七上数学期中测试2
- 格式:doc
- 大小:100.00 KB
- 文档页数:6
2023—2024学年人教版七年级上学期数学期中试卷及参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、2022的相反数是()A.B.﹣C.2022D.﹣20222、4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1033、一条东西走向的道路上,小明先向西走3米,记作“﹣3米”,他又向西走了4米,此时小明的位置可记作()A.﹣2米B.+7米C.﹣3米D.﹣7米4、下列去括号,正确的是()A.a﹣(b+c)=a﹣b﹣c B.a+(b﹣c)=a+b+cC.a﹣(b+c)=a﹣b+c D.a﹣(b+c)=a+b﹣c5、已知3x m y2与﹣2x4y n为同类项,则m+n=()A.2B.4C.6D.86、若|x﹣1|+x=1,则x一定满足()A.x<1B.x>1C.x≤1D.x≥17、多项式x|n|﹣(n+2)x+7是关于x的二次三项式,则n的值是()A.2B.﹣2C.2或﹣2D.38、小明同学做一道数学题时,误将求“A﹣B”看成求“A+B”,结果求出的答案是3x2﹣2x+5,已知A=4x2﹣3x﹣6,请你帮助小明同学求出A﹣B应为()A.﹣x2+x+11B.3x2﹣4x﹣17C.5x2﹣4x﹣17D.5x2﹣2x+59、若x=﹣1时,ax5+bx3+cx+1=6,则x=1时,ax5+bx3+cx+1=()A.﹣3B.12C.﹣6D.﹣410、某种产品原价为100元,现因原料提价,因而厂家决定对产品进行提价,有以下两种方案;方案一,第一次提价10%,第二次提价30%;方案二,第一、二次提价均为20%.请问:哪种方案提价多()A.方案一B.方案二C.两种方案一样D.不能确定二、填空题(每小题3分,满分18分)11、比较大小:﹣﹣.12、若a与b互为倒数,m与n互为相反数,则(ab)2013+(m+n)2014的值为.13、已知|a+1|+(b﹣3)2=0,则a b=.14、在数轴上,与表示﹣3的点相距6个单位长度的点所表示的数是.15、若代数式x﹣2y=﹣2,则代数式9+2x﹣4y=.16、用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式表示)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1);(2)×(﹣36).18、先化简,再求值:3(x2﹣xy+y2)﹣2(y2﹣3xy+x2),其中x=﹣2,y=3.19、有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,a﹣c0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.20、某检修小组在东西向的马路上检修线路,从A地出发,需到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):﹣11,﹣9,+18,﹣2,+13,+4,+12,﹣7.(1)通过计算说明:B地在A地的什么方向,与A地相距多远?(2)在行驶过程中,最远处离出发点A地有多远?(3)若每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?21、已知|x|=5,|y|=3.(1)若x﹣y>0,求x+y的值;(2)若xy<0,求|x﹣y|的值;(3)求x﹣y的值.22、已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简:2A﹣3B;(2)若,xy=1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求此时2A﹣3B的值.23、(1)如图1所示,阴影部分由两个直角三角形组成,用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=6,h=4时,S的值.(3)在第(2)问的条件下,增加一个半圆的阴影,如图2所示,求整个阴影部分的面积S1的值.(π取3.14,结果精确到0.1)24、已知(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,其中a5表示的是x5的系数,a4表示的是x4,以此类推.当x=2时,35=25•a5+24•a4+23•a3+22•a2+2•a1+a0.(1)取x=0,则可知a0=.(2)利用特殊值法求﹣a5+a4﹣a3+a2﹣a1+a0的值.(3)探求a4+a2的值.25、如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;点P表示的数是(用含t的代数式表示).(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒后与点Q相距4个单位长度?