可得a、b为异号,再根据有理数的加法法则可得正数的绝对值较大,进而得到答案.【详解】解:∵ab<0,∴a、b为异号,∵a+b>0,∴正数的绝对值较大,故选:D.例10.下列各式中积为正的是()A.(-1)×3×4B.(-1)×(-2)×3×4C.(-1)×(-2)×((-3)×4D.(-1)×(-2)×0×(-3)×(-4)【答案】【答案】B【分析】根据有理数乘法运算法则逐项计算即可.【详解】解:A. (-1)×3×4=-12,不符合题意;B. (-1)×(-2)×3×4=24,符合题意;C. (-1)×(-2)×((-3)×4=-24,不符合题意;D. (-1)×(-2)×0×(-3)×(-4)=0,不符合题意.故选:B.例11.如图,数轴上A、B两点分别对应有理数a、b,则下列结论①ab<0;②a-b>0;③a+b>0;④|a|-|b|>0中正确的有( )A.①④B.①③C.①③④D.①②④【答案】【答案】A【分析】由数轴可得:a<-1<0<b<1, a >b ,再逐一判断即可得到答案.【详解】解:∵由数轴可知,a<-1<0<b<1, a >b ,∴ab<0,a-b<0,a+b<0,|a|-|b|>0,故②③不符合题意,①④符合题意.故选:A.例12.两数相乘,同号得___,异号得____,并把绝对值_____.任何数同0相乘,仍得____.【答案】【答案】正负相乘0例13.绝对值小于4.5的所有整数的积为_____.【答案】【答案】0【分析】先找出绝对值小于4.5的整数,然后利用有理数的乘法法则进行计算即可.【详解】解:绝对值小于4.5的整数有-4,-3,-2,-1,0,1,2,3,4.∵这些因数中有一个是0,∴积为0.故答案为:0.例14.已知|x|=5,|y|=3且xy>0,则x+y=______.【答案】【答案】8或-8【分析】根据绝对值的性质求出x、y的值,再根据同号得正判断出x、y的对应关系,然后相加即可.【详解】解:∵x =5,y =3,∴x=±5,y=±3,∵xy>0,∴x=5时,y=3,x+y=5+3=8,x=-5时,y=-3,x+y=-5-3=-8,综上所述,x+y=8或-8.例15.(1)乘法交换律:ab=____(2)乘法结合律:(ab)c=_____(3)乘法分配律:a(b+c)=______【答案】【答案】ba a(bc)ab+ac例16.若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.则(-2)*(6*3)=_____.【答案】【答案】-576【分析】观察定义新运算的运算法则,先计算将6*3的结果,再将结果与-2进行“*”运算即可解题.【详解】∵a∗b=4ab,∴6∗3=4×6×3=72,∴(-2)∗72=4×(-2)×72=-576故答案为:-576.例17.计算:(1)6×(-9);(2)(-15)×13;(3)(-6)×(-1);(4)(-6)×0;(5)4×14;(6)27×72;(7)-214×-49;(8)7×(-4)×(-5);(9)(-8)×(-5)×(-2)×516;(10)(-5)×(-8)×(-10)×(-15)×0.【答案】【答案】(1)-54;(2)-5;(3)6;(4)0;(5)1;(6)1;(7)1;(8)140;(9)-25;(10)0.【分析】根据有理数乘法的运算法则先确定符号、再绝对值相乘,从而得出答案.【详解】(1)6×(-9)=-54;(2)(-15)×13=-5;(3)(-6)×(-1)=6;(4)(-6)×0=0;(5)4×14=1;(6)27×72=1;(7)-214×-49=94×49=1;(8)7×(-4)×(-5)=7×20=140;(9)(-8)×(-5)×(-2)×516=-25;(10)(-5)×(-8)×(-10)×(-15)×0=0.例18.运用运算律作较简便的计算:(1)-1.25×(-5)×3×(-8);(2)512+23-34×(-12);(3)-14×(-19)-12×19-34×(-19).【答案】【答案】(1)-150;(2)-4;(3)19 2.【分析】(1)(2)(3)借助乘法结合律和乘法分配律进行运算即可.【详解】解:1 原式=-1.25×8×5×3=-150.2 原式=512×-12+23×-12-34×-12=-5-8+9=-4.3 原式=-14×-19+12×-19-34×-19,=-14+12-34×-19=-12×-19=192.例19.规定一种新运算“※”,两数a,b通过“※”运算得(a-2)×2+b,即a※b=(a-2)×2+b,例如:3※5=(3 -2)×2+5=2+5=7.根据上面规定解答下题:(1)求6※(-4)的值;(2)6※(-4)与(-4)※6的值相等吗?请说明理由.【答案】【答案】(1)4;(2)不相等,理由见解析【分析】(1)原式利用题中的新定义计算即可求出值;(2)分别求出各自的值,比较即可.【详解】解:(1)6※(-4)=(6-2)×2+(-4)=8-4=4.(2)不相等.理由:∵6※(-4)=4,(-4)※6=(-4-2)×2+6=-6,∴6※(-4)与(-4)※6的值不相等.1.有理数a、b在数轴上的位置如图所示,则下列说法正确的是()A.a+b>0B.ab>0C.b-a>0D.b -a >0【答案】【答案】D【分析】根据数轴上点的位置可得b<0<a,且b >a ,然后利用有理数的加减法及乘法计算法则进行判断求解.【详解】解:由题意可得:b<0<a,且b >a∴ a+b<0,故选项A不符合题意;ab<0,故选项B不符合题意;b-a<0,故选项C不符合题意;b -a >0,正确故选:D.2.如果a+b>0,且ab>0,那么( )A.a、b异号且负数的绝对值较小B.a、b异号且正数的绝对值较小C.a<0,b<0D.a>0,b>0【答案】【答案】D【分析】由ab>0知a与b同号,结合a+b>0知a>0,b>0.【详解】解:∵ab>0,∴a与b同号,又a+b>0,∴a>0,b>0.故选:D.3.乘积是1的两个有理数互为_______正数的倒数是_______;负数的倒数是________;_____没有倒数.两数相乘,同号得______,异号得______,并把绝对值相乘.任何数同0相乘,仍得______.【答案】倒数正数负数0正负04.(1)|-2|×(-2)=____,(2)-12×5.2=_____,(3)-12-12=____,(4)-3-|-5.3|=_____.【答案】【答案】-4 2.60-8.3【分析】(1)先求出|-2|=2,然后再用有理数乘法运算法则即可求解;(2)先求出-12=12,然后再用有理数乘法运算法则即可求解;(3)用有理数减法法则求解即可;(4)先求出|-5.3|=5.3,然后用有理数减法法则求解即可.【详解】解:(1)原式=2×(-2)=-4,故答案为:-4;(2)原式=12×5.2=2.6,故答案为:2.6;(3)原式=12-12=0,故答案为:0;(4)原式=-3-5.3=-3+(-5.3)=-8.3,故答案为:-8.3.5.