第一章 “有理数乘除法”重、难点
- 格式:doc
- 大小:109.50 KB
- 文档页数:3
初一数学上册必考知识点及重难点第一章有理数1.正数和负数2.有理数3.有理数的加减4.有理数的乘除5.有理数的乘方重点:数轴、相反数、绝对值、有理数运算、科学计数法、有效数字难点:绝对值易错点:绝对值、有理数运算中考必考:科学计数法、相反数(选择题)第二章整式的加减1.整式2.整式的加减重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、运算失误、整数次数的确定中考必考:同类项、整数系数次数的确定、整式加减第三章一元一次方程1.从算式到方程2.解一元一次方程----合并同类项与移项3.解一元一次方程----去括号去分母4.实际问题与一元一次方程重点:一元一次方程(定义、解法、应用)难点:一元一次方程的解法(步骤)易错点:去分母时,不含有分母项易漏乘、解应用题时,不明白如何找等量关系第四章图形认识实步1.多姿多彩的图形2.直线、射线、线段3.角4.课题实习----设计制作长方形形状的包装纸盒要练说,得练听。
听是说的前提,听得准确,才有条件正确仿照,才能不断地把握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我专门重视教师的语言,我对幼儿说话,注意声音清晰,高低起伏,抑扬有致,富有吸引力,如此能引起幼儿的注意。
当我发觉有的幼儿不用心听别人发言时,就随时夸奖那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们用心听,用心记。
平常我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,如此幼儿学得生动爽朗,轻松愉快,既训练了听的能力,强化了经历,又进展了思维,为说打下了基础。
重点:直线、射线、线段、角的认识、中点和角平分线的相关运算、余角和补角,方位角等难点:中点和角平分线的相关运算、余角和补角的应用我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
第一章有理数知识点、考点、难点总结归纳有理数是我们学习数学的基础,掌握有理数的知识是进行后续学习的关键。
本章将对有理数的知识点、考点和难点进行总结归纳,帮助我们更好地理解和掌握有理数。
一、有理数的定义有理数是可以表示为两个整数的比值,包括正整数、负整数和零。
有理数的表示形式为分数或整数。
二、有理数的基本运算1. 加法和减法:有理数的加法和减法运算都可以通过分数的相加相减来完成,要注意同分母的分数之间的加减法运算规则,并进行合并和化简。
2. 乘法和除法:有理数的乘法和除法运算也可以通过分数的乘法和除法来完成,要注意分数的乘法规则和除法规则,并进行化简。
三、有理数的大小比较比较两个有理数的大小,可以首先将它们转化为相同分母的分数形式,然后按照分数的大小关系进行比较。
四、有理数的相反数与绝对值1. 相反数:一个有理数的相反数是它的数值相反而符号不变。
2. 绝对值:一个有理数的绝对值是它去掉符号后的数值,即该数的非负值。
五、有理数的混合运算混合运算是指同时进行加减乘除等多种运算的情况。
在有理数的混合运算中,需要根据运算法则和优先级进行计算,并注意括号的运用。
六、有理数的分数表示和小数表示有理数可以用分数形式表示,也可以用小数形式表示。
分数形式适用于精确计算,而小数形式便于运算和比较大小。
七、有理数的化简有理数的化简是指将其写成最简形式,即分子与分母没有公约数的分数表示。
通过寻找最大公约数,可以将有理数化简为最简形式。
八、有理数的乘方运算乘方运算是指一个数自乘若干次的运算。
在有理数的乘方运算中,可以根据乘方运算法则简化计算过程,并注意负次幂的运算规律。
九、有理数与实际问题的应用有理数在实际问题中有广泛的应用,如温度计的读数、海拔高度的表示、财务账目的计算等。
通过将实际问题转化为有理数运算,可以得出准确的答案。
总结:有理数是我们日常生活和学习中经常遇到的数,掌握有理数的知识对于数学学习至关重要。
本章总结了有理数的定义,基本运算,大小比较,相反数与绝对值,混合运算,分数与小数表示,化简,乘方运算以及应用等知识点、考点和难点。
第一章有理数知识点、考点、难点总结归纳大家好,今天我们来聊聊有理数这个知识点。
有理数是我们日常生活中经常会遇到的一种数,它们可以表示为两个整数的比值,比如1/2、3/4等等。
有理数在数学中非常重要,因为它们可以帮助我们解决很多问题。
有理数有哪些知识点呢?下面我们就来一一梳理。
我们来说说有理数的基本概念。
有理数包括正有理数、负有理数和零。
正有理数就是大于零的有理数,比如1/2、3/4等等;负有理数就是小于零的有理数,比如-1/2、-3/4等等;零是有理数,但它既不大于零也不小于零。
我们来看一下有理数的运算。
有理数的加法、减法、乘法和除法都很简单,我们可以通过以下几个例子来说明。
例一:正有理数相加。
假设我们有两个正有理数a和b,那么它们的和就是a+b。
例如,1/2+1/3=5/6。
例二:正有理数相减。
假设我们有两个正有理数a和b,那么它们的差就是a-b。
例如,3/4-1/2=1/4。
例三:正有理数相乘。
假设我们有两个正有理数a和b,那么它们的积就是a*b。
例如,1/2*3/4=3/8。
例四:正有理数相除。
假设我们有两个正有理数a和b(b≠0),那么它们的商就是a/b。
