偏导数的物理几何意义
- 格式:docx
- 大小:133.93 KB
- 文档页数:7
偏导数的物理几何意义偏导数是多元函数微分学中的重要概念,它描述了函数在其中一点沿着一些坐标轴的变化率。
在物理学中,偏导数有着重要的几何和物理意义。
以下是偏导数的物理几何意义的详细解释:1.变化率:函数的一阶偏导数描述了函数在其中一点的变化率。
在物理学中,这可以理解为物理量在该点的变化率。
例如,在空间中考虑一个以时间t为参数的三维位置矢量函数r(t)=(x(t),y(t),z(t)),其中x、y和z分别是位置矢量在x、y和z轴的分量。
三个分量的一阶偏导数分别是x的速度、y的速度和z的速度,它们描述了位置矢量在每个轴上的变化率。
2.切线和切平面:二元函数的两个偏导数代表了函数图像上的切线和切平面。
在物理学中,这对于描述曲线和曲面的切线和切平面是非常重要的。
例如,在二维平面上考虑一个函数z=f(x,y),其中x和y是平面上的坐标变量。
函数的偏导数∂z/∂x和∂z/∂y分别表示函数图像上的沿着x轴和y轴方向的切线斜率。
这意味着我们可以借助偏导数来找到函数图像上的切线和切平面,从而描述函数在其中一点的局部行为。
3. 法向量:在多元函数的高阶偏导数中,Hessian矩阵的特征向量对应的特征值具有重要的物理和几何意义。
特别地,Hessian矩阵是一个对称矩阵,它描述了函数图像局部的二次曲率信息。
Hessian矩阵的特征向量对应的特征值是曲面在该点法向量的方向和曲率。
例如,在二维平面上考虑一个函数z = f(x, y),其中x和y是平面上的坐标变量。
Hessian矩阵的特征向量对应的特征值描述了曲面在该点的法向量方向和曲率大小,这对于描述曲面的形态和弯曲性质具有重要作用。
4.极值点:在多元函数中,偏导数可以帮助我们找到函数的极值点。
在物理学中,这对于优化和最优化问题的求解是非常重要的。
例如,考虑一个具有多个变量的能量函数E(x,y,z),其中x、y和z是能量函数的自变量。
函数的偏导数∂E/∂x,∂E/∂y和∂E/∂z可以帮助我们找到能量函数的极小值点,这在工程和科学应用中广泛用于优化问题和最优化算法。
— 1 —
偏导数的几何意义
表示固定面上一点的切线斜率。
偏导数f'x(x0,y0)表示固定面上一点对x 轴的切线斜率;偏导数f'y(x0,y0)表示固定面上一点对y 轴的切线斜率。
高阶偏导数:如果二元函数z=f(x,y)的偏导数f'x(x,y)与f'y(x,y)仍然可导,那么这两个偏导函数的偏导数称为z=f(x,y)的二阶偏导数。
二元函数的二阶偏导数有四个:f"xx ,f"xy ,f"yx ,f"yy 。
注意:
f"xy 与f"yx 的区别在于:前者是先对x 求偏导,然后将所得的偏导函数再对y 求偏导;后者是先对y 求偏导再对x 求偏导。
当f"xy 与f"yx 都连续时,求导的结果与先后次序无关。
在数学中,一个多变量的函数的偏导数,
就是它关于其中一个变量
的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。
偏导数在向量分析和微分几何中是很有用的。
偏微分方程与偏导数的几何意义及其应用偏微分方程(Partial Differential Equations, 简称PDEs)是数学中重要的一个分支,它描述了多元函数的各个方向的变化率,具有广泛的应用于自然科学和工程领域。
本文将探讨偏微分方程和偏导数的几何意义,以及在物理学、流体力学和电动力学等领域的常见应用。
一、偏微分方程的几何意义1. 偏导数的几何意义偏导数描述了函数在某个指定方向上的变化率。
在二元函数中,对于函数f(x, y),f对于x的偏导数(∂f/∂x) 表示函数沿x方向的变化率,而f对于y的偏导数(∂f/∂y) 表示函数沿y方向的变化率。
对于高维函数,类似地,偏导数可以描述函数在各个方向上的变化率。
2. 偏微分方程的几何意义偏微分方程描述了函数在空间中的变化和分布规律。
一些重要的偏微分方程,如热传导方程、抛物线方程、椭圆方程和双曲线方程等,通过描述函数在物理空间中的波动、扩散和稳定性等现象,使我们能够从几何角度更好地理解和分析系统的行为。
二、偏微分方程的应用1. 物理学中的应用偏微分方程在解释和解析物理现象中起到了重要的作用。
例如,波动方程可以描述机械波传播、声波和光波的传播;热传导方程可以用来解释热量在材料中的传递过程;薛定谔方程可以描述量子力学中的微观粒子行为。
通过将物理现象建模成偏微分方程,可以预测和模拟复杂系统的行为,促进科学研究的发展。