几个不等于零的数相乘,积的符号由负因数的个数决定:(1)当负因数的个数是______时,积是正数;(2)当负因数的个数是______时,积是负数.【答案】【答案】偶数奇数6.若定义一种新的运算“*”,规定有理数a*b=3ab,如2*(-4)=3×2×(-4)=-24.则16*(-2*5)=_____.【答案】【答案】-15【分析】根据a*b=3ab,可以求得所求式子的值.【详解】解:∵a*b=3ab,∴16*(-2*5)=16*[3×(-2)×5]=16*(-30)=3×16×(-30)=-15,故答案为:-15.7.若a,b互为相反数,c,d互为倒数,|m|=3,则2017(a+b)-2cd+m=________.【答案】【答案】1或-5【分析】根据相反数、倒数的定义和绝对值的意义得到a+b=0,cd=1,m=3或m=-3,则原式=m-2,然后把m的值分别代入计算即可.【详解】解:根据题意得a+b=0,cd=1,m=3或m=-3,所以原式=2017×0-2×1+m=m-2,当m=3时,原式=3-2=1;当m=-3时,原式=-3-2=-5.故答案为:1或-5.8.计算:(1)14×-89;(2)-56×-310;(3)-2415×25;(4)(-0.3)×-137;(5)-2×3×(-4);(6)-6×(-5)×(-7);(7)0.1×(-0.001)×(-1);(8)(-100)×(-1)×(-3)×(-0.5);(9)(-17)×(-49)×0×(-13)×37;(10)-4120×1.25×(-8);(11)(-10)×(-8.24)×(-0.1);(12)-56×2.4×35;(13)711516×(-8).【答案】【答案】(1)-29;(2)14;(3)-1703;(4)37;(5)24;(6)-210;(7)0.0001;(8)150;(9)0;(10)8110;(11)-8.24;(12)-1.2;(13)-575.5.【详解】试题分析:(1)约分.(2)约分.(3)带分数化假分数,约分.(4)小数化分数,带分数化假分数约分.(5)(6)(7)(8)直接计算.(9)因数有0,直接为0,.(10)带分数化假分数,小数化分数,约分.(11)直接计算.(12)小数化分数,约分.(13)把带分数化为两个数的和利用乘法分配律计算.(1)14×-89= -29;(2)-56×-310= 14;(3)-2415×25=-3415×25=-1703;(4)(-0.3)×-137=310×107=37;(5)-2×3×(-4)=24;(6)-6×(-5)×(-7)=-210;(7)0.1×(-0.001)×(-1)=0.0001;(8)(-100)×(-1)×(-3)×(-0.5)=150;(9)(-17)×(-49)×0×(-13)×37=0;(10)-4120×1.25×(-8)=8120×54×8=8110;(11)(-10)×(-8.24)×(-0.1)=-8.24;(12)-56×2.4×35=-56×125×35=-65=-1.2;(13)711516×(-8)=-71+1516×8=-71×8+1516×8=-568+152=-575.5.9.计算:(1)--43 ×-1.5 ;(2)-|-2.5|×--225;(3)45×-256 ×-710 ;(4)54×-1.2 ×-19.【答案】【答案】(1)-2;(2)-15;(3)73;(4)16.【详解】(1)--43 ×-1.5 =--43 ×-32=-43×32 =-2;(2)-|-2.5|×--225 =-52×225=-15;(3)45×-256 ×-710 =45×256×710=73;(4)54×-1.2 ×-19 =54×65×19=16.10.若定义一种新的运算“*”,规定有理数a *b =4ab ,如2*3=4×2×3=24.(1)求3*(-4)的值;(2)求(-2)*(6*3)的值.【答案】【答案】(1)-48;(2)-576【分析】(1)根据a *b =4ab ,把3*(-4)转化为常规运算计算即可;(2)根据a *b =4ab ,先算6*3,再算(-2)*(6*3)即可.【详解】解:(1)∵a *b =4ab ,∴3*(-4)=4×3×(-4)=-48;(2)∵a *b =4ab ,∴(-2)*(6*3)=(-2)*(4×6×3)=(-2)*72=4×(-2)×72=-576.。
有理数的乘法教案(精选25篇)有理数的乘法教案1【教学目标】1、巩固有理数乘法法则;2、探索多个有理数相乘时,积的符号的确定方法、【对话探索设计】探索11、下列各式的积为什么是负的?(1)—2345(2)2(—3)4(—5)6789(—10)、2、下列各式的积为什么是正的?(1)(—2)(—3)456(2)—2345(—6)78(—9)(—10)、观察1P38、观察思考归纳几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?(见P38、思考)与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的绝对值例题学习P39、例3观察2P39、观察练习P39、练习作业P46、7、(1),(2)(3),8,9,10,11、补充练习1、(1)若a = 3,a与2a哪个大?若a= 0 呢?又若a=—3呢?(2)a与2a哪个大?(3)判断:9a一定大于2a;(4)判断:9a一定不小于2a、(5)判断:9a有可能小于2a、2、几个数相乘,积的符号由负因数的个数决定这句话错在哪里?3、若ab,则acbc吗?为什么?请举例说明、4、若mn=0,那么一定有()(A)m=n=0、(B)m=0,n0、(C)m0,n=0、(D)m、n中至少有一个为0、5、利用乘法法则完成下表,你能发现什么规律?3210—1—2—339630—326221321—1—2—36、(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为—a,�2、过程与方法经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。
重点、难点:1、重点:有理数乘法法则。
2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。
过程:一、创设情景,导入新1、由前面的学习我们知道,正数的'加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。
第4讲有理数的乘除法1.掌握有理数乘除法法则;2.掌握倒数的定义;3.会进行有理数乘除的混合运算。