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请用计算说明,并求出线段MN的长.2023—2024学年人教版七年级上学期数学期中试卷参考答案一、择题(每题只有一个正确选项,每小题3分,满分30分)1—10:DCDAC CBCDB二、填空题(每小题3分,满分18分)11、>12、1 13、-1 14、﹣9或3 15、5 16、(3n+1)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解:(1)0 (2)﹣1118、解:﹣519、解:(1)答案为:>,<,<;(2)﹣2b20、解:(1)B地在A地的东边18千米;(2)最远处离出发点25千米;(3)需补充的油量为9升.21、解:(1)x+y的值为:8或2;(2)|x﹣y|的值为:8;(3)x﹣y=±2或±8.22、解:(1)=7x+7y﹣11xy;当x+y=﹣,xy=1时,2A﹣3B=﹣17;(3).23、解:(1)S=(b﹣a)h=bh﹣;(2)当a=2,b=6,h=4时,S=×6×4﹣×2×4=12﹣4=8;(3)S1=S+×=8+×3.14×1=8+1.57=9.57≈9.6.∴整个阴影部分的面积S1的值为9.6.24、解:故答案为:﹣1;(2)﹣243;(3)﹣120.25、解:(1)答案为:﹣5;7;12;(2)点P所对应的数为﹣1016;(3)﹣17和﹣1别是点P运动了第23次和第8次到达的位置.。
一、选择题1.小王利用计算机设计了一个程序,输入和输出的数据如下表: 输入 (1)2345… 输出…12 25 310 417 526…那么,当输入数据8时,输出的数据是( ) A .861B .863C .865D .8672.下列方程变形正确的是( ) A .由25x +=,得52x =+ B .由23x =,得32x =C .由104x =,得4x = D .由45x =-,得54x =--3.如图,从左面看该几何体得到的形状是( )A .B .C .D .4.如图,线段AB=8cm ,M 为线段AB 的中点,C 为线段MB 上一点,且MC=2cm ,N 为线段AC 的中点,则线段MN 的长为( )A .1B .2C .3D .45.如图,O 是直线AB 上一点,OD 平分∠BOC ,OE 平分∠AOC ,则下列说法错误的是( )A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补D .∠AOE 和∠BOC 互补6.下列运用等式的性质,变形正确的是( )A .若x=y ,则x-5=y+5B .若a=b ,则ac=bcC .若23a bc c =,则2a=3b D .若x=y ,则x y a b= 7.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是( ) A .90元B .72元C .120元D .80元8.已知x =2是关于x 的一元一次方程mx+2=0的解,则m 的值为( ) A .﹣1 B .0 C .1 D .2 9.已知整数01234,,,,,a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+a a a a a a a 以此类推,2019a 的值为( )A .1007-B .1008-C .1009-D .1010-10.如图所示几何体的左视图是( )A .B .C .D .11.将方程247236x x ---=去分母得 ( ) A .2﹣2(2x-4)= - (x-7) B .12﹣2(2x ﹣4)=﹣x ﹣7 C .12﹣4x ﹣8= - (x-7)D .12﹣2(2x ﹣4)= x ﹣712.如果||a a =-,下列成立的是( ) A .0a >B .0a <C .0a ≥D .0a ≤13.有理数a 、b 、c 在数轴上的对应点如图,下列结论中,正确的是( )A .a >c >bB .a >b >cC .a <c <bD .a <b <c14.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( ) A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-15.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④二、填空题16.在-2,0,1,−1这四个数中,最大的有理数是________.17.23-的相反数是______. 18.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=2221-,5=2232-).已知“智慧数”按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2020个“智慧数”是____________.19.如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n 个图案中白色正方形比黑色正方形多________个.(用含n 的代数式表示)20.一个圆柱的底面半径为R cm ,高为8cm ,若它的高不变,将底面半径增加了2cm ,体积相应增加了192πcm.则R=________.21.