孔流系数测定数据
- 格式:docx
- 大小:15.95 KB
- 文档页数:1
实验数据记录与整理1.测量并记录实验设备及操作的基本参数。
(1)设备结构参数筛板塔规格:塔的内径d=100mm 筛孔直径d a=2.7mm筛板数目n=91个筛板开孔率ε0=6.6%筛板厚度δ=1.2mm溢流堰高度h w=60mm孔板流量计:锐孔直径d0=10mm管道直径d=26mm孔流系数C0=0.61(2)操作参数:室温T a=22.5℃空气密度=1.195kg.m-3气压P a=101.3 kPa 操作气压P=101.3 kPa2.记录和整理实验数据(1)干板实验塔板型式:CEA-M04实验序号 1 2 3 4 5 空气温度T g/℃入口温度28 31 33 34 30 出口温度24 25 26 27.5 35平均温度26.0 28 29.5 30.75 32.5 空气密度ρg/kg.m-3 1.181 1.173 1.167 1.162 1.155空气流量R d/mmH20V s/m3.s-1155 250 347 474 288 0.00245 0.0031 0.0037 0.0043 0.0034孔气速u a/m.s-1 4.71 6.01 7.10 8.31 6.50 干板压降Δh d/mmH20 5 7 8 10 6 备注:①空气温度取入口温度与出口温度的平均值。
②由于温度/压强-空气密度表中温度均为整数值,因此采取以下公式对密度进行直接计算:错误!未找到引用源。
ρ:在温度t与压力p状态下的干空气密度(kg.m-3)ρ0:0℃,压力为0.1013MPa状态下干空气的密度,ρ0=1.293(kg.m-3)P:绝对压力(MPa)(273+t):热力学温度(K)③孔板流量计体积流量Vs的计算公式:错误!未找到引用源。
式中,C0:流量系数,无因次,通常为0.6~0.7 (本次试验C0=0.61)A0:孔板小孔(锐孔)的截面积(A0=7.85×10-5m2)ρ:待测流体密度ρi:U管压差计指示液密度(ρ水=1×103kg/m3 )④错误!未找到引用源。
固体流态化的流动特性实验一、实验目的1.通过实验观察固定床向流化床转变的过程,及聚式流化床和散式流化床流动特性的差异。
2.测定流化曲线和临界流化速度。
3.验证固定床压降和流化床临界流化速度的计算公式。
4.初步掌握流化床流动特性的实验研究方法,加深对流体经固体颗粒层的流动规律和固体流态化原理的理解。
二、实验原理在化学工业中,经常有流体流经固体颗粒的操作,诸如过滤、吸附、浸取、离子交换以及气固、液固和气液固反应等。
凡涉及这类流固系统的操作,按其中固体颗粒的运动状态,一般将设备分为固定床、移动床和流化床三大类,近年来,流化床设备得到越来越广泛的应用。
固体流态化过程按其特性可分为密相流化和稀相流化。
密相流化床又分为散式流化床和聚式流化床。
一般情况下,气固系统的密相流化床属于聚式流化床,而液固系统密相流化床属于散式流化床。
当流体流经固定床内固体颗粒之间的空隙时,随着流速的增大,流体与固体颗粒之间所产生的阻力也随之增大,床层的压强降则不断升高。
为表达流体流经固定床时的压强降与流速的函数关系,曾提出过多种经验公式。
一种较为常用的公式可以仿照流体流经空管时的压降公式(Moody 公式)列出。
即:22u d H p p m m ρλ⋅⋅=∆(4-1)式中H m ——固定床层的高度,m ;d p ——固体颗粒的直径,m ; u 0——流体的空管速度,m /s ; ρ——流体的密度,kg/m 3; λm ——固定床的摩擦系数。
由固定床向流化床转变时的临界速度u mf ,也可由实验直接测定。
实验测定不同流速下的床层压降,再将实验数据标绘在双对数坐标上,由作图法即可求得临界流化速度,如图4-1所示。
为计算临界流化速度,我们可采用下面这种半理论半经验的公式mms pmf d u εεμρρ-⨯-⨯=1)(15032(4-2) 式中μ——流体的黏度,Pa /s ;d p 一一平均粒径,m ; ρs ——填料密度,kg/m 3; εm ——空隙率。
孔口流量系数一、什么是孔口流量系数?孔口流量系数是指在一定条件下,流经孔口的实际流量与理论流量之间的比值。
它是描述孔口流量特性的一个重要参数,通常用符号Cv表示。
二、孔口流量系数的计算方法孔口流量系数的计算方法有多种,常见的有以下几种: 1. 标准孔口流量系数:当流体的流速为标准流速时,孔口流量系数的值为1。
2. 实际孔口流量系数:当流体的流速不是标准流速时,可以通过实验或理论计算的方法来确定孔口流量系数的值。
三、孔口流量系数的影响因素孔口流量系数受到多种因素的影响,主要包括以下几个方面: 1. 孔口形状:不同形状的孔口对流体的流动产生不同的阻力,从而影响孔口流量系数的大小。
2. 孔口尺寸:孔口的尺寸越大,流体通过孔口的流量越大,孔口流量系数也相应增大。
3. 流体性质:流体的粘度、密度等性质对孔口流量系数有一定的影响。
4. 流体流速:流体的流速越大,孔口流量系数越小。
四、孔口流量系数的应用领域孔口流量系数在工程领域有广泛的应用,主要包括以下几个方面: 1. 流量测量:通过测量孔口流量系数,可以准确地计算流体的流量,用于工业生产中的流量测量和控制。
