3 实验九 金属箔式应变片静态性能测试
- 格式:ppt
- 大小:814.50 KB
- 文档页数:20
一、实验目的1. 了解金属箔式应变片的工作原理和结构特点。
2. 掌握金属箔式应变片的安装方法及注意事项。
3. 通过实验验证金属箔式应变片的性能,包括灵敏度、非线性误差、温度系数等。
二、实验原理金属箔式应变片是一种将应变转换为电信号的传感器。
当应变片受到拉伸或压缩时,其电阻值发生变化,从而产生电压信号。
实验中,利用金属箔式应变片组成的电桥电路,通过测量电桥输出电压的变化,来反映应变片受到的应变。
三、实验仪器与材料1. 金属箔式应变片2. 电桥电路3. 稳压电源4. 电压表5. 数字多用表6. 加载装置7. 温度计8. 实验台四、实验步骤1. 将金属箔式应变片安装在实验台上,确保其固定牢固。
2. 将应变片接入电桥电路,连接稳压电源和电压表。
3. 在加载装置上施加一定的力,观察电压表读数的变化。
4. 记录不同加载力下的电压值。
5. 改变加载方向,重复步骤3和4,观察电压值的变化。
6. 测量应变片的温度,记录不同温度下的电压值。
7. 利用数字多用表测量应变片的电阻值。
五、实验结果与分析1. 灵敏度测试根据实验数据,绘制应变片电压值与加载力的关系曲线。
根据曲线斜率,计算应变片的灵敏度。
2. 非线性误差测试根据实验数据,绘制应变片电压值与加载力的关系曲线。
通过曲线拟合,得到线性拟合曲线,计算非线性误差。
3. 温度系数测试根据实验数据,绘制应变片电压值与温度的关系曲线。
通过曲线拟合,得到线性拟合曲线,计算温度系数。
六、实验结论1. 通过实验验证了金属箔式应变片的工作原理和结构特点。
2. 实验结果表明,金属箔式应变片具有较高的灵敏度和较好的线性度。
3. 温度对金属箔式应变片的影响较小,温度系数较小。
七、实验总结本次实验对金属箔式应变片进行了性能测试,了解了其工作原理和结构特点。
通过实验,掌握了金属箔式应变片的安装方法及注意事项。
实验结果表明,金属箔式应变片具有较高的灵敏度和较好的线性度,适用于各种应变测量场合。
箔式应变片性能实验报告箔式应变片是一种常用于测量物体应变的传感器。
它的特点是薄而灵活,可以精确地测量物体在受力作用下的应变情况。
在工程领域和科学研究中,箔式应变片被广泛应用于材料力学性能测试、结构设计优化等方面。
本文将介绍箔式应变片的原理、性能及实验报告。
一、箔式应变片的原理箔式应变片是由金属箔制成的,通常采用铜或铬镍合金。
它的形状呈矩形或网格状,具有一定的弹性和导电性。
当箔式应变片受到外力作用时,其形状发生微小变化,从而导致电阻发生变化。
通过测量电阻的变化,可以间接地得到物体的应变情况。
二、箔式应变片的性能1. 灵敏度高:箔式应变片可以测量非常小的应变量,具有高灵敏度。
这使得它在材料力学性能测试中能够准确地捕捉到微小的变形情况。
2. 精度高:箔式应变片的测量精度非常高,可以达到亚微米级。
这使得它在工程设计和结构优化中成为不可或缺的工具,能够提供准确的应变数据,帮助工程师和科研人员做出合理的决策。
3. 可靠性强:箔式应变片具有良好的稳定性和可靠性。
在长时间使用过程中,其性能基本保持不变,不会因环境变化或疲劳损伤而产生较大误差。
三、箔式应变片的实验报告为了验证箔式应变片的性能,我们进行了一系列实验。
首先,我们选取了一块常见的金属材料作为被测物体,将箔式应变片粘贴在其表面。
然后,通过施加不同的力或加载不同的负荷,使被测物体发生应变。
接下来,我们使用电阻测量仪器对箔式应变片的电阻进行实时监测。
在加载过程中,我们记录了电阻值的变化,并与理论值进行比较。
实验结果显示,箔式应变片能够准确地反映被测物体的应变情况,并且与理论值吻合度较高。
此外,我们还进行了稳定性和可靠性测试。
通过长时间加载和卸载,我们观察到箔式应变片的性能基本保持不变,没有出现明显的漂移或损坏现象。
这表明箔式应变片具有较好的稳定性和可靠性,适用于长期使用。
综上所述,箔式应变片作为一种常用的应变传感器,具有高灵敏度、高精度和强可靠性的特点。
通过实验验证,我们证实了箔式应变片在测量物体应变方面的优秀性能。
1 实验报告姓名: 学号: 班级:实验项目名称:实验一 金属箔式应变片性能——单臂电桥,半桥实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况;:验证单臂、半桥性能及相互之间关系。
实验原理:单臂、半桥、全桥是指在电桥组成工作时,有一个桥臂、二个桥臂、全部四个桥臂(用应变片)阻值都随被测物理量而变化。
电桥的灵敏度:电桥的输出电压(或输出电流)与被测应变在电桥的一个桥臂上引起的电阻变化率之间的比值,称为电桥的灵敏度。
如图是直流电桥,它的四个桥臂由电阻R1、R2、R3、R4组成,U 。
是供桥电压,输出电压为:当R1×R3=R2×R4则输出电压U 为零,电桥处于平衡状态。
如果将R4换成贴在试件上的应变片,应变片随试件的受力变形而变形,引起应变片电阻R4的变化,平衡被破坏,输出电压U 发生变化。
当臂工作时,电桥只有R4桥臂为应变片,电阻变为R +R ,其余各臂仍为固定阻值R,代入上式 有组桥时,R1和R3,R2和R4受力方向一致。
实验步骤(电路图):(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。
(2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。
将差动放大器的输出端与F /V 表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F /V 表显示为零,关闭主、副电源。
(3)根据图1接线R1、R2、R3为电桥单元的固定电阻。
R4为应变片;将稳压电源的切换开关置±4V 档,F /V 表置20V 档。
调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1,使F /V 表显示为零,然后将F /V 表置2V 档,再调电桥W1(慢慢地调),使F /V 表显示为零。