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.22.把六张形状大小完全相同的小长方形卡片(如图 1)不重叠地放在一个底面为长方形(长为 20cm ,宽为 16cm )的盒子底部(如图 2),盒子底面未被卡片覆盖的部分用阴影表示.则图 2 中两块阴影部分周长的和是_________ .23.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是____. 24.在数轴上与2-所对应的点相距4个单位长度的点表示的数是______. 25.若一个角的余角是其补角的13,则这个角的度数为______. 三、解答题26.在数轴上有点A ,B ,C ,它们表示的数分别为a ,b ,c ,且满足:()24980a b c -+-++=;A ,B ,C 三点同时出发沿数轴向右运动,它们的速度分别为:1A V =(单位/秒),2B V =(单位/秒),3C V =(单位/秒). (1)求a ,b ,c 的值;(2)运动时间t等于多少时,B点与A点、C点的距离相等?27.先化简,再求值 [(xy+2)(xy-2)-2x2y2+4]÷xy,其中x=10,y=-1.28.如图,∠AOB=90°,∠BOC=2∠BOD,OD平分∠AOC,求∠BOD的度数.29.计算:(1)-14+|3-5|-16÷(-2)×1 2 ;(2)6×11 -32⎛⎫⎪⎝⎭-32÷(-12).30.先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15答案 C B B A D B C A D B D D C B B二、填空题16.1【解析】解:∵-2<−1<0<1∴最大的有理数是1故答案为:117.【解析】试题解析:根据只有符号不同的两个数互为相反数可得的相反数是18.【解析】【分析】根据题意观察探索规律知全部智慧数从小到大可按每三个数分一组从第2组开始每组的第一个数都是4的倍数归纳可得第n组的第一个数为4n(n≥2)又因为所以第2020个智慧数是第674组中的第19.4n+3【解析】【分析】利用给出的三个图形寻找规律发现白色正方形个数=总的正方形个数-黑色正方形个数而黑色正方形个数第1个为1第二个为2由此寻找规律总个数只要找到边与黑色正方形个数之间关系即可依此类20.5cm【解析】【分析】分析:表示出增加后的半径算出体积后相减即可得到相应增加的体积据此列出方程并解答详解:依题意得:8π(R+2)2-8πR2=192π解得R=5故R的值为5cm点睛:本题考查了一元21.【解析】寻找规律:不难发现第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星∴第10个图形有11222.64【解析】试题分析:设小长方形的长为xcm宽为ycm根据题意得:20=x+3y则图②中两块阴影部分周长和是:40+2(16-3y)+2(16-x)=40+64-6y-2x=40+64-2(x+3y23.-88【解析】因为互为相反数的两个数表示在数轴上是关于原点对称的两个点到原点的距离相等所以互为相反数的两个数到原点的距离为8故这两个数分别为8和-8故答案为-8824.2或﹣6【解析】解:当该点在﹣2的右边时由题意可知:该点所表示的数为2当该点在﹣2的左边时由题意可知:该点所表示的数为﹣6故答案为2或﹣6点睛:本题考查数轴涉及有理数的加减运算分类讨论的思想25.【解析】【分析】设这个角的度数为x则它的余角为90°-x补角为180°-x再根据题意列出方程求出x的值即可【详解】设这个角的度数为x则它的余角为90°-x补角为180°-x依题意得:90°-x=(1三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.1【解析】解:∵-2<−1<0<1∴最大的有理数是1故答案为:1解析:1【解析】解:∵-2<−1<0<1,∴最大的有理数是1.故答案为:1.17.【解析】试题解析:根据只有符号不同的两个数互为相反数可得的相反数是解析:2 3【解析】试题解析:根据只有符号不同的两个数互为相反数,可得23的相反数是2318.【解析】【分析】根据题意观察探索规律知全部智慧数从小到大可按每三个数分一组从第2组开始每组的第一个数都是4的倍数归纳可得第n组的第一个数为4n(n≥2)又因为所以第2020个智慧数是第674组中的第解析:【解析】【分析】根据题意观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数.归纳可得第n组的第一个数为4n(n≥2),又因为202036731,所以第2020个智慧数是第674组中的第1个数,从而得到4×674=2696【详解】解:观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得第n组的第一个数为4n(n≥2).∵202036731,∴第2020个智慧数是第674组中的第1个数,即为4×674=2696.故答案为:2696.