例如,3/4÷1/2=3/2=1.5。
有理数的运算还有很多其他的形式,比如负有理数的加法、减法、乘法和除法等。
但是这些都比较复杂,我们以后再学吧。
除了基本的运算之外,有理数还有一些重要的性质和定理。
比如,有理数的相反数是它的负倒数;有理数的绝对值是它的大小;有理数的平方根有两个,一个是正的,一个是负的;有理数的小数部分可以无限精确地表示为分数形式等等。
这些性质和定理在解决一些实际问题时非常有用。
我们来说说有理数的解题方法。
其实,有理数的解题方法和其他类型的题目差不多。
我们需要先理解题目的意思,然后根据题目的要求选择合适的方法进行计算。
有时候,我们还需要运用一些特殊的技巧来简化计算过程。
只要我们掌握了有理数的基本知识和解题方法,就可以轻松地解决很多数学问题了!今天我们就来聊到这里。
《有理数的乘除法》知识点解读一、关于有理数的乘法知识点一:有理数的乘法法则有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零。
温馨点拨:(1)有理数乘法法则中的“同号得正,异号得负”是专指“两数相乘”而言的;(2)有理数的乘法与有理数的加法的运算步骤一样,第一步:确定符号;第二步:确定绝对值。
知识点二:有理数的乘法的运算律(掌握)有理数乘法的运算律:算术乘法中适用的交换律、结合律以及乘法对加法的分配律在有理数范围内依然成立。
(1)乘法交换律:两个数相乘,交换因数的位置,积不变,即ab ba=。
(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即()()ab c a bc=。
(3)乘法分配律:一个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即()a b c ab ac+=+。
知识点三:多个有理数相乘的符号法则(掌握)多个有理数相乘的符号法则:(1)几个不为0的数相乘,积的符号由负数的个数决定。
当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
(2)几个数相乘,如果有一个因数为0,积就为0,反之,如果积为0,那么至少有一个因数为0。
例1 计算(134-78-712)×(-117).分析:可以直接利用乘法的分配律计算,即正向运用。
解:(134-78-712)×(-117)=74×(-87)+(-78)×(-87)+(-712)×(-87)=-2+1+23=-13. 说明:利用乘法的分配律可以使某些特殊结构的有理数乘法运算简化,但要注意灵活运用避免符号、拆项等错误。
二、关于有理数的除法知识点一:倒数的概念(理解)倒数的概念:与小学学过的互为倒数的概念一样,即乘积为1的两个数互为倒数,如:3和13,5-和15-,56-和65-分别互为倒数。
一般的,当0a ≠时,a 与1a互为倒数。
有理数的乘法教案【6篇】有理数的乘法教案篇1目标:1、学问与技能使同学理解有理数乘法的意义,把握有理数的乘法法则,能娴熟地进行有理数的乘法运算。
2、过程与方法经受探究有理数乘法法则的过程,理解有理数乘法法则,进展观看、探究、合情推理等力量,会进行有理数和乘法运算。
重点、难点:1、重点:有理数乘法法则。
2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。
过程:一、创设情景,导入新1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?乘法是加法的特别运算,例如5+5+5=5×3,那么请思索:(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。
3、在一条由西向东的笔直的公路上,取一点O,以向东的路程为正,则向西的路程为负,假如小玫从点O动身,以5千米的向西行走,那么经过3小时,她走了多远?二、合作沟通,解读探究1、学校学过的乘法的意义是什么?乘法的安排律:a×(b+c)=a×b+a×c假如两个数的和为0,那么这两个数互为相反数。
2、由前面的问题3,依据学校学过的乘法意义,小玫向西一共走了(5×3)千米,即(-5)×3=-(5×3)3、同学活动:计算3×(-5)+3×5,留意运用简便运算通过计算表明3×(-5)与3×5互为相反数,从而有 3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把肯定值3与5相乘。
类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0由此看出(-5)×(-3)得正数,并且把肯定值5与3相乘。
4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?鼓舞同学自己归纳,并用自己的语舞衫歌扇,并与同伴沟通。
第一章有理数知识点、考点、难点总结归纳有理数是数学中的一个重要概念,它是整数和分数的统称。
在初中数学的学习中,有理数占据着基础且关键的地位。
接下来,我们将对有理数的知识点、考点和难点进行详细的总结归纳。
一、有理数的定义和分类有理数是能够表示为两个整数之比的数,包括整数、有限小数和无限循环小数。
按照符号分类,有理数可以分为正有理数、零和负有理数。
正有理数包括正整数和正分数,负有理数包括负整数和负分数。
需要注意的是,零既不是正数也不是负数,但它是有理数。