知识点01 有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法则四:几个数相乘,如果其中有因数为0,则积等于0.1.﹣2×3=()A.﹣6B.﹣8C.﹣9D.﹣23【解答】解:﹣2×3=﹣6.故选:A.2.计算﹣4×(﹣2)的结果等于()A.12B.﹣12C.8D.﹣8【解答】解:原式=4×2=8.故选:C.3.若abc>0,其a、b、c()A.都大于0B.都小于0C.至少有一个大于0或三个大于0D.至少有一个小于0【解答】解:∵abc>0,∴a、b、c有一个大于0,另外两个小于0或三个大于0.故选:C.4.已知|a|=4,|b|=2,那么ab=8或﹣8.【解答】解:∵|a|=4,|b|=2,∴a=±4,b=±2,∴a=4,b=2时,ab=4×2=8;当a=4,b=﹣2时,ab=4×(﹣2)=﹣8.当a=﹣4,b=2时,ab=(﹣4)×2=﹣8.当a=﹣4,b=﹣2时,ab=(﹣4)×(﹣2)=8.∴ab的值为8或﹣8.故答案为:8或﹣8.5.用“>”,“<”或“=”号填空:若a<c<0<b,则abc>0;若a<b<c<0,则abc<0.【解答】解:若a<c<0<b,则abc>0;若a<b<c<0,则abc<0,故答案为:>,<.6.计算:(1)(﹣)×(﹣)×(﹣);(2)(﹣5)×(﹣)××0×(﹣325).【解答】解:(1)(﹣)×(﹣)×(﹣)=﹣××=﹣;(2)(﹣5)×(﹣)××0×(﹣325)=0.7.简便方法计算:①(﹣﹣)×(﹣27);②﹣6×+4×﹣5×.【解答】解:①原式==﹣6+9+2=5.②原式=×(﹣6+4﹣5) =(﹣7)=﹣3.知识点02 倒数乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a ·a 1=1(a ≠0),就是说a 和a 1互为倒数,即a 是a 1的倒数,a1是a 的倒数。
第1章有理数1.4 有理数的乘除法学习要求1、会根据有理数的乘法法则进行乘法运算,并运用相关运算律进行简算.2、理解除法与乘法的逆运算关系,会进行有理数除法运算;巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算.知识点一:有理数的乘法法则例1.计算﹣1×2的结果是()A.1 B.2 C.﹣3 D.﹣2变式1.(﹣15)×7.变式2.(﹣3)×|﹣2|知识点二:倒数例2.的倒数是()A.﹣3 B.C.3 D.变式1.﹣2017的倒数是()A.2017 B.﹣2017 C.D.﹣变式2.已知□×(﹣)=﹣1,则□等于()A.B.2016 C.2017 D.2018变式3.填表:原数﹣2.5相反数 3 ﹣7 倒数绝对值变式4.写出下列各数的倒数:(1)﹣15;(2);(3)﹣0.25;(4)0.13;(5)4;(6)﹣5.知识点三:多个有理数的乘法例3.算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.变式1.(2014秋•宝坻区校级期末)1.6×(﹣1)×(﹣2.5)×(﹣)变式2.计算.(1);(2)(﹣0.1)×1000×(﹣0.01);(3)2.3×4.1×0×(﹣7);(4).知识点四:有理数的乘法运算律例4.计算(1)(﹣2)×4×(﹣3)(2)(+﹣)×12.变式1.用简便方法计算:①;②;③;④﹣989×(﹣9)+989×(﹣19)﹣(﹣989)×10.变式2.计算:(1)(2).变式3.(1);(2);(3);(4)(﹣8)×(﹣12)×(﹣0.125)×(﹣)×(﹣0.1).变式4.计算下列各式:(1)(﹣4)×1.25×(﹣8);(2)×(﹣2.4)×;(3)(﹣14)×(﹣100)×(﹣6)×(0.01);(4)9×15;(5)﹣100×﹣0.125×35.5+14.5×(﹣12.5%);(6)(1﹣2)×(2﹣3)×(3﹣4)×(4﹣5)×…(19﹣20).知识点五:有理数的除法例5.计算(﹣16)÷8的结果等于()A.B.﹣2 C.3 D.﹣1变式1.(2014秋•山西校级月考)(1)两数的积是1,已知一数是﹣2,求另一数;(2)两数的商是﹣3,已知被除数4,求除数.变式2.计算:(1)(﹣36)÷9(2)(﹣)×(﹣3)÷(﹣1)÷3.变式3.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).知识点六:有理数乘除混合运算例6.计算(1)(﹣)×(﹣)×0×(2)(3)(﹣﹣)×(﹣24)(4).知识点七:有理数四则混合运算例7.计算(1)(﹣3)×(﹣9)﹣8×(﹣5)(2)﹣63÷7+45÷(﹣9)(3)(﹣)×1÷(﹣1)(4)(1﹣+)×(﹣48).变式1.计算(1);(2).(3);(4).变式2.怎样算简便就怎样算(1)2÷+3×(2)÷25%﹣÷0.75.变式3.计算:(1)(﹣)÷(﹣﹣);(2)(﹣28+14)÷7.变式4.计算(1)5.02﹣1.37﹣2.63(2)72×(﹣+﹣)(3)×[÷(﹣)](4)[﹣(﹣)÷]÷.变式5.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)﹣22+|5﹣8|+24÷(﹣3)×.变式6.计算下列各题①(﹣7)+5﹣(﹣3)+(﹣4);②4×(﹣3)﹣|﹣|×(﹣2)+6;③(﹣+)×(﹣42);④﹣1+5÷(﹣)×4.拓展点一:概念、法则的理解问题例8.若a+b<0,ab<0,则()A.a>0,b>0B.a<0,b<0C.a,b两数一正一负,且正数的绝对值大于负数的绝对值D.a,b两数一正一负,且负数的绝对值大于正数的绝对值变式1.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能变式2.下列说法中错误的是()A.一个数同0相乘,仍得0B.一个数同1相乘,仍是原数C.一个数同﹣1相乘得原数的相反数D.互为相反数的积是1变式3.如果两个数的和是正数,这两个数的积是负数,那么这两个数()A.都是正数B.都是负数C.异号的两个数,并且正数的绝对值较大D.异号的两个数,并且负数的绝对值较大变式4.若a、b为两个有理数,且ab<0,a+b<0,则()A.a、b都是正数B.a、b都是负数C.a、b异号,且正数的绝对值大D.a、b异号,且负数的绝对值大变式5.不计算,只判断下列结果的符号:(1)(﹣6)+(﹣4)(2)(+9)+(﹣4)(3)(﹣7)﹣(﹣4)(4)(﹣6)×(+3)×2×(﹣1)拓展点二:学科内知识的综合例9.写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数:;(3)绝对值大于3且小于6的所有负整数:;(4)在数轴上,与表示﹣1的点距离为5的所有数:;(5)倒数等于本身的数:;(6)绝对值等于它的相反数的数:.变式1.如图,已知点A在数轴上,从点A出发,沿数轴向右移动3个单位长度到达点C,点B所表示的有理数是5的相反数,按要求完成下列各小题.(1)请在数轴上标出点B和点C;(2)求点B所表示的有理数与点C所表示的有理数的乘积;(3)若将该数轴进行折叠,使得点A和点B重合,则点C和数所表示的点重合.变式2.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.拓展点三:乘除运算中的一些技巧例10.﹣99×36.变式1.用简便方法计算:(1)﹣13×﹣0.34×+×(﹣13)﹣×0.34(2)(﹣﹣+﹣)×(﹣60)变式2.