【点睛】本题考查了探索规律的问题,解题的关键是根据题意找出规律,从而得出答案.19.4n+3【解析】【分析】利用给出的三个图形寻找规律发现白色正方形个数=总的正方形个数-黑色正方形个数而黑色正方形个数第1个为1第二个为2由此寻找规律总个数只要找到边与黑色正方形个数之间关系即可依此类解析:4n+3【解析】【分析】利用给出的三个图形寻找规律,发现白色正方形个数=总的正方形个数-黑色正方形个数,而黑色正方形个数第1个为1,第二个为2,由此寻找规律,总个数只要找到边与黑色正方形个数之间关系即可,依此类推,寻找规律.【详解】解:方法一:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3-1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5-2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7-3个,依此类推,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)-n 个,即:白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个,方法二第1个图形白色正方形共8个,黑色1个,白色比黑色多7个,第2个图形比第1个图形白色比黑色又多了4个,即白色比黑色多(7+4)个,第3个图形比第2个图形白色比黑色又多了4个,即白色比黑色多(7+4×2)个,类推,第n个图案中白色正方形比黑色正方形多[7+4(n-1)]个,即(4n+3)个,故第n个图案中白色正方形比黑色正方形多4n+3个.【点睛】本题考查了几何图形的变化规律,是探索型问题,图中的变化规律是解题的关键.20.5cm【解析】【分析】分析:表示出增加后的半径算出体积后相减即可得到相应增加的体积据此列出方程并解答详解:依题意得:8π(R+2)2-8πR2=192π解得R=5故R的值为5cm点睛:本题考查了一元解析:5cm【解析】【分析】分析:表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.详解:依题意得:8π(R+2)2-8πR2=192π,解得R=5.故R的值为5cm.点睛:本题考查了一元一次方程的应用.解题的关键是了解圆柱的体积的计算方法,难度不大.【详解】请在此输入详解!21.【解析】寻找规律:不难发现第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星∴第10个图形有112解析:【解析】寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星.∴第10个图形有112-1=120个小五角星.22.64【解析】试题分析:设小长方形的长为xcm宽为ycm根据题意得:20=x+3y则图②中两块阴影部分周长和是:40+2(16-3y)+2(16-x)=40+64-6y-2x=40+64-2(x+3y解析:64【解析】试题分析:设小长方形的长为xcm,宽为ycm,根据题意得:20=x+3y,则图②中两块阴影部分周长和是:40+2(16-3y)+2(16-x)=40+64-6y-2x=40+64-2(x+3y)=40+64-40=64(cm)考点:代数式的应用.23.-88【解析】因为互为相反数的两个数表示在数轴上是关于原点对称的两个点到原点的距离相等所以互为相反数的两个数到原点的距离为8故这两个数分别为8和-8故答案为-88解析:-8、8【解析】因为互为相反数的两个数表示在数轴上是关于原点对称的,两个点到原点的距离相等,所以互为相反数的两个数到原点的距离为8,故这两个数分别为8和-8.故答案为-8、8.24.2或﹣6【解析】解:当该点在﹣2的右边时由题意可知:该点所表示的数为2当该点在﹣2的左边时由题意可知:该点所表示的数为﹣6故答案为2或﹣6点睛:本题考查数轴涉及有理数的加减运算分类讨论的思想解析:2或﹣6【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6.故答案为2或﹣6.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.25.【解析】【分析】设这个角的度数为x则它的余角为90°-x补角为180°-x再根据题意列出方程求出x的值即可【详解】设这个角的度数为x则它的余角为90°-x补角为180°-x依题意得:90°-x=(1解析:45︒【解析】【分析】设这个角的度数为x,则它的余角为90°-x,补角为180°-x,再根据题意列出方程,求出x的值即可.【详解】设这个角的度数为x,则它的余角为90°-x,补角为180°-x,依题意得:90°-x=13(180°-x),解得x=45°.故答案为:45°.【点睛】本题考查的是余角及补角的定义,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,能根据题意列出关于x的方程是解答此题的关键.三、解答题26.(1)a=4,b=9,c=﹣8;(2)6t=.【解析】【分析】(1)根据非负数的性质可得关于a、b、c的方程,解方程即得答案;(2)先根据数轴上两点间的距离的表示方法得出B点与A点、C点的距离,进而可得关于t的方程,解方程即可求出结果.