二、有理数的数轴表示数轴是一条规定了原点、正方向和单位长度的直线。
任何一个有理数都可以在数轴上找到对应的点,反过来,数轴上的点也都对应着一个有理数。
在数轴上,右边的数总比左边的数大。
利用数轴可以比较有理数的大小,也可以进行有理数的加减运算。
三、有理数的相反数只有符号不同的两个数互为相反数。
例如,5 的相反数是-5,-3 的相反数是 3。
零的相反数是零。
互为相反数的两个数之和为零。
四、有理数的绝对值绝对值的定义是:数轴上表示一个数的点到原点的距离叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。
例如,|5| = 5,|-3| = 3,|0| = 0。
绝对值具有非负性,即任何有理数的绝对值总是大于或等于零。
五、有理数的比较大小正数大于零,零大于负数,正数大于负数。
两个负数比较大小,绝对值大的反而小。
例如,比较-5 和-3 的大小,因为|-5| = 5,|-3| = 3,5 > 3,所以-5 <-3。
六、有理数的加法同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时和为零;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数同零相加,仍得这个数。
例如,3 + 5 = 8,-3 +(-5) =-8,3 +(-5) =-2,-3 + 5 = 2,0 + 5 = 5。
七、有理数的减法减去一个数,等于加上这个数的相反数。
学生: 科目:数学 教师: 日期: 2014年 月 --- 课 题 有理数的乘除法教学目标 1. 了解并掌握乘除法的运算法则,掌握乘方的意义。
2.掌握有理数乘除法的简便运算方法和运算顺序。
重点、难点 重点:有理数乘除法的运算法则和乘方的意义。
难点:有理数的乘方运算。
教学内容知识点1.有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘得0.乘积是1的两数互为倒数.两数相乘,交换因数的位置,积不变;乘法交换律:ab=ba;三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变.乘法结合律:abc=(ab)c=a(bc).一个数同两个数的和相乘,等于这个数分别与这两个数相乘,再把积相加.乘法分配律:a(b+c)=ab+ac;几个不等于0的数相乘,负因数的个数为偶数个时,积为正数; 负因数的个数为奇数个时,积为负数.[针对性练习]填空:(1)-67×76___________; (2)(-1.25)×(-8)=_____________; (3)(-126.8)×0=___________; (4)(-25.9)×(-1)=______________. (5)(-5)×__________=-35; (6)(-73)×____________=73.知识点2.有理数的除法除以一个不为0的数,等于乘这个数的倒数.式子表达为:a ÷b=a ×b1(b 为不等于0的数).两数相除,同号得正,异号得负,并把绝对值相乘.一个数同不为0的数相除,仍得0.【解析】两个有理数相乘,我们根据法则先来确定乘积的符号,再把绝对值相乘.在进行有理数乘法运算时,除了要熟练掌握乘法法则之外,还应当注意以下两点:1.一个数乘以1等于它本身,一个数乘以-1等于它的相反数.2.两个相反数的和与积是完全不同的两个结果,不要混淆.[针对性练习]计算(1)(-40)÷(-8); (2) )()(21-21-31 ;(3) 1÷(-0.01)×(-41);类型之一:巧用运算律简化计算型例1.(1)(-6)×[32+(-21)] (2)[29×(-65)]×(-12)类型之二:结构繁琐型例2.计算:2 002×20 032 003-2003×20 022 002.类型之三:整体代换型例3. 计算:(21+31+…+20031)·(1+21+…+20021)-(1+21+31+…+20031)·(21+31+…+20021).类型之四:乘除混合型例4计算:(1)-7÷3-14÷3; (2)(215--512)÷323; (3)(-3.5)÷87×(43-)【针对性练习】1.判断题:(1)如果ab >0,且a+b <0,则a <0,b <0.( )(2)如果ab <0,则a >0,b <0.( )(3)如果ab=0,则a ,b 中至少有一个为0.( )2.计算:)531(135)135()53(135)54(-⨯--⨯--⨯-3.计算: (1)(-20)÷(331); (2)3.2÷(-531).4.计算:(1)-7÷3-14÷3; (2)(-521-251)÷332.5.计算:(1)(-36)×[92-+(125-)183-]; (2)(-2)×(721-)×(212-)×97.【评注】正确合理地利用乘法的结合律、交换律、分配律,可以大大简化计算.【课堂练习】1.一个有理数与它的相反数之积( )A.符号必定为正B.符号必定为负C.一定不大于零D.一定不小于零2.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为负数B.为0C.一定为正数D.无法判断3.用简便方法计算:(1)(-14)×(+1111)×(-131)×(5.5)×(+74); (2)43×(-75)×(-4)×(-51);(3)-7×(-722)+19×(-722)-5×(-722); (4)(143-87-127)×(-24).4.