简便计算(1)(﹣48)×0.125+48×(2)()×(﹣36)变式3.用简便算法计算下列各题.(1)(2).拓展点四:有理数乘除法在实际生活中的应用问题例11.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘以2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.变式1.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?变式2.某自行车厂一周计划每日生产400辆自行车,由于人数和操作原因,每日实际生产量分别为405辆、393辆、397辆、410辆、391辆、385辆、405辆.(1)用正负数表示每日实际生产量与计划量的增减情况;(2)该车厂本周实际共生产多少辆自行车?平均每日实际生产多少辆自行车?变式3.已知海拔每升高1 000m,气温下降6℃,某人乘热气球旅行,在地面时测得温度是8℃,当热气球升空后,测得高空温度是﹣1℃.求热气球的高度.变式4.一辆货车从超市出发,向东走3千米到达小李家,继续向东走1.5千米到达小张家,然后又回头向西走9.5千米到达小陈家,最后回到超市.(1)以超市为原点,向东为正,以1个单位长表示1千米,在数轴上表示出上述位置.(2)小陈家距小李家多远?(3)若货车每千米耗油0.5升,这趟路货车共耗油多少升?变式5.东东有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?变式6.李老师利用假期带领7名学生到市区社会实践,汽车票每张原价为30元,现在有两种优惠方案:第一种方案是所有成员全部打8折;第二种方案是学生打9折,教师免票.请问李老师他们应该采用哪种方案乘车比较合算?变式7.某粮食加工厂从生产的粮食中抽出20袋检查质量,以每袋50千克为标准,将超过的千克数记为正数,不足的千克数记为负数,结果记录如下:与标准质量的偏差:单位(千克)﹣0.7 ﹣0.5 ﹣0.2 0 +0.4 +0.5 +0.7袋数 1 3 4 5 3 3 1问:这20袋大米共超重或不足多少千克?总质量为多少千克?变式8.某日下午,出租车司机小王在南北走向的南海大道上运营.如果规定向南为正,向北为负,出租车的行车情况记录如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣17.将最后一名乘客送到目的地时,小王距出车地点的距离是多少千米?如果每百公里耗油10升,那么小王下午耗油多少升?拓展点五:作商比较两个有理数的大小例12.比较大小:43-______;87-)32(+-______);43(-+拓展点六:新型题例13.设[x]表示不大于的所有整数中最大的整数,例如:[1.7]=1,[﹣1.7]=﹣2,根据此规定,完成下列运算:(1)[2.3]﹣[6.3](2)[4]﹣[﹣2.5](3)[﹣3.8]×[6.1](4)[0]×[﹣4.5].变式1.对于正整数a 、b ,规定一种新运算﹡,a ﹡b 等于由a 开始的连续b 个正整数的积,例如:2﹡3=2×3×4=24,5﹡2=5×6=30,那么7﹡(1﹡2)的值等于多少?变式2.若定义一种新的运算“*”,规定有理数a*b=4ab ,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.变式3.若“!”表示一种新运算,并且1!=1,2!=2×1,3!=3×2×1,那么100!÷99!的商是多少?变式4.阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.易错点一:“加”“乘”运算结果符号确定方法不同,二者莫混例14.计算:(1)﹣5﹣1(2)(﹣20)÷5(3)6﹣[﹣(﹣2)](4)2﹣|﹣0.4|(5)﹣(+20)+(+45)﹣(+80)﹣(﹣35)(6)(﹣24)÷2×(﹣3)÷(﹣6)易错点二:运算顺序应注意例15.计算:(1)(﹣85)×(﹣25)×(﹣4);(2)﹣;(3);(4).易错点三:乘法分配律不适用于除法运算例16.(﹣)÷(﹣+﹣)变式1.计算:(﹣)÷(﹣+﹣).变式2.计算:﹣÷(+﹣).变式3.计算:(﹣45)÷[(﹣)÷(﹣)].变式4.计算:12÷(﹣3﹣+).。
2.2.1 有理数的乘法思考:几个不为0 的数相乘,积的符号与负因数的个数之间有什么关系?师生活动:第一步:学生先独立完成.第二步:小组探讨(1)有序交流:组长主持,组内交流,及时指导.(2) 汇总意见:组内总结得到的结论.(3) 展学准备:组长分工,做好展讲准备.第三步:展学方式:抽一小组做展讲要求:声音洪亮,语言流畅,分工合理,各小组认真倾听,积极补充、质疑提问,对展示小组进行评价. 带领学生归纳总结多个有理数相乘的积的符号法则.归纳总结:几个不是0 的数相乘,负因数的个数是_____时,积为正;负因数的个数是_____时,积为负.简而言之:奇负偶正例1 计算:师生活动:让学生尝试解答,并互相交流、总结,归纳解题步骤,教师结合学生的具体活动,加以指导.你能看出下式的结果吗?如果能,请说明理由.7.8×(-8.1)×0×(-19.6)归纳总结:几个数相乘,如果其中有因数为0,那么积等于____.知识点二:有理数的乘法运算律思考:对于例1 (2) 有没有简便的方法计算.想一想:我们学过的非负有理数的乘法运算律有哪些?追问:在有理数运算过程中,这些运算律也是成立的吗?探究2 结合非负有理数运算律的探究过程,请大家“依葫芦画瓢”,完成以下几个任务.(1) 在以下图案中任意填写一个有理数(至少有个数是负数),相同图案中所填写的数字相同.好的促进作用.(2) 计算各式,观察左右两个式子的结果有什么特点?预设结果1:生:设定为5,为-6 .5×(-6)=-30 (-6)×5=-30师:通过以上计算过程,可以获得怎样的结论?生:两个数相乘,交换两个因数的位置,积相等.师:用含字母的式子表示乘法交换律呢?生:乘法交换律:ab=ba预设结果2:生:设定为3,为-4,为-5.[3×(-4)]×(-5)=60 3×[(-4)×(-5)]=60师:通过以上计算过程,可以获得怎样的结论?生:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.师:用含字母的式子表示乘法交换律呢?生:乘法结合律:(ab)c = a(bc)预设结果3:生:设定为3,为-7,为 5.5×[3+(-7 )]=-20 5×3+5×(-7 )=-20师:通过以上计算过程,可以获得怎样的结论?生:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.师:用含字母的式子表示乘法交换律呢?生:分配律:a(b + c) = ab + ac例2 用两种方法计算师生活动:教师给出例题后,让学生独立作业,同时分别选派四名同学上黑板演算. 教师巡视,对学生演算过程中的失误及时予以指正,最后师生共同评析.例3 用两种方法计算师生活动:1.两名学生板演,其余学生在练习本上做题.2小组内批阅.3.对板演的内容进行评价纠错.三、当堂练习,巩固所学1. 计算:教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.。