【详解】解:(1)根据题意,得:a-4=0,b-9=0,c+8=0,解得a=4,b=9,c=﹣8;(2)运动t 秒时,A 、B 、C 三点运动的路程分别为:t 、2t 、3t , 此时,B 点与A 点的距离为:2945t t t -+-=+,B 点与C 点的距离为:()239817t t t -+--=-,由题意,得:517t t +=-,所以517t t +=-,解得:6t =;或()517t t +=--,此时t 的值不存在. 所以当6t =时,B 点与A 点、C 点的距离相等. 【点睛】本题主要考查了数轴上两点间的距离和一元一次方程的知识,属于常考题型,正确理解题意、准确用含t 的关系式表示B 点与A 点、C 点的距离是解题的关键.27.xy -,10.【解析】 【分析】利用去括号、合并同类项和整式的除法运算法则进行化简,然后将x 、y 的值代入即可解答. 【详解】解:[(xy+2)(xy-2)-2x 2y 2+4]÷xy , = [x 2y 2-4-2x 2y 2+4] ÷xy =- x 2y 2 ÷xy=- xy当x=10,y=-1时,- xy=-10×(-1)=10. 【点睛】本题主要考查了整式的混合运算,正确掌握相关运算法则是解答本题的关键.28.∠BOD=22.5°. 【解析】【试题分析】根据两角的等量关系列方程求解即可. 【试题解析】设∠BOD=x ,因为∠AOB=90°,则∠AOD=90°-x , 因为 OD 平分∠AOC ,所以∠D OC=∠AOD=90°-x , 所以∠BOC=∠DOC-∠BOD=90°-2x , 因为∠BOC=2∠BOD ,所以90°-2x=2x ,解得:x =22.5°. 即∠BOD=22.5°.【方法点睛】本题目是一道考查角平分线的题目,在本题中,根据两角的数量关系借助方程解决更简单一些.29.(1)5;(2)-14. 【解析】【分析】 (1)根据有理数运算的运算法则求值即可得出结论;(2)利用乘法分配律及有理数运算的运算法则,即可求出结论.【详解】(1)原式=-1+2+16×12⎛⎫⎪⎝⎭×12 =-1+2+4=5.(2)原式=6×13-6×12+9×112⎛⎫⎪⎝⎭ =2-3+34 =-14. 【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.30.-x 2+y 2,3.【解析】【分析】先将原式去括号,合并同类项化简成2x 2﹣2y 2﹣3x+3y ,再将x ,y 的值代入计算即可.【详解】原式=2x 2﹣2y 2﹣3x 2y 2﹣3x+3x 2y 2+3y=2x 2﹣2y 2﹣3x+3y ,当x=﹣1,y=2时,原式=2﹣8+3+6=3.。
2020-2021学年七年级数学上学期期中测试卷02(华师大版,河南专用)一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.下列各式中,符合代数式书写规则的是( )A .273xB .14a ⨯C .126p -D .2y z ÷【答案】A【解析】A 、符合代数式书写规则.B 、不符合代数式书写规则,应该为14a ;C 、不符合代数式书写规则,应该为136p -; D 、不符合代数式书写规则,应改为2yz;故选:A . 2.如图,数轴上被墨水遮盖的数可能为( )A .1-B . 1.5-C .3-D . 4.2-【答案】C【解析】由数轴上墨迹的位置可知,该数大于4-,且小于2-,因此备选项中,只有选项C 符合题意,故选:C .3.2019年10月1日上午,庆祝中华人民共和国成立70周年在北京天安门广场隆重举行阅兵活动.由人民解放军、武警部队和民兵预备役部队约15000名官兵接受检阅.将15000用科学记数法可表示为( ) A .50.1510⨯ B .41.510⨯C .31510⨯D .215010⨯【答案】B【解析】415000 1.510=⨯,故选:B .4.若代数式23x y -=,则代数式22(2)421x y y x -+-+的值为( )A .7B .13C .19D .25【答案】B【解析】23x y -=,22(2)421x y y x ∴-+-+22(2)2(2)1x y x y =---+ 223231=⨯-⨯+ 1861=-+ 13=.故选:B .5.把算式:(5)(4)(7)(2)---+--+写成省略括号的形式,结果正确的是( )A .5472--+-B .5472+--C .5472-+--D .5472-++-【答案】C【解析】(5)(4)(7)(2)---+--+5472=-+-- 10=-,故选:C .6.检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数.从轻重的角度看,哪个球更接近标准( ) A . 2.5- B .0.8+C . 3.2-D .0.7-【答案】D【解析】通过求4个排球的绝对值得:| 2.5| 2.5-=,|0.8|0.8+=,| 3.2| 3.2-=,|0.7|0.7-=,0.7-的绝对值最小.所以第四个球是最接近标准的球.故选:D .7.