计算:(1)-6÷(-0.25)÷1114; (2)(-2 21)÷(-10)÷(-31)÷(-5);(3)(-331)÷2 54÷(-3 81)÷(-0.75).【拓展提高】1.某班举行知识竞赛,评分标准是:答对1道题加10分,答错1道题扣10分,每个队的基本分为100分,有一个代表队答对了12道题,答错了5道题,请问这个队最后得多少分?2.求除以8和9都是余1的所有三位数的和.【强化练习】A 等级1.如果两个有理数的和是零,积也是零,那么这两个有理数( )A.至少有一个为零,不必都是零B.两数都是零C.不必都是零,但两数互为相反数D.以上都不对2.五个数相乘,积为负数,则其中负因数的个数为( )A.2B.0C.1D.1,3,53.(-5)×(-5)÷(-5)×51=__________. 4.已知a ,b 两数在数轴上对应的点如图2-8-1所示,下列结论正确的是( )图2-8-1A.a >bB.ab <0C.b -a >0D.a+b >05. 用“”、“”定义新运算:对于任意实数a ,b ,都有a b=a 和a b=b ,例如32=3,32=2,则(20062005)(20042003)=________. 6.计算:(1)(-0.75)×(-1.2); (2)(-165)×(-154);(3)(-32132)×(-1); (4)(-91)×(-3136);7.a 、b 是什么有理数时,下式成立:a×b=|a×b|.8.计算: (1)(-27)×31= (2)(-0.75)×(-1.2)= (3)(-165)×(-154)= (4)(-32132)×(-1)= (5)(-91)×(-3136)= (6)(-6.1)×0= 9.计算:(1)54×(-625)×(-107) (2)(-1324)×(-716)×0×34(3)45×(-1.2)×(-91); (4)(-73)×(-21)×(-158)。
【有理数的乘法教案人教版】有理数的乘法教案优秀6篇初中数学《有理数的乘法》教学设计篇一掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性一、重点:熟练进行有理数的乘除运算二、难点:正确进行有理数的乘除运算预习导学通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律一、创设情景,谈话导入我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律二、精讲点拨质疑问难根据预习内容,同学们回答以下问题:1、有理数的乘法法则:(1)同号两数相乘___________________________________(2)异号两数相乘___________________________________(3)0与任何自然数相乘,得____2、有理数的乘法运算律:(1)乘法交换律:ab=_________(2)乘法结合律:(ab)c=_______(3)乘法分配律:(a+b)c=________3、有理数的除法法则:除以一个不等于0的数,等于乘这个数的__________比较有理数的乘法,除法法则,发现_________可能转化为__________初中数学《有理数的乘法》教学设计篇二1、知识与技能使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便。
2、过程与方法通过对问题的探索,培养观察、分析和概括的能力。
3、情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心。
重点:熟练运用运算律进行计算。
难点:灵活运用运算律。
(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好。
人教版七年级数学上册第一章 有理数主要内容:主要内容是有理数的有关概念及其运算。
首先,从实例引入负数,接着引进关于有理数的一些概念(数轴、相反数、绝对值、倒数等),在此基础上,介绍有理数的加减法、乘除法和乘方运算的意义、法则和运算律。
重点:有理数的运算。
数轴的绘画以及运用。
绝对值以及相反数的运用。
科学记数法的掌握 难点:对有理数运算法则的理解,特别是对有理数乘法法则的理解。
实例:20XX 年莆田市初中毕业升学考试中涉及到有理数中的知识 1. ._______2=-6.20XX 年北京奥运会的主场馆----“鸟巢”的建筑面积是258000平方米,将258000用 科学记数法表示应是____________________。
13.解集在数轴上表示如图所示的不等式组是(A.21x x ≤-⎧⎨≥⎩B.21x x ≥-⎧⎨≥⎩C.21x x ≤-⎧⎨≤⎩D. 1x x ≥-⎧⎨≤⎩20XX 年莆田市初中毕业升学考试中涉及到有理数中的知识1.3-的相反数是 .2.20XX 年莆田市参加初中毕业、升学考试的学生总人数约为43000人,将43000用 科学记数法表示是___________.3. 不等式组2410x x <⎧⎨+>,的解集在数轴上表示正确的是( )A B . C D 20XX 年莆田市初中毕业升学考试中涉及到有理数中的知识1. 2-的倒数是( ) A. 2 B.12 C. 12- D. 15- 10. 20XX 年我国全年国内生产总值约335000亿元,用科学记数法表示为__________元18. 解不等式213436x x --≤,并把它的解集在数轴上表示出来. 20XX 年莆田市初中毕业升学考试中涉及到有理数中的知识1. 2011-的相反数是( )A . 2011-B . 12011-C . 2011D . 120113. 已知点P (1a a -,)在平面直角坐标系的第一象限内,则a 的取值范围在数轴上可表示为( )9. 一天有86400秒,用科学记数法表示为____________ 秒;分析:从08到11年试卷的试题中出现的有关有理数的知识可以看出,每年的试题类型的 差不多这几种。