2. 水利工程:孔口流量系数可以用于设计水利工程中的水流控制设备,如堰闸、水闸等。
3. 石油工程:孔口流量系数在石油工程中的应用较多,可以用于石油井的产能测试和油气储层的评价等。
4. 空气动力学:在航空航天领域,孔口流量系数可以用于飞行器的气动特性分析和设计。
5. 气象学:孔口流量系数可以用于气象观测设备中的气流测量和分析。
五、孔口流量系数的实验方法为了准确地确定孔口流量系数的值,通常需要进行一系列的实验。
常用的实验方法有以下几种: 1. 试验台法:在试验台上设置孔口,通过改变流体流速和孔口尺寸,测量流体的流量和压力差,从而计算出孔口流量系数的值。
2. 标准孔口法:在流体管道中设置标准孔口,通过测量流体的流量和压力差,利用已知的标准孔口流量系数,计算出待测孔口的流量系数。
实 验 报 告Experimentation Report of Taiyuan teachers College系部: 化学系 年级: 大四 课程:化工实验 姓名: 学号: 日期:2012/09/19项目:流量计的流量校正一、实验目的:1.学会流量计的校正方法。
2.通过孔板流量计孔流系数的测定,了解孔流系数的变化规律。
二、实验原理:孔板流量计是最常用的一种利用测定流体的压差来确定流体流量的流量测量仪表。
根据伯努利方程式,管路中流体的流量与压差计读数的关系为:流量计的孔流系数确定以后,就可根据上式,由压差计读数来确定流量。
流量计的校正就是要确定孔板流量计的孔流系数。
影响孔板流量计孔流系数的因素很多,如流动过程的雷诺数、孔口面积与管道面积比、测压方式、孔口形状及加工光洁度、孔板厚度和管壁粗糙度等。
对于测压方式、结构尺寸、加工状况等均已规定的标准孔板,当实验装置确定,m 确定, 测定过程中,用基准流量计测定管路中的流量,用压差计测定孔板前后的压差,即可通ρρρρgRA C p p A C V A b a s )(2)(20000-=-=),(0m R f C e =管道面积孔口面积=m )(0e R f C =过①式求出值。
三、实验装置:1.设备参数:管道直径0.027m,孔板直径0.018m2.实验装置:水泵,U型管压计,孔板流量计,涡轮流量计,调节阀门,水箱四、实验步骤:1.水箱充水至80%。
2.实验开始前,关闭流体出口控制阀门,打开水银压差计上平衡阀。
3.启动循环水泵。
4.分别进行管路系统、引压管、压差计的排气工作,排出可能积存在系统内的空气,以保证数据测定稳定、可靠。
①管路系统排气:打开出口调节阀,让水流动片刻,将管路中的大部分空气排出,然后将出口阀关闭,打开管路出口端上方的排气阀,使管路中的残余空气排出。
②引压管和压差计排气:依次打开并迅速关闭压差计上方的排气阀,反复操作几次,将引压管和压差计内的空气排出。
北京化工大学化工原理实验报告实验名称:离心泵性能测定班级:化实1101学号:2011011499姓名:张旸同组人:黄凤磊、陈文汉、杨波实验日期:2013.11.1一、报告摘要在本次实验中测定泵的特性曲线和管路特性曲线,并且得到本次试验中的孔流系数。
在泵的特性曲线中可以得出H--q曲线是下降的曲线,即随流量q的增大,扬程He逐渐减小;离心泵的轴功率随流量增加而逐渐增加,曲线有上升的特点;当流量为零时,轴功率最小,因此,为便于离心泵的启动和防止动力机超载,启动时,应将出水管路上的闸阀关闭,启动后,再将闸阀逐渐打开,即水泵的闭阀启动;效率曲线为从最高点向两侧下降的变化趋势。
孔流系数C在一定范围内是一定值。
泵的特性曲线与管路特性曲线交点称为该管路上的工作点,转速变小时,H—q曲线变陡,工作点往上移,流量变小;转速变大时,H—q曲线变得平坦,工作点下移,流量变大。
二、实验目的及任务1.了解离心泵的构造,掌握其操作和调节方法。
2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3.熟悉孔板流量计的构造、性能及安装方法。
4.测定孔板流量计的孔流系数。
5.测定管路特性曲线。
三、实验原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。
由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。
另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。
离心泵的理论压头与实际压头(1)泵的扬程HeHe = H压力表+ H真空表+ H式中:H真空表——泵出口的压力,m H2O;,H压力表——泵入口的压力,mH2O;H 0——两测压口间的垂直距离,H= 0.2m 。
北 京 化 工 大 学实 验 报 告课程名称: 化工原理实验 实验日期: 2014年12月10日 班 级:材料1204 姓 名: 曲政 同 组 人: 李乾坤、李子新、张辰阳 学 号 : 2012012481离心泵性能实验一、实验摘要离心泵的性能参数取决于泵的内部结构,叶轮形式和转速。
通过对离心泵内部流体质点运动的理论分析,可得出理论压头和流量的关系。