2. 流体力学中的应用偏微分方程在流体力学中广泛应用于描述流体的运动和行为。
例如,纳维尔-斯托克斯方程描述了流体的运动和粘度,可以用于解释液体和气体的流动行为;欧拉方程描述了不可压缩流体的流动,可以分析水流和风力等现象。
通过求解这些偏微分方程,我们可以优化设计水力系统、气象预测以及模拟天然和人工湍流等问题。
3. 电动力学中的应用偏微分方程也广泛应用于电动力学问题中。
例如,麦克斯韦方程组描述了电磁感应、电场和磁场之间的相互作用,可以解释电磁波的传播行为和光的传播;泊松方程和拉普拉斯方程描述了电势分布,可以用于解决电场的引力和磁场的保持。
偏导数得几何意义ﻫ实验目得:通过实验加深学生对偏导数定义得理解掌握偏导数得几何意义并从直观上理解二阶混合偏导数相等得条件ﻫ背景知识:一偏导数得定义在研究一元函数时、我们从研究函数得变化率引入了导数概念、对于多元函数同样需要讨论它得变化率、但多元函数得变化量不只一个,因变量与自变量得关系要比一元函数复杂得多、所以我们首先考虑多元函数关于其中一个自变量得变化率,以二元函数= 为例,如果只有自变量变化,而自变量y固定(即瞧作常量),这时它就就是得一元函数,这函数对x 得导数,就称为二元函数z对于得偏导数,即有如下定义定义设函数z= 在点得某一邻域内有定义,当y固定在,而在处有增量时,相应得函数有增量- ,如果(1)存在,则称此极限为函数=在点处对得偏导数,记做, ,,或例如,极限(1)可以表为=类似得,函数z=在点处对得偏导数定义为记做,,或如果函数= 在区域D内每一点( )处对得偏导数都存在,那么这个偏导数就就是得函数,它就称为函数= 对自变量得偏导函数,记做, ,,或类似得,可以定义函数= 对自变量得偏导函数,记做,,,或由偏导数得概念可知,在点处对得偏导数显然就就是偏导函数在点处得函数值,就像一元函数得导函数一样,以后在不至于混淆得地方也把偏导函数简称为偏导数、至于求=得偏导数,并不需要用新得方法,因为这里只有一个自变量在变动,另外一个自变量瞧作就是固定得,所以仍旧就是一元函数得微分法问题,求时,只要把暂时瞧作常量而对求导;求时,则只要把暂时瞧作就是常量,而对求导数、偏导数得概念还可以推广导二元以上得函数,例如三元函数在点()处对得偏导数定义为=其中()就是函数得定义域得内点,它们得求法也仍旧就是一元函数得微分法问题例求得偏导数解= ,=二偏导数得几何意义二元函数= 在点得偏导数得几何意义设为曲面= 上得一点,过点作平面,截此曲面得一曲线,此曲线在平面上得方程为= ,则导数,即偏导数,就就是这曲线在点处得切线对轴得斜率、同样,偏导数得几何意义就是曲面被平面所截得得曲线在点处得切线对得斜率三偏导数得几何意义我们知道,如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续、这就是因为各偏导数存在只能保证点P沿着平行于坐标轴得方向趋于P 时,函数值趋于,但不能保证点P按任何方式趋于P 时,函数值都趋于、例如,函数= ={在点(0,0)对得偏导数为同样有但就是我们在前面得学习中知道这函数在点(0,0)并不连续四二阶混合偏导数设函数= 在区域D内具有偏导数=, =那么在D内,都就是得函数、如果这里两个函数得偏导数也存在,则它们就是函数= 得二阶偏导数,按照对变量求导次序得不同有下列四个二阶偏导数:,,其中第二,第三个偏导数称为混合偏导数例2 设,求, ,,,从例子中,我们瞧到两个二阶混合偏导数相等,即,=我们再瞧用maple作求得图形第一个图形为第二个图形为从图中我们瞧到两个连续得偏导函数,它们就是相等得这不就是偶然得,事实上我们有下述定理定理如果函数=得两个二阶混合偏导数及在区域D里连续,那么在该区域内这两个二阶混合偏导数必定相等换句话说,二阶混合偏导数在连续得条件下与求导得次序无关。
偏导数知识点总结一、偏导数的定义1.1 偏导数的定义在一元函数的导数中,我们知道函数在某一点上的导数是该点上切线的斜率,表示函数的变化速率。
而对于多元函数而言,其变量不再只有一个,而是有多个自变量。
因此,多元函数的变化速率也需要沿着各个自变量方向来进行分析。
这就引出了偏导数的概念。
设函数z=f(x,y)表示一个二元函数,如果z在点(x0,y0)处的偏导数存在,那么这个偏导数就表示函数z在点(x0,y0)处对自变量x或y的变化率。
1.2 偏导数的符号表示一般来说,对于函数z=f(x,y)而言,其偏导数有以下表示方法:∂f/∂x 表示f对x的偏导数∂f/∂y 表示f对y的偏导数其中,∂代表“偏”,表示“对于某一变量的偏导数”。