有理数知识点考点难点总结归纳有理数是中学数学中一个非常重要的知识点,涉及到正数、负数、分数等内容。
掌握有理数的概念、运算规则以及解题技巧,对学生学好数学具有重要意义。
本文将对有理数的相关知识点、考点和难点进行总结归纳。
一、有理数的定义有理数包括正数、负数和零,可以表示为分数的形式,例如2、-3、⅔等。
有理数集合为R。
二、有理数的运算1. 加法和减法:正数与正数相加减,负数与负数相加减,正数与负数相减,规则是符号相同则取绝对值相加减,符号不同则取绝对值相减,并保留绝对值的符号。
2. 乘法和除法:正数与正数相乘除,负数与负数相乘除,正数与负数相乘除,规则是符号相同得正数,符号不同得负数。
3. 混合运算:先乘除后加减,按照顺序进行运算。
三、有理数的比较1. 同号比较大小:绝对值大的有理数大。
2. 异号比较大小:正数大于负数。
3. 零的比较:整数大小比较,绝对值大的整数大;分数大小比较,分子乘分母再比较。
四、有理数的绝对值有理数a的绝对值表示为|a|,规则是正数的绝对值等于其本身,负数的绝对值等于去掉负号。
五、有理数的倒数有理数a的倒数表示为1/a,规则是一个非零有理数的倒数等于该有理数的倒数。
六、有理数的乘方有理数a的n次方表示为a^n,规则是一个有理数的正整数次方等于连乘自己n次,负整数次方等于该有理数的倒数的正整数次方。
七、有理数的分数表示在有理数中,每一个整数都可以表示为分数形式,并且满足分母为1。
八、有理数的约分有理数的约分就是将分子和分母同时除以一个相同的非零整数,使得所得分数的分子和分母没有公因数。
九、有理数的化简有理数的化简就是将其小数形式转化为分数形式。
十、有理数的加减运算有理数的加减运算可以通过化为相同的分母,再按照分数的加减法则进行。
十一、有理数的乘除运算有理数的乘除运算可以通过约分和化简,再按照分数的乘除法则进行。
十二、有理数的四则混合运算有理数的四则混合运算可以通过转化为分数形式,并根据运算法则进行运算。
第一章有理数知识点、考点、难点总结归纳第一章有理数知识点总结一、正数和负数1.正数和负数的概念:负数是比小的数,正数是比大的数。
注意:字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0.强调:带正号的数不一定是正数,带负号的数不一定是负数。
2.具有相反意义的量:若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量。
惯把“前进、上升、收入、零上温度”等规定为正,“后退、下降、支出、零下温度”等规定为负。
比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃。
二、有理数1.有理数的概念:⑴正整数、0、负整数统称为整数(和正整数统称为自然数)。
⑵正分数和负分数统称为分数。
⑶正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
2.数轴1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。
注意:数轴是一条向两端无限延伸的直线。
原点、正方向、单位长度是数轴的三要素,三者缺一不可。
同一数轴上的单位长度要统一。
数轴的三要素都是根据实际需要规定的。
2)数轴上的点与有理数的关系:所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
所有的有理数都可以用数轴上的点表示出来。
3)利用数轴表示两数大小:在数轴上数的大小比较,右边的数总比左边的数大。
正数都大于0,负数都小于0,正数大于负数。
两个负数比较,距离原点远的数比距离原点近的数小。
4)数轴上特殊的最大(小)数:最小的自然数是1,无最大的自然数。
最小的正整数是1,无最大的正整数。
最大的负整数是-1,无最小的负整数。
3.相反数:1) 只有符号不同的两个数叫做互为相反数;0的相反数是0.2) 互为相反数的两数的和为0,即:若a、b互为相反数,则a+b=0.3) 相反数的求法:求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5)。