教师版2.3有理数的乘法(1)【知识清单】一、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与零相乘,积为零. 二、倒数:1、定义:若两个有理数的乘积为1,就称这两个有理数互为倒数(如:3与31、43-与34-…等).2、注意:①零没有倒数 (因为0乘以任何数都等于0,不等于1,所以0没有倒数);②求分数的倒数,就是把分数的分子分母颠倒位置.若一个数是带分数要先把它化成假分数,然后再求倒数;③正数的倒数是正数,负数的倒数是负数. 三、有理数乘法运算步骤:①先确定积的符号;有若干不为0的有理数相乘时,应该先确定积的符号(当负因数个数为偶数时,积为正,当负因数个数为奇数时,积为负);②求出各因数的绝对值的积;③若其中一个因数为0,则积为0.(3) (-4.3)×0×(-【考点】有理数的乘法.【分析】几个不为0的有理数相乘时,积的符号由负因数的个数决定.当负因数个数为偶数时,积为正,当负因数个数为奇数时,积为负;几个数中有带分数要先把它化成假分数,有小数化成分数;几个数相乘若其中一个因数为0,则积为0.【解答】 (1) 原式=3×2×4×1=24; (2) 原式=-6; (3) 原式=0. 【点评】有理数乘积与小学知识中的不同就在于符号的确定,要把符号的确定作为学习的重点.例题2、定义一种新运算: a △b =a ×b -a -b +2,如2△3=2×3-2-3+2=3, 则2△(-3)比(-3)△4( A ).A 大B 小C 相等D 以上均不对【考点】有理数的乘法.【分析】根据新定义a △b =a ×b -a -b +2,分别算出1△(-3)和3△(-4)的值,然后再进行比较即可.【解答】∵2△(-3)=2×(-3)-2-(-3)+2=-3,(-3)△4=(-3)×4-(-3)-4+2=-11 , -3>-11, ∴2△(-3)>(-3)△4【点评】此题考查了有理数的混合运算的知识,解题的关键是由新定义转化为加、减、乘、除的运算. 【夯实基础】1、下列各组数中,互为倒数的是( ) A .3与-3 B .-5与51 C .201911-与20202019- D .0与0 2、已知有理数a ,b 满足ab <0, a +b >0,则下列结论正确的是( )A .a ,b 一正一负B .a ,b 一正一负,且b a =C .a ,b 一正一负,且负数的绝对值较大D .a ,b 一正一负,且正数的绝对值较大3、在-3,4,5,-6这四个数中任取两个数相乘,所得的积最大的是( ) A .18 B .-12 C .20 D .304、有理数a ,b 在数轴上对应的点的位置如图所示,则下列式子不正确的是( )A .a +b >0B .ab (a -b )>0C .b a ->-D .a b -=a -b5、定义一种新运算是a △b =ab -b ×b ,则3△(-5)的值为 .6、若5=a ,7=b ,且b a b a -=-,则ab = .7、如图是一个简单的数值运算程序,当输入的值为5时,输出的数值是 . 8、计算:(1) (-4.25)×(+20); (2) (-3.6)×(-5)×(-95); (3) (-7.6)×0×(-20192018).9、某代理商用2000元购进一批货物,第二天售出获利10%,一周后又以上次售出价的90%购进一批同样的货物,由于无人购买,老板决定按第二次购进价的九折再次第4题图第7题图售出,该代理商在这两次交易中的盈亏情况?【提优特训】10、倒数等于它本身的数有( )A .1个B .2个C .3个D .4个 11、若4=x ,7=y ,且xy <0,则x +y 的值为 ( )A .11或-11B .3或-3C .11或3D .-11或-312、下列说法:①互为相反数的两个数的积是负数;②任何数的倒数都小于1;③同号的两个数,原数大的倒数反而小;④几个有理数相乘,当正因数有奇数个时,积为负;⑤0的倒数是0. 其中正确的个数是( )A .1个B .2个C .3个D .4个 13、若a ,b 是整数,且ab =15,则a +b 的最大值与最小值的差是( )A .-16B .-32C .16D .3214、已知a 与b 互为相反数,c 和d 互为倒数,e 的绝对值等于2,则5a -3cde +5b 的值为 .15、绝对值小于2019的所有整数的积是 .16、如果两个数相乘的结果为负数,其中有几个负因数?如果三个数相乘的结果为负数,其中又有几个负因数?四个数,五个数,六个数呢?找出规律后,在回答: (1) 如果2019个数相乘的结果为负数,那么其中负因数的个数有几种可能情况? (2) 如果n (n 为正整数)个数相乘的结果为负数,那么其中负因数的个数有几种可能情况?17、学生李明在做将某数乘以-3.37时,由于不小心漏乘了一个负号,所得的数比正确结果小1.348,那么正确的结果是多少?18、某网店去年1~3月份每月平均亏损1.8万元,4~6月份每月平均盈利2.2万元,7~10月份每月平均盈利1.9万元,11~12月份每月平均亏损2.5万元,这个网店去年总的盈亏情况如何?19、阅读下列材料:请你观察下列等式.2×2=4,2+2=4, 即2×2=2+2;214323=⨯,214323=+,即323323+=⨯; 315434=⨯,315434=+,即434434+=⨯; 416545=⨯,416545=+,即545545+=⨯; …(1)请你上述各式子的规律写出下一个式子; (2)请你观察上面的结构特点,归纳出一个猜想.20、(1)如果ab <0,a -b >0,试确定a ,b 的正负; (2)如果ab <0,a -b <0,试确定a ,b 的正负; (3)如果ab <0,a +b >0,b a >,试确定a ,b 的正负.【中考链接】 21、(2018•枣庄)21-的倒数是( ) A .-2 B .21- C .2 D .2122、(2018•通辽)20181的倒数是( ) A .2018 B .-2018C .20181-D .2018123、(2018•遂宁) -2×(-5)的值是( ) A .-7 B .7C .-10D .1024、(2018•吉林)计算(-1)×(-2)的结果 ( ) A .2 B .1C .-2D .-3参考答案1、C2、D3、C4、B5、-406、35±7、10 10、B 11、B 12、A 13、D 14、6± 15、0 21、A 22、A 23、D 24、A8、计算:(1) (-4.25)×(+20); (2) (-3.6)×(-5)×(-95); (3) (-7.6)×0×(-20192018). 解:(1)原式=417-×20=-85 (2)原式=518-×5×95=-10; (3)原式=0.9、解: 2000(1+10%)=2200,若三个数相乘,结果为负数,其中负因数有1个或3个,有213+=2可能;若四个数相乘,结果为负数,其中负因数有1个或3个,有24=2可能; 若五个数相乘,结果为负数,其中负因数有1个或3个或5个,有215+=3可能;若六个数相乘,结果为负数,其中负因数有1个或3个或5个,有26=2可能. 