|2||1|0a b -++=,则2()a b +等于( )A .1-B .1C .0D .2-【答案】B【解析】|2||1|0a b -++=,20a ∴-=,10b +=, 2a ∴=,1b =-,22()(21)1a b ∴+=-=.故选:B .8.下列运算中正确的是( )A .22a a a +=B .220x y yx -=C .235347y y y +=D .21x x -=【答案】B【解析】A .2a a a +=,故本选项不合题意;B .220x y yx -=,故本选项符合题意;2.3C y 与34y 不是同类项,所以不能合并,故本选项不合题意; .2D x x x -=,故本选项不合题意.故选:B .9.已知无论x ,y 取什么值,多项式22(212)(36)x my nx y -+-+-的值都等于定值18,则m n +等于() A .5 B .5-C .1D .1-【答案】D【解析】22(212)(36)x my nx y -+-+-2221236x my nx y =-+--+2(2)(3)18n x m y =-+--+,无论x ,y 取什么值,多项式22(212)(36)x my nx y -+-+-的值都等于定值18, ∴2030n m -=⎧⎨--=⎩,得32m n =-⎧⎨=⎩,321m n ∴+=-+=-,故选:D . 10.观察下列按一定规律排列的图标:则第2020个图标是( ) A .B .C .D .【答案】D【解析】观察图形发现:每4个图标为一组,20204505÷=,∴第2020个图标是第505组的第4个图标,故选:D .二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.已知在数轴上,位于原点左边的点A 到原点的距离是5,那么点A 所表示的数是 .【答案】5-【解析】根据题意得:A 点表示的数为5-.故答案为:5-. 12.计算:(3)|5|--+-= .【答案】8【解析】(3)|5|358--+-=+=.故答案为:8.13.某网店以a 元一包的价格购进500包太谷饼,加价20%后全部卖出,则可获得利润 元. 【答案】100a【解析】由题意可得,可获得利润为20%500100a a ⨯=(元),故答案为:100a . 14.若关于x ,y 的单项式2m b x y +和单项式2xy 是同类项,则20192020m b +=.【答案】0【解析】由关于x ,y 的单项式2m b x y +和单项式2xy 是同类项,可得21m +=,1b =,解得1m =-,1b =,2019201920192019(1)1110m b ∴+=-+=-+=.故答案为:0.15.若7x y +=,8y z +=,9z x +=,则x y z ++= .【答案】12【解析】7x y +=①,8y z +=②,9z x +=③,∴①+②+③得:789x y y z z x +++++=++,即22224x y z ++=,12x y z ∴++=,故答案为:12.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来.4,12-,2()3--,( 4.5)+-,0,(3)-+解:4的相反数是4-; 12-的相反数是12; 2()3--的相反数是23-;( 4.5)+-的相反数是4.5;0的相反数是0;(3)-+的相反数是3;(6分)(8分)17.(9分)如图所示,其中长方形的长为a ,宽为b .(1)图中阴影部分的面积是多少?(2)你能判断它是单项式或多项式吗?它的次数是多少?解:(1)由图形可知:222113()4228b S ab b ab b πππ=--=-阴影.(6分)(2)是多项式,次数为二次.(9分)18.(9分)已知关于x 、y 的单项式2m ax y 与233m bx y -的和是单项式.(1)求2020(825)m -;(2)已知其和(关于x 、y 的单项式)的系数为2,求2019(233)a b +-的值. 解:(1)关于x 、y 的单项式2m ax y 与233m bx y -的和是单项式; 23m m ∴=-,解得3m =,∴原式2020(8325)1=⨯-=;(6分)(2)根据题意得232a b +=,所以原式2019(23)1=-=-.(9分)19.(9分)“发展脐橙产业,加快脱贫的步伐”.某脐橙种植户新鮮采摘了20筐脐橙,以每筐25千克为标准重量,超过或不足千克数分别用正,负数来表示,记录如下:(1)与标准重量比较,20筐脐橙总计超过或不足多少千克? (2)若脐橙毎千克售价6.5元,则出售这20筐脐橙可获得多少元? 解:(1)由题意得:(3)1(2)4( 1.5)20312 2.588-⨯+-⨯+-⨯+⨯+⨯+⨯= 答:20箱脐橙的总质量比标准质量超过8千克;(6分) (2)由题意得:(25208) 6.53302⨯+⨯=(元),(8分) 答:出售这20筐脐橙可获得3302元.(9分)20.(9分)已知有理数a 、b 、c 在数轴上的位置如图所示:(1)判断正负,用“>”、“ <”或“=”填空:a b + 0,a b - 0,a b c ++ 0; (2)化简:||||||a c a b c a b +-+++-.