新初一数学的知识点及重点难点(上册)第一章有理数: 1.正数和负数2.有理数3.有理数的加减4.有理数的乘除5.有理数的乘方重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字难点:绝对值. 易错点:绝对值、有理数计算. 中考必考:科学计数法、相反数(选择题)第二章整式的加减:1.整式 2.整式的加减重点:单项式与多项式的概念及系数和次数的确信、同类项、整式加减难点:单项式与多项式的系数和次数的确信、归并同类项易错点:归并同类项、计算失误、整数次数的确信中考必考:同类项、整数系数次数的确信、整式加减第三章一元一次方程: 1.从算式到方程 2.解一元一次方程——归并同类项与移项3.解一元一次方程——去括号去分母4.实际问题与一元一次方程重点:一元一次方程(概念、解法、应用)难点:一元一次方程的解法(步骤)易错点:去分母时,不含有分母项易漏乘、解应用题时,不明白如何找等量关系第四章图形熟悉实步 1.多姿多彩的图形 2.直线、射线、线段 3.角4.课题实习——设计制作长方形形状的包装纸盒重点:直线、射线、线段、角的熟悉、中点和角平分线的相关计算、余角和补角,方位角等难点:中点和角平分线的相关计算、余角和补角的应用易错点:等量关系可不能转化、审题不清新初一生如何做好数学衔接做好小升初衔接对以后初中学习大有帮忙,那么在没有进入初中之前,咱们要对其有一个可能的把握,第一从数学学习入手。
是一个整体。
初二的难点最多,初三的考点最多。
相对而言,初一数学知识点尽管很多,但都比较简单。
很多同窗在学校里的学习中感受不到压力,慢慢积存了很多小问题,这些问题在进入初二,碰到困难(如学科的增加、难度的加深)后,就凸现出来。
有一部份新同窗确实是对初一数学不够重视,在进入初二后,发觉跟不上教师的进度,感觉学习数学愈来愈费力,希望参加咱们的辅导班来弥补的。
那个问题究其缘故,主若是对初一数学的基础性,重视不够。
咱们那个地址先列举一下在初一数学学习中常常显现的几个问题:1、对知识点的明白得停留在一知半解的层次上;2、解题始终不能把握其中关键的数学技术,孤立的看待每一道题,缺乏触类旁通的能力;3、解题时,小错误太多,始终不能完整的解决问题;4、解题效率低,在规定的时刻内不能完成必然量的题目,不适应考试节拍;5、未养成总结归纳的适应,不能适应性的归纳所学的知识点;以上这些问题若是在初一时期不能专门好的解决,在初二的两极分化时期,同窗们可能就会显现成绩的滑坡。
第一章有理数1.4 有理数的乘除法1.4.2 有理数的除法第1课时一、教学目标【知识与技能】掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.【过程与方法】通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.【情感态度与价值观】培养学生勇于探索积极思考的良好学习习惯.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】正确应用法则进行有理数的除法运算.【教学难点】灵活运用有理数除法的两种法则.五、课前准备教师:课件、直尺、倒数图片等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课根据实验测定,高度每增加1km,气温大概下降6℃. 某登山运动员攀登某高峰的途中发回信息,报告他所在高度的温度是-15℃,当时地面气温为3℃. 请问你能确定登山运动员所在的位置高度吗?(出示课件2)(二)探索新知1.师生互动,探究有理数的除法法则(出示课件4)教师问1:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?学生回答:50×20=100.教师问2:放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?学生回答:100 ÷50=20.教师问3:从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?学生回答:有理数除法与有理数乘法互为逆运算.教师问4:引入负数后,如何计算有理数的除法呢?以8÷(-4)为例.(出示课件5)师生共同讨论后解答如下:根据除法意义,这就是要求一个数,使它与-4相乘得8.因为(-2)×(-4)=8所以8÷(-4)=-2 ①另外,我们知道,8×(-14)=-2 ②由①、②得8÷(-4)=8×(-14)③③式表明,一个数除以-4可以转化为乘以-14来进行,即一个数除以-4,℃等于乘以-4的倒数-14.教师问5:对于其他的数是不是也可以呢?请完成下面的题目:(出示课件6)学生回答:中间组由上到下答案依次为:-2,-6,45,-8;右边组由上到下答案依次为:-2,-6,45,-8;教师问6:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则了吗?学生回答:上面各组数计算结果相等,有理数的除法可以转化为乘法进行计算.教师问7:观察下列两组式子,你能找到它们的共同点吗?(出示课件7)学生回答:除以一个数等于乘以它的倒数.教师问8:除数能为0吗?学生回答:不能为0.教师问9:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以1a呢?[例如(-10)÷(-0.4)]学生做题后回答:仍然可以.总结点拨: 从而得出有理数除法法则:(出示课件8)除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:a÷b=a·1b(b≠0), 其中a 、b 表示任意有理数(b≠0)教师问10:利用上面的除法法则计算下列各题.(出示课件9)(1)(–54)÷ (–9); (2)(–27) ÷3;(3)0 ÷ (–7); (4)(–24) ÷(–6).学生回答:(1)6;(2)-9;(3)0;(4)4教师问11:从上面我们能发现商的符号有什么规律?