规律:几个数相乘,结果为负数,那么这其中负数的个数,为奇数个. (1) 若有2019个数相乘的结果为负数,那么其中有负因数的个数有几种可能情况?1—2019,一共(2019+1)÷2=1010个奇数 其中有负因数的个数有1010种可能(2) 如果n (n 为正整数)个数相乘的结果为负数,那么其中负因数个数有几种可能情况?①如果n 为偶数,那么负因数的个数有2n种可能; ②如果n 为奇数,那么负因数的个数有21+n 种可能. 17、解:设某数为x ,根据题意得,-3.37x -3.37x =1.348, 解得x =-0.2,所以,正确结果为-0.2×(-3.37)=0.674. 18、根据题意列式-1.8×3+2.2×3+1.9×4-2.5×2=-5.4+6.6+7.6-5 =-10.4+14.2 =3.8(万元).答:这个网店去年盈利3.8万元. 19、解:(1)517656=⨯,517656=+,即656656+=⨯ (2)nn n n n 1)2()1(1+=+⨯+,n n n n n 1)2()1(1+=+++, 即)1(1)1(1+++=+⨯+n nn n n n . 20、(1)如果ab <0,a -b >0,试确定a ,b 的正负; (2)如果ab <0,a -b <0,试确定a ,b 的正负;a>,试确定a,b的正负.(3)如果ab<0,a+b>0,b解:(1)∵ab<0,a-b>0,∴a>0,b<0;(2)∵ab<0,a-b<0,∴a<0,b>0;a>,(3)∵ab<0,a+b>0,b∴a>0,b<0;2.3有理数的乘法(2)【知识清单】 有理数乘法的运算律1、乘法交换律:两个数相乘,交换因数的位置,积不变. 字母表示:a ×b =b ×a2、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.字母表示:(a ×b )×c =a ×(b ×c )3、分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.字母表示:a ×(b +c )=a ×b +a ×c 【经典例题】例题1、如果四个不同的整数m ,n ,p ,q 满足(7-m )(7-n )(7-p )(7-q )=6,则m +n +p +q 等于( D )A .18B .24C .27D .28 【考点】有理数的乘法.【分析】因为m ,n ,p ,q 都是四个不同正整数,所以(7-m )、(7-n )、(7-p )、(7-q )都是不同的整数,四个不同的整数的积等于6,这四个整数为(-1)、(-2)、1、3,由此求得m ,n ,p ,q 的值,问题得解.【解答】解:因为(7-m )(7-n )(7-p )(7-q )=6, 每一个因数都是整数且都不相同, 那么只可能是-1,1,-2,3,由此得出m 、n 、p 、q 分别为8、6、9、4,所以,m +n +p +q =27.【点评】本题考查了有理数的乘法,解决本题的关键是一个正整数通过分解把它写为四个不同的整数.例题2、2019减去它的21,再减去余下的31,再减去余下的41,依次类推,一直到减去余下的20191,求最后剩下的数. 1 【考点】有理数的混合运算.【点评】本题考查了数字的变化规律,根据题意列出算式是解决此题的关键. 【夯实基础】1、若五个有理数的积为负数,则其中负因数的个数为( )A .1个B .1个或2个C .1个或3个D .1个或3个或5个 2、下列运算中,错误的是( )A .-5×(-4) ×(-3) ×2=-120B .-4-12=2C .(-14)×(-6)×)32()72(-⨯+=16D .(-2)×(+7)-(-2)×3-2(-4)=-2×(7-3-4)=03、运用分配律计算976-×9时,你认为下列变形中最简便的是( )A .976-×9=)977(--×9B .976-×9=)976(--×9C .976-×9=)977(-×9D .976-×9=)976(---×94、对于算式2019×(-2017)+(-2019)×(-2018)-(-2019)分配律的逆用正确的是( )A. 2019×(-2017+2018)B. 2019×(-2017+2018-1)C. 2019×(-2017+2018+1)D. 2019×(-2017-2018-1)5、在等式4×□-3×□==-9的两个方框中分别填一个数,使这两个数为互为相反数且等式成立,则第一个“□”中填入的数为 .6、若干有理数相乘,将奇数个因数换成它的相反数,所得是结果与原来的结果一样,则原来的结果为 .7、计算(1-2) ×(3-4) ×(5-6) ×…×(2017-2018)= . 8、计算:(1)-40×(-83+521-43); (2)(-314)×(-5310)×(-133); (3)(-47)×)85(-+(-7)× 85; (4)-999×1789、王老师将甲乙两种股票同时卖出,其中甲种股票卖价1200元,盈利20%;乙种股票卖价也是1200元,但亏损20%,求王老师在这次交易中是盈利还是亏损?【提优特训】10、已知在5个数中有三个负数,则这5个有理数的乘积为( )A .小于0B .非正数C .等于0D .无法确定11、若xyz >0,则x ,y ,z 的值为 ( )A .都大于0B .两负一正C .都大于0或两负一正D .至少一个大于012、如图,A ,B 两点在数轴上表示的数分别为a ,b ,有下列结论:①ab <0;②b -a >0;③(a +1)(b -1)>0;④(a -1)(b +1)>0;⑤(a -b )(a +b )>0. 其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个13、绝对值大于1.9且不大于5的所有负整数的积为( )A .-14B .-120C .0D .12014、某同学把5×(□-6)错抄为5×□-6,若正确答案为a ,抄错后的结果为b ,则a -b = .15、符号“f ”表示一种运算,它对一些数运算结果如下: (1) f (1)=0,f (2)=1,f (3)=2,f (4)=3,… (2) f (21)=2,f (31)=3,f (41)=4,f (51)=5,… 利用以上规律求f (2019)-f (20191)-f (2018)的值 . 16、一辆出租车的东西走向的一条街道上行驶,上午一共连续拉客17次,其中7次向东行驶,其余都是向西行驶,向东行驶每次的行程为11千米,向西行驶每次的行程为8千米. (1) 该出租车连续17次拉客后停在何处? (2) 该出租一共行驶了多少千米?17、用简便方法计算:第12题图(1) )227()317713(2221713-⨯-⨯⨯;(2) )175(116)1715()2252217(177116-⨯+-⨯--⨯(3) 2019×20202020-2020×2019201918、饲养场有158头牛和158只羊,1头牛每星期平均吃67千克草,1只羊每星期平均吃33千克草,求饲养场每星期要准备多少千克草?19、已知x 、y 、z 是三个有理数,若x <y ,x +y =0,且xyz >0,试判定x +z 的符号.20、甲、乙两位同学做一个乘法运算的游戏,游戏中规定:每人抽到4个数字,长方形表示对应数字前是正号,圆形表示对应数字前是负号,计算其积,结果数小者为胜. 