1.3 偏导数的几何意义对于二元函数z=f(x,y)而言,其偏导数在点(x0,y0)处有着直观的几何意义。
对于∂f/∂x来说,其表示函数z=f(x,y)在点(x0,y0)处,对于x的变化率。
换句话说,就是当x在点(x0,y0)处做微小的增量Δx时,函数z在这一点的斜率。
这也为我们理解偏导数提供了直观的图形化方式。
二、偏导数的计算方法2.1 偏导数的计算步骤在计算偏导数时,需要按照以下步骤进行:(1)首先确定函数的变量和导数所对应的自变量。
(2)对于多元函数z=f(x,y)来说,在计算偏导数时,只需将其他自变量视为常数进行计算。
(3)分别对每一个自变量进行求偏导数,从而得出偏导数的值。
2.2 偏导数的计算规则在计算偏导数时,有以下几个基本的计算规则:(1)常数求导规则:对于常数c,其偏导数为0,即∂c/∂x=0,∂c/∂y=0。
(2)一元函数求导规则:对于多元函数f(x,y)=g(x)h(y),其偏导数可用一元函数求导法则计算。
(3)和差积商的偏导数计算:对于以上引用的复合函数,其偏导数的计算可利用和差积商的法则计算,具体可参考一元函数的求导法则。
(4)高阶偏导数的计算:与一元函数的高阶导数一样,多元函数的高阶偏导数也可以递归地计算,即先求一阶偏导数,然后再计算其偏导数的偏导数,直至得出所求的高阶偏导数。
偏导数的物理几何意义
一偏导数的定义
在研究一元函数时.我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论它的变化率.但多元函数的变化量不只一个,因变量与自变量的关系要比一元函数复杂的
多.所以我们首先考虑多元函数关于其中一个自变量的变化率,以二元函数=
为例,如果只有自变量变化,而自变量y固定(即看作常量),这时它就是的一元函数,这函数对x的导数,就称为二元函数z对于的偏导数,即有如下定义
定义设函数z= 在点的某一邻域内有定义,当y固定在,而在
处有增量时,相应的函数有增量
- ,
如果(1)
存在,则称此极限为函数= 在点处对的偏导数,记做
, , ,或
例如,极限(1)可以表为
=
类似的,函数z= 在点处对的偏导数定义为
记做, , 或
如果函数= 在区域D内每一点( )处对的偏导数都存在,那么这个偏导数就是的函数,它就称为函数= 对自变量的偏导函数,记做
, , ,或
类似的,可以定义函数= 对自变量的偏导函数,记做
, , ,或
由偏导数的概念可知, 在点处对的偏导数显然就是偏
导函数在点处的函数值,就像一元函数的导函数一样,以后在不至于混淆的地方也把偏导函数简称为偏导数.
至于求= 的偏导数,并不需要用新的方法,因为这里只有一个自变量在变动,
另外一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求时,只要把
暂时看作常量而对求导;求时,则只要把暂时看作是常量,而对求导数.
偏导数的概念还可以推广导二元以上的函数,例如三元函数在点
( )处对的偏导数定义为
=
其中( )是函数的定义域的内点,它们的求法也仍旧是一元函数的微分法问题
例求的偏导数
解= ,
=
二偏导数的几何意义
二元函数= 在点的偏导数的几何意义
设为曲面= 上的一点,过点作平面,截此曲面得一曲线,此曲线在平面上的方程为= ,则导数
,即偏导数,就是这曲线在点处的切线对轴的斜率.同样,偏导数的几何意义是曲面被平面所截得的曲线在点处的切线对的斜率
三偏导数的几何意义
我们知道,如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续.这是因为各偏导数存在只能保证点
P沿着平行于坐标轴的方向趋于P 时,函数值趋于,但不能保证点P按任何方式趋于P 时,函数值都趋于.例如,函数
= ={
在点(0,0)对的偏导数为
同样有
但是我们在前面的学习中知道这函数在点(0,0)并不连续
四二阶混合偏导数
设函数= 在区域D内具有偏导数
= , =
那么在D内, 都是的函数.如果这里两个函数的偏导数也存在,则它们是函数= 的二阶偏导数,按照对变量求导次序的不同有下列四个二阶偏导数:
,
,
其中第二,第三个偏导数称为混合偏导数
例2 设,求, , ,
,
从例子中,我们看到两个二阶混合偏导数相等,即, =
我们再看用maple作求的图形
第一个图形为
第二个图形为
从图中我们看到两个连续的偏导函数,它们是相等的
这不是偶然的,事实上我们有下述定理
定理如果函数= 的两个二阶混合偏导数及在区域D里连续,那么在该区域内这两个二阶混合偏导数必定相等
换句话说,二阶混合偏导数在连续的条件下与求导的次序无关。