学生回答:同号得正,异号得负.总结点拨:(出示课件10)两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.教师问12:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?(出示课件11)师生共同解答如下:1. 两个法则都可以用来求两个有理数相除.2. 如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1:计算:(出示课件12)(1)(–36) ÷ 9;(2)(-1225)÷(-35) .师生共同解答如下:解:(1)(–36) ÷ 9= –(36×19 )= –4;(2)例2:化简下列各式:(出示课件14)(1) −123 ;(2)−45−12 . 师生共同解答如下:解:(1)(2)例3:计算:(出示课件)(1) (2) 师生共同解答如下:解:(1)原式=12557 ÷5=(125+57)×15=125×15+57×15=25+17=2517点拨:如果有带分数,可以将带分数写成整数部分和分数部分的和,利用分配律进行运算,更加简便.(2)原式=52×85×14= 1点拨:将小数化为分数.总结点拨:1. 有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.2. 乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).(三)课堂练习(出示课件19-22)1. (–21) ÷7的结果是( )A .3B .–3C .13 D. –132. 计算:(–12) ÷ 3=_______.3. 填空:(1)若a ,b 互为相反数,且a ≠ b ,则a b =________;(2)当a < 0时,|a |a =_______;(3)若 a>b ,a b <0,则a ,b 的符号分别是__________. (4)若–3x=12,则x =_____.4.若|2x +6|+|3−y |=0,则x y =_________.5. (1)计算(- 45)÷(- 2) ;(2)计算-0.5÷78×(- 54);(3)计算(-7)÷(- 32)÷(- 75)参考答案:1.B2.-43.(1)-1;(2)-1;(3)a>0,b<0;(4)-44.-1 解析:由题意得,|2x +6|+|3−y |=0,解得x=-3,y=3,所以x y =−33=-1.5.解:(1)原式=45×12=25(2)原式=12×87×54=57(3)原式=-7×23×57=-103(四)课堂小结今天我们学了哪些内容:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.(五)课前预习预习下节课(1.4.2)36页到37页的相关内容。
初一数学难点有理数乘除法在初一数学的学习中,有理数的乘除法是一个重要且具有一定难度的知识点。
对于刚刚踏入初中数学大门的同学们来说,理解和掌握有理数的乘除法运算规则,以及能够熟练、准确地进行运算,是学好数学的关键之一。
首先,我们来了解一下有理数乘法的基本规则。
有理数乘法法则为:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0 相乘,都得 0 。
比如说,计算 2×3,因为 2 和 3 同为正数,所以结果为正,即 2×3= 6 ;再看-2×3 ,因为-2 为负,3 为正,异号相乘得负,所以-2×3 =-6 ;而 2×(-3) 同样异号相乘得负,结果为-6 ;0×5 = 0 。
在进行有理数乘法运算时,需要注意几个要点。
一是要先确定积的符号,再计算绝对值的乘积。
二是多个有理数相乘时,先确定符号,奇数个负因数时积为负,偶数个负因数时积为正。
例如,计算(-2)×(-3)×(-4) ,这里有 3 个负因数,奇数个,所以积为负。
先计算绝对值的乘积:2×3×4 = 24 ,所以最终结果为-24 。
接下来,我们看看有理数除法。
有理数除法法则是:除以一个不等于 0 的数,等于乘这个数的倒数。
例如,计算 6÷(-3) ,就等于 6×(-1/3) ,因为 6×(-1/3) =-2 ,所以 6÷(-3) =-2 。
在做有理数除法运算时,同样要先确定商的符号,再进行绝对值的运算。
有理数的乘除法在实际生活中也有广泛的应用。
比如,在计算温度的变化、商品的价格涨跌、行程中的速度和时间等问题时,都会用到有理数的乘除法。
假设气温从 5℃下降了 8℃,那么现在的温度就是 5 +(-8) =-3℃,这里就用到了有理数的加法和减法。
但如果是说气温每小时下降2℃,经过 3 小时后温度下降了多少,这就需要用到有理数的乘法,即2×3 = 6℃。
“有理数乘除法”重、难点
2009-10-5
一、 有理数的乘法
1. 有理数的乘法法则
○1正×正=正
○2负×负=
正 ○
3正×负=负 ○
4负×正=负 ○
5任何数×0=0. 例1 如果-xyz>0,且x 与z 异号,则y___0.(答案:>)
2. 计算有理数乘法的一般步骤:
○
1确定算式的符号(正或负) ○
2绝对值相乘 例2:21132⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭
211 () ()32
23 32
1
=⨯=⨯=同号为正绝对值相乘 注:如算式中与0相乘,则可直接得0.