请列式计算说明,甲、乙两位同学谁为胜者?【中考链接】21.(2018•枣庄)(3分)实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a |>|b |B .|ac |=acC .b <dD .c +d >0第20题图第21题图 第22题图22、(2018•北京)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是A .||4a >B .0c b ->C .0ac >D .0a c +>23、(2018•陕西)117-的倒数是 A .117 B .117-C .711 D .711-参考答案1、D2、C3、B4、C5、-96、07、-1 10、B 11、C 12、C 13、D 14、-24 15、-2019 21、B 22、B 23、D8、 解:(1)原式=-40×(-83)+(-40)×57+(-40)×(-43) =15-56+30=-11; (2)原式=-313×133×553=-553;(3)原式=47×85+(-7)×85=85×(47-7)=25; (4)原式=(-1000+1)×178=-178000+178=-177822.9、解:甲的原价:1200÷(1+20%)=1000元, 赚了:1200-1000=200元;乙的原价:1200÷(1-20%)=1500元, 赔了:1500-1200=300元; 合计是亏了300-200=100元. 16、 解:(1)设向东为正方向, 向东行驶了7×11km=77km 向西行驶了10×8km=80km 77km -80km=-3km , 故最后停在起始点西3km 处(2)一共行驶了77km+80km=157km17、解:(1)原式=)322722(2272221722-⨯⨯⨯- =)322722(2221-⨯-=)322()2221(7222221-⨯-+⨯-=-3+7=4;(2)原式=1751161715116177116⨯-⨯+⨯ =)1751715177(116-+⨯ =1161116=⨯; (3)原式=2019×2020×101-2020×2019×101 =2019×2020×(101-101)=0.18、解:根据题意列式:158×67+158×33=158×(67+33) =15800(千克)答:每星期要准备15800千克草. 19、解:∵x +y =0, ∴x 、y 是互为相反数, ∵x <y , ∴y >0,x <0. 又∵xyz >0,∴x 、y 、z 三个数中一定是两负一正, ∴z <0, ∴x +z <0.20、解:甲同学胜. 理由如下:甲同学:5.2×[-(-4)]×(-0.5)×[-(-6)]=-62.4. 乙同学:(-3)×(-2.8)×[-(-2)] ×1.5=25.2. 由于-62.4<25.2,所以甲同学胜.第20题图学生版2.3有理数的乘法(1)【知识清单】一、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与零相乘,积为零. 二、倒数:1、定义:若两个有理数的乘积为1,就称这两个有理数互为倒数(如:3与31、43-与34-…等).2、注意:①零没有倒数 (因为0乘以任何数都等于0,不等于1,所以0没有倒数);②求分数的倒数,就是把分数的分子分母颠倒位置.若一个数是带分数要先把它化成假分数,然后再求倒数;③正数的倒数是正数,负数的倒数是负数. 三、有理数乘法运算步骤:①先确定积的符号;有若干不为0的有理数相乘时,应该先确定积的符号(当负因数个数为偶数时,积为正,当负因数个数为奇数时,积为负);②求出各因数的绝对值的积;③若其中一个因数为0,则积为0.(3) (-4.3)×0×(-例题2、定义一种新运算: a △b =a ×b -a -b +2,如2△3=2×3-2-3+2=3, 则2△(-3)比(-3)△4( ).A 大B 小C 相等D 以上均不对【夯实基础】1、下列各组数中,互为倒数的是( )A .3与-3B .-5与51 C .201911-与20202019- D .0与0 2、已知有理数a ,b 满足ab <0, a +b >0,则下列结论正确的是( )A .a ,b 一正一负B .a ,b 一正一负,且b a =C .a ,b 一正一负,且负数的绝对值较大D .a ,b 一正一负,且正数的绝对值较大3、在-3,4,5,-6这四个数中任取两个数相乘,所得的积最大的是( ) A .18 B .-12 C .20 D .304、有理数a ,b 在数轴上对应的点的位置如图所示,则下列式子不正确的是( )A .a +b >0B .ab (a -b )>0C .b a ->-D .a b -=a -b5、定义一种新运算是a △b =ab -b ×b ,则3△(-5)的值为 .6、若5=a ,7=b ,且b a b a -=-,则ab = .7、如图是一个简单的数值运算程序,当输入的值为5时,输出的数值是 . 8、计算:(1) (-4.25)×(+20); (2) (-3.6)×(-5)×(-95);(3) (-7.6)×0×(-20192018).9、某代理商用2000元购进一批货物,第二天售出获利10%,一周后又以上次售出价的90%购进一批同样的货物,由于无人购买,老板决定按第二次购进价的九折再次售出,该代理商在这两次交易中的盈亏情况?第4题图第7题图【提优特训】10、倒数等于它本身的数有( )A .1个B .2个C .3个D .4个 11、若4=x ,7=y ,且xy <0,则x +y 的值为 ( )A .11或-11B .3或-3C .11或3D .-11或-312、下列说法:①互为相反数的两个数的积是负数;②任何数的倒数都小于1;③同号的两个数,原数大的倒数反而小;④几个有理数相乘,当正因数有奇数个时,积为负;⑤0的倒数是0. 其中正确的个数是( )A .1个B .2个C .3个D .4个 13、若a ,b 是整数,且ab =15,则a +b 的最大值与最小值的差是( )A .-16B .-32C .16D .3214、已知a 与b 互为相反数,c 和d 互为倒数,e 的绝对值等于2,则5a -3cde +5b 的值为 .15、绝对值小于2019的所有整数的积是 .16、如果两个数相乘的结果为负数,其中有几个负因数?如果三个数相乘的结果为负数,其中又有几个负因数?四个数,五个数,六个数呢?