图1金属箔式应变片性能—单臂电桥电路(4)将测微头转动到10mm刻度附近,安装到双平等梁的自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使F/V表显示最小,再旋动测微头,使F/V 表显示为零(细调零),这时的测微头刻度为零位的相应刻度。
《传感器与检测技术》金属箔式应变片性能研究实验报告课程名称:传感器与检测技术实验类型:研究型实验项目名称:金属箔式应变片性能研究一、实验目的和要求1、了解金属箔式应变片,单臂电桥的工作原理和工作情况。
2、了解金属箔式应变片,半桥的工作原理和工作情况。
3、了解金属箔式应变片,全桥的工作原理和工作情况。
4、验证单臂、半桥、全桥的性能及相互之间的关系。
二、实验内容和原理电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应工程结构件的内部变形转化为电阻变化的传感器。
此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的形变,然后由电阻应变片将弹性元件的形变转化为电阻的变化,再通过测量电路将电阻的变化转换成电压或者电流变化信号输出。
它可用于能转化成形变的的各种物理量的检测。
本实验以金属箔式应变片为研究对象。
箔式应变片的基本结构:金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为 0.025mm 左右的金属丝或者金属箔制成,如图所示:金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工作原理相同。
电阻丝在外力的作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。
描述电阻应变效应的关系式为△R/R=Kε。
式中△R/R为电阻丝电阻的相对变化,K 为应变灵敏系数,ε=△L/L 为电阻丝长度相对变化。
为了将电阻应变式传感器的电阻变化转化成电压或者电流信号,在应用中一般采用电桥电路作为测量电路。
电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。
能较好地满足各种应变测量要求,因此在测量应变中得到了广泛的应用。
电路电桥按其工作方式分有单臂、半桥、全桥三种,单臂工作输出信号最小,线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂的四倍,性能最好。
因此,为了得到较大的输出电压一般采用半桥或者全桥工作。
金属箔式应变片单臂、半桥、全桥性能比较一、实验目的:了解金属箔式应变片的应变效应工作原理和性能, 比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L 为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。
电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
对单臂电桥输出电压 Uo= EKε/4。
半桥测量电路中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压U o=EKε/2。
全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。
当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
其桥路输出电压U o=KEε。
三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘砝码。
四、实验步骤:应变传感器实验模板简介:实验模板中的R1、R2、R3、R4 为应变片,没有文字标记的5 个电阻符号下面是空的,其中4 个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。
应变式传感器(电子秤传感器)已装于应变传感器模板上。
传感器中的4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4 和加热器上。
传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。
当传感器托盘支点受压时,R1、R3 阻值增加,R2、R4 阻值减小,可用四位半数显万用表2K 电阻档进行测量判别。
南昌大学物理实验报告课程名称:普通物理实验(3)实验名称:金属箔式应变片传感器性能研究学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1.了解金属箔式应变片的应变效应,掌握单臂电桥工作原理和性能。
2.比较全桥、、半桥与单臂电桥的不同性能、了解其特点。
3.了解全桥测量电路的优点及其在工程测试中的实际应用。
二、实验仪器:应变传感器实验模块、托盘、砝码、、数显电压表、±15V和±4V电源三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。
通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化。
1、单臂电桥实验如图1-1所示,R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥。
其输出电压()1211o R nU E R n ∆≈∙∙+ E 为电桥电源电压,R 为固定电阻值,上式表明单臂电桥输出为非线性,存在着非线性误差2、半桥差动电路如图1-2,不同受力方向的两只应变片接入电桥作为邻边。
图1-2电桥输出灵敏度提高,非线性得到改善,当两只应变片的阻值相同、应变数也相同时,半桥的输出电压为E 为电桥电源电压,上式表明,差动半桥输出与应变片阻值变化率呈线性关系。