3. 几个不是0的数相乘
○
1当负因数的个数为奇数时,积为负; ○
2当负因数的个数为偶数时,积为正; 注:i.几个有理数相乘,有一个因数为0,则积为0.
ii.当因数为小数或带分数时,可先把它都化成假分数,再进行约分。
iii.当因数为负数时,“×”可用“⋅”表示,也可省略不写。
例3 如果五个有理数相乘,积为负数,那么正因数个数是多少个? 分析:因积为负数,则其中的负因数个数为奇数个即:1、3、5,因此正因数的个数为4个或2个或0个。
4. a b a b ⋅=⋅(文字叙述:积的绝对值等于绝对值的积)
例4 3187215⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭
31872153184.721535=-
⨯-⨯-=⨯⨯= 5. 乘积为1的两个数互为倒数,即若ab=1,则a 与b 互为倒数。
○
10没有倒数。
○
2倒数等于本身的数是1±. 例5 若23x -与13
-互为倒数,则x=______.(答案:0) 6. 运算律
○
1乘法交换律:ab=ba ; ○
2乘法结合律:(ab)c=a(bc); ○
3乘法分配律:a(b+c)=ab+ac. 例6 计算
(1) (-125)(-25)(-5)(-2)(-4)(-8);
(2) 457(36)()9612
-⨯-+-; (3) 799(13)8
⨯-; (4) (4)57(4)43-⨯+-⨯;
解:(1)原式=[][][](125)(8)(25)(4)(5)(2)--⋅--⋅--
1000100101000000
=⨯⨯= (2)457(36)((36)(36))9612
=-⨯-+-⨯+-⨯-原式)( 1630217=-+=. (3)1(100)(13)8
=-⨯-原式 1 100(13)()(13)8133 13001298.88
=⨯-+-⨯-=-+=- (4)(4)(5743)(4)100400.=-⨯+=-⨯=-原式
注: 当含有相同因数时,可尝试提出该因数即ax+bx=(a+b)x ,这
样可使运算更加简便。
二、 有理数的除法
1. 有理数除法法则
○
1除以一个不为0的数,等于乘以这个数的倒数。
例7
197(10)(2)879
81771()()8992
49.16
-÷⨯÷-=-⨯⨯⨯-= ○
2两数相除,同号得正,异号得负,并把绝对值相除。
○
30除以任何一个不为0的数都得0. 2. 易错题
○1计算:1(8)33
-÷⨯ 错误:1(8)3(8)183
-÷⨯=-÷=- 正确:1(8)3(8)33723
-÷⨯=-⨯⨯=- ○2计算:23()(2)35
-+÷- 正确一:2424121()(2)()(2)(2)()35353515-+÷-=-÷-+÷-=+-=-. 正确二:2421()(2)()(2)351515
-+÷-=÷-=-. ○3计算:1115()53
÷- 错误:111115()151530.5353
÷-=÷-÷= 正确:1121522515()15()15531522
÷-=÷-=-⨯=-. 3. 讨论分析
若0ab ≠,求a b a b
+的值。
解: ()0,01120,01100,01100,0112a b a b a b
a b a b a b a b a b a b
a b a b a b >>=+=+=-<>=+=-+=-><=+=-=--<<=+=-+-=-当时,原式当时,原式当时,原式当时,原式。