但实际流体流经泵时,不可避免的造成一定的能量损失.在本实验中,将直接测定其参数间的关系,并绘出离心泵的三条He-q v .Pa-q v 和η-q v 特征曲线。
流量系数Co 的数值只能通过实验求得。
Co 主要取决于管路流动的雷诺数Re 和面积比m 等。
对于测压方式,结构尺寸,加工状况等均以确定的标准孔板,流量系数Co 只与雷诺数Re 有关。
本实验选用水作为实验的研究对象。
关键词:离心泵特性曲线 泵的有效功率和效率 孔流系数C 0二、实验目的及任务1、了解离心泵的构造,掌握其操作和调节方法。
2、测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3、熟悉孔板流量计的构造、性能及安装方法。
4、测定孔板流量计的孔流系数。
5、测定管路特性曲线。
三、实验原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。
由于流体流经泵时可能会产生能量损失,如摩擦损失、环流损失等,因此,实际压头比理论压头小,因此,通常采用实验的方法,直接测定其参数间的关系,并将测绘出的He-q v .Pa-q v 和η-q v 三条曲线称为离心泵的性能曲线。
另外,根据这些曲线也可以求出泵的最佳工作区间,作为选泵的依据。
⑴泵的扬程HeHe=H 压力表+H 真空表+H 0式中 H 压力表------泵出口处的压力,m ; H 真空表------泵入口处的真空度,m ;H 0------压力表和真空表测压口之间的垂直距离,H0=0.2m 。
孔板流量计的测定与计算在孔板流量计的前后端测出压差后可按以下两种方法进行计算;(一)、可按公式计算出瓦斯流量。
计算公式:Q 混=Kb(Δh)1/2δpδT (1)Q 纯= Q 混X式中:Q 混——抽放的瓦斯混合量,m3/min ;Q 纯——抽放的瓦斯纯量,m3/min ;K——实际孔板流量特性系数,计算见(2)式;b——瓦斯浓度校正系数,计算见(3)式;δp——气压校正系数,计算见(4)式;δT——温度校正系数,计算见(5)式;Δh——在孔板前后端所测之压差,mmH2O;X——混合气体中瓦斯浓度,%。
K=189.76a0mD2(2)式中:a0——标准孔板流量系数;m=(d1/D)2m——截面比;D——管道直径,米;d1——孔板直径,米;b=[1/(1-0.00446X)]1/2(3)δp=(P T/760)1/2(4)式中:P T——孔板上风端测得的绝对压力,mmHg;P T=测定当地压力(mmHg)+[该点管内正压(正)或负压(负)(mmH2O)]/13.6760——标准大气压,mmHg;δT=293°/(273°+t°)1/2 (5)式中:t°——瓦斯管内测点温度,℃;293°——标准绝对温度,℃;四寸管路d1=49.50mmD=98.28mm则:m=0.2536 查(表一)得a0=0.6327K=0.3001六寸管路d1=74.68mmD=151.20mm则:m=0.2439 查(表一)得a0=0.6294K=0.6718二)、在计算过程中为加快计算速度,可把公式中的各项数值表格化,查表得出b 、δ p、δT。
瓦斯浓度校正系数b 值表二;0 1 2 3 41.00 1.02 1.04 1.07 1.10 1.13 1.16 1.20 1.24 1.001.021.051.071.101.131.171.211.251.001.021.051.081.101.141.171.211.251.001.031.051.081.111.141.171.221.265 6 7 8 91.0091.0321.0581.0851.1161.1481.1821.2221.261.0111.0351.061.0881.1191.1511.1861.2251.261.011.031.061.091.121.1541.191.2291.271.0011.0401.0661.0951.1251.1581.1941.2341.2781.3281.011.041.061.091.121.1621.1981.2381.281.0211.0451.0711.101.1311.1641.2021.2431.28瓦斯浓度(%)0 10 20 30 40 50 60 70 80 90 100气压校正系数δp值表三;温度校正系数δT值表四;i ..DU25∙4mm、l⅛l L蒲m m d l n l 2∙7m m、m ⅛τ料≡、≡≡ls啡冲 30mmH2O、30% '≡≡x-山Etl 1.01X105Pa ' 咂牙耳ls 0∙07M p a、团弩前岡冲20o c、?耦-田An Q gD]u κ*b *(A h )<2*6p*6τ并、b - b u l b 74并6P BPTHl∙01*10>9∙8*13∙6)607*106>9∙8*13∙6τ232∙6mmHg- 6PU0.556 ⅛→51 - 6TU0.983淫Q8ioHO ∙019*l o 74*30<265566983U O∙06Irn3、minQ游H Q 8io *X H O o 61*30%H O∙0183举例)YD-2 型孔板流量计的应用与计算孔板流量计用以测定瓦斯管路中的瓦斯流量(如下图)。