3、全桥测量电路如图1-3,受力性质相同的两只应变片接到电桥的对边,不同的接入邻边,当应变片初始值相等,变化量也相等时,其桥路输出:11o R U E R ∆=E 为电桥电源电压,上式表明,全桥输出灵敏度比半桥又提高了一倍。
四、 实验内容:1、单桥性能测试(1)变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用多用表测量判别,R1=R2=R3=R4=350Ω.(2)从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入端Ui短接,输出端U02接数显电压表(选择2V档),调节电位器Rw4,使电压表显示为0V,Rw4的位置确定后不能改动。
实验一金属箔式应变片电桥性能实验一、实验目的:了解金属箔式应变片的应变效应;单臂电桥、半桥、全桥的工作原理和性能比较单臂、半桥、全桥输出时的灵敏度和非线性误差。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。
金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化:对单臂电桥而言,电桥输出电压,U01=EKε/4。
对半桥而言,电桥输出电压,U01=EKε/2。
对全桥而言,电桥输出电压,U01=EKε。
三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V 电源、±4V电源、万用表(自备)。
四、实验步骤:1、根据图(1-1),应变式传感器已装于应变传感器模板上。
传感器中各应变片已接入模板左上方的R1、R2、R3、R4标志端。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。
2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。
3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW4使数显表显示为零。
实验三金属箔式应变片全桥性能实验本实验旨在研究金属箔式应变片全桥性能。
应变片是一种能够测量物体应力和应变的传感器,广泛应用于机械、仪器仪表、建筑结构等领域。
实验操作步骤如下:1. 准备金属箔式应变片全桥电路实验仪器。
该实验仪器包括一个桥式电路主机、一个数据采集器和一台计算机。
2. 将金属箔式应变片粘贴到待测物体的表面,并与待测物体形成一定的接触面积。
应变片需要贴紧,确保不会产生任何空隙。
3. 打开电路主机和数据采集器,并接通电源。
将电路主机的四个端口与应变片的四个引脚连接。
4. 进行桥路平衡操作。
调整电路主机上的平衡旋钮,使电桥两端电压差为零。
5. 施加不同的载荷或应力。
通过增加或减小物体的负载或力度,产生不同程度的应变,以观察应变片测量的电信号变化。
6. 记录采集的电信号数据。
实验过程中,数据采集器将自动记录实验结果,并将数据发送到连接的计算机上。
7. 处理和分析数据。
将采集到的电信号数据导入计算机软件进行处理和分析,得出应变片的精确测量结果。
在实验过程中,需要注意以下几点:1. 应变片的表面必须清洁干燥,以确保应变片与待测物体有良好的接触。
2. 应恰当选择应变片的种类和规格,以适应不同的测量范围和特定应用场合。
3. 在进行实验前,应对电路主机和数据采集器进行检查和调试,确保设备正常运转。
4. 实验过程中应注意安全问题,避免因误操作而引起电击、短路等事故。
总之,金属箔式应变片全桥性能实验是一项重要的测试技术,可以有效地测量物体的应力和应变。
通过本实验,我们可以学习并掌握应变片的工作原理和使用方法,为日后的实际应用提供必要的技术支持。
实验三项目名称:金属箔式应变片——全桥性能实验一、实验目的了解全桥测量电路的原理及优点。
二、基本原理全桥测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值: R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03= KE 。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善。
三、需用器件和单元传感器实验箱(一中应变式传感器实验单元,传感器调理电路挂件、砝码、智能直流电压表(或虚拟直流电压表、±15V电源、±5V电源。
四、实验内容与步骤1.根据图3-1接线,实验方法与实验二相同。
将实验结果填入表3-1;进行灵敏度和非线性误差计算。
图3-1 应变式传感器全桥实验接线图五、实验注意事项1.不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。
2.电桥的电压为±5V,绝不可错接成±15V。
一、实验目的了解全桥测量电路的原理及优点。
二、基本原理全桥测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值: R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KE 。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善。
三、需用器件和单元传感器实验箱(一中应变式传感器实验单元,传感器调理电路挂件、砝码、智能直流电压表(或虚拟直流电压表、±15V 电源、±5V 电源。
四、实验内容与步骤1.根据图3-1接线,实验方法与实验二相同。
将实验结果填入表3-1;进行灵敏度和非线性误差计算。
表3-1全桥输出电压与加负载重量值重量(g 204060 80 100 120 140 160 180 200 电压(mv 16 31 47 63 79 94 110 126 142158050100150200250020406080100120140160180电压(mv重量(g全桥时传感器的特性曲线图3-1 应变式传感器全桥实验接线图五、实验注意事项1.不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。