找出规律后,在回答: (1) 如果2019个数相乘的结果为负数,那么其中负因数的个数有几种可能情况? (2) 如果n (n 为正整数)个数相乘的结果为负数,那么其中负因数的个数有几种可能情况?17、学生李明在做将某数乘以-3.37时,由于不小心漏乘了一个负号,所得的数比正确结果小1.348,那么正确的结果是多少?18、某网店去年1~3月份每月平均亏损1.8万元,4~6月份每月平均盈利2.2万元,7~10月份每月平均盈利1.9万元,11~12月份每月平均亏损2.5万元,这个网店去年总的盈亏情况如何?19、阅读下列材料:请你观察下列等式.2×2=4,2+2=4, 即2×2=2+2;214323=⨯,214323=+,即323323+=⨯; 315434=⨯,315434=+,即434434+=⨯; 416545=⨯,416545=+,即545545+=⨯; …(1)请你上述各式子的规律写出下一个式子; (2)请你观察上面的结构特点,归纳出一个猜想.20、(1)如果ab <0,a -b >0,试确定a ,b 的正负; (2)如果ab <0,a -b <0,试确定a ,b 的正负; (3)如果ab <0,a +b >0,b a >,试确定a ,b 的正负.【中考链接】 21、(2018•枣庄)21-的倒数是( ) A .-2 B .21- C .2 D .2122、(2018•通辽)20181的倒数是( )A .2018B .-2018C .20181-D .20181 23、(2018•遂宁) -2×(-5)的值是( ) A .-7 B .7C .-10D .1024、(2018•吉林)计算(-1)×(-2)的结果 ( ) A .2 B .1C .-2D .-32.3有理数的乘法(2)【知识清单】 有理数乘法的运算律1、乘法交换律:两个数相乘,交换因数的位置,积不变. 字母表示:a ×b =b ×a2、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.字母表示:(a ×b )×c =a ×(b ×c )3、分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.字母表示:a ×(b +c )=a ×b +a ×c 【经典例题】例题1、如果四个不同的整数m ,n ,p ,q 满足(7-m )(7-n )(7-p )(7-q )=6,则m +n +p +q 等于( )A .18B .24C .27D .28例题2、2019减去它的21,再减去余下的31,再减去余下的41,依次类推,一直到减去余下的20191,求最后剩下的数.【夯实基础】1、若五个有理数的积为负数,则其中负因数的个数为( )A .1个B .1个或2个C .1个或3个D .1个或3个或5个 2、下列运算中,错误的是( )A .-5×(-4) ×(-3) ×2=-120B .-4-12=2C .(-14)×(-6)×)32()72(-⨯+=16D .(-2)×(+7)-(-2)×3-2(-4)=-2×(7-3-4)=03、运用分配律计算976-×9时,你认为下列变形中最简便的是( )A .976-×9=)977(--×9B .976-×9=)976(--×9C .976-×9=)977(-×9D .976-×9=)976(---×94、对于算式2019×(-2017)+(-2019)×(-2018)-(-2019)分配律的逆用正确的是( )A. 2019×(-2017+2018)B. 2019×(-2017+2018-1)C. 2019×(-2017+2018+1)D. 2019×(-2017-2018-1)5、在等式4×□-3×□==-9的两个方框中分别填一个数,使这两个数为互为相反数且等式成立,则第一个“□”中填入的数为 .6、若干有理数相乘,将奇数个因数换成它的相反数,所得是结果与原来的结果一样,则原来的结果为 .7、计算(1-2) ×(3-4) ×(5-6) ×…×(2017-2018)= . 8、计算:(1)-40×(-83+521-43); (2)(-314)×(-5310)×(-133);(3)(-47)×)85(-+(-7)× 85; (4)-999×1789、王老师将甲乙两种股票同时卖出,其中甲种股票卖价1200元,盈利20%;乙种股票卖价也是1200元,但亏损20%,求王老师在这次交易中是盈利还是亏损?【提优特训】10、已知在5个数中有三个负数,则这5个有理数的乘积为( )A .小于0B .非正数C .等于0D .无法确定11、若xyz >0,则x ,y ,z 的值为 ( )A .都大于0B .两负一正C .都大于0或两负一正D .至少一个大于012、如图,A ,B 两点在数轴上表示的数分别为a ,b ,有下列结论:①ab <0;②b -a >0;③(a +1)(b -1)>0;④(a -1)(b +1)>0;⑤(a -b )(a +b )>0. 其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个13、绝对值大于1.9且不大于5的所有负整数的积为( )A .-14B .-120C .0D .12014、某同学把5×(□-6)错抄为5×□-6,若正确答案为a ,抄错后的结果为b ,则a -b = .15、符号“f ”表示一种运算,它对一些数运算结果如下: (1) f (1)=0,f (2)=1,f (3)=2,f (4)=3,… (2) f (21)=2,f (31)=3,f (41)=4,f (51)=5,… 利用以上规律求f (2019)-f (20191)-f (2018)的值 . 16、一辆出租车的东西走向的一条街道上行驶,上午一共连续拉客17次,其中7次向东行驶,其余都是向西行驶,向东行驶每次的行程为11千米,向西行驶每次的行程为8千米. (1) 该出租车连续17次拉客后停在何处? (2) 该出租一共行驶了多少千米?第12题图17、用简便方法计算: (1) )227()317713(2221713-⨯-⨯⨯;(2))175(116)1715()2252217(177116-⨯+-⨯--⨯(3) 2019×20202020-2020×2019201918、饲养场有158头牛和158只羊,1头牛每星期平均吃67千克草,1只羊每星期平均吃33千克草,求饲养场每星期要准备多少千克草?19、已知x 、y 、z 是三个有理数,若x <y ,x +y =0,且xyz >0,试判定x +z 的符号.20、甲、乙两位同学做一个乘法运算的游戏,游戏中规定:每人抽到4个数字,长方形表示对应数字前是正号,圆形表示对应数字前是负号,计算其积,结果数小者为胜. 请列式计算说明,甲、乙两位同学谁为胜者?【中考链接】 21.(2018•枣庄)(3分)实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a |>|b |B .|ac |=acC .b <dD .c +d >022、(2018•北京)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是A .||4a >B .0c b ->C .0ac >D .0a c +> 23、(2018•陕西)117-的倒数是 A .117 B .117- C .711 D .711-第20题图 第21题图 第22题图。