解:(1)根据数轴可知:01a <<,10b -<<,1c <-,且||||a b <, 则0a b +<,0a b ->,0a b c ++<;故答案为:<,>,<.(3分) (2)||||||a c a b c a b +-+++-a c abc a b =--++++-a =.(9分)21.(10分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式3323323(763)(363103)a a b a b a a b a b a -+---++-写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“65a =,2017b =-”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?解:原式3323323763363103a a b a b a a b a b a =-+++--+3333322(7310)(66)(33)3a a a a b a b a b a b =+-+-++-+ 3=,(7分)则结果与a 、b 的取值无关,故我相信.(9分)22.(10分)如图①,在数轴上有一条线段AB ,点A ,B 表示的数分别是2-和11-.(1)线段AB = .(2)若M 是线段AB 的中点,则点M 在数轴上对应的数为 .(3)若C 为线段AB 上一点,如图②,以点C 为折点,将此数轴向右对折;如图③,点B 落在点A 的右边点B '处,若15AB B C '=',求点C 在数轴上对应的数是多少?解:(1)线段2(11)9AB =---=.(2分) (2)M 是线段AB 的中点,∴点M 在数轴上对应的数为(211)2 6.5--÷=-.(6分)(3)设AB x '=,因为15AB B C '=',则5B C x '=.所以由题意5BC B C x ='=, 所以4AC B C AB x ='-'=,所以9AB AC BC AC B C x =+=+'=, 即99x =,所以1x =,所以由题意4AC =, 又因为点A 表示的数为2-,246--=-,所以点C 在数轴上对应的数为6-.故答案为:9; 6.5-.(10分)23.(11分)对于题目:“已知2210x x --=,求代数式2362020x x -+的值”,采用“整体代入”的方法(换元法),可以比较容易的求出结果.(1)设22x x y -=,则2362020x x -+= (用含y 的代数式表示). (2)根据2210x x --=,得到1y =,所以2362020x x -+的值为 . (3)用“整体代入”的方法(换元法),解决下面问题: 已知150a a +-=,求代数式241a a a-+的值.解:(1)22x x y -=,223620203(2)202032020x x x x y ∴-+=-+=+;故答案为:32020y +;(3分) (2)1y =,2362020320203120202023x x y ∴-+=+=⨯+=;故答案为:2023;(6分)(3)设1a b a +=,则241144a a a b a a -+=-+=-.(9分) 150a a +-=, 50b ∴-=,解得:5b =.∴2414541a a b a-+=-=-=.(11分)。
2024-2025学年人教版(2024)七年级数学上册期中测试卷1.某品牌酸奶外包装上标明“净含量:”.随机抽取四种口味的这种酸奶分别称重如下表.其中,净含量不合格的是()种类原味草莓味香草味巧克力味净含量190195203200A.原味B.草莓味C.香草味D.巧克力味2.的相反数是()A.B.C.D.3.绝对值大于且小于的所有负整数的和为()A.B.C.D.4.下列说法:①若m满足,则;②若,则;③若,则是正数;④若三个有理数a,b,c满足,则,其中正确的是有()个A.1B.2C.3D.45.如图所示的“杨辉三角”告诉了我们展开式的各项系数规律,如:第三行的三个数,恰好对应展开式中各项的系数;第四行的四个数恰好对应的系数.根据数表中前四行的数字所反映的规律计算:()A.B.C.D.6.计算机利用的是二进制数,它共有两个数码0,1.将一个十进制数转化为二进制,只需把该数写出若干个数的和,依次写出1或0即可.如为二进制下的五位数,则十进制1025是二进制下的()A.10位数B.11位数C.12位数D.13位数7.下列各式中,不是代数式的是()A.B.C.D.8.已知,,且,则的值为()A.1B.5C.1或5D.1或9.按下图所示的程序进行计算,若输入的数是4,则输出的数是()A.1B.C.D.10.如图,阶梯图的每个台阶上都标有一个数,数列呈现一定的符号变化规律和绝对值的变化规律,请计算()A.1013B.1011C.0D.以上都不对11.气象台记录了某地一周七天的气温变化情况(如下表).星期一二三四五六日气温变化其中正数表示这天与前一天相比气温上升的温度,负数表示这天与前一天相比气温下降的温度.已知上周日的气温是,根据表中数据,请你判断该地本周最低气温是_____.12.定义一种新运算:对于任意实数、,满足,当,时,的最大值为______.13.已知一个数减去2.4的差的绝对值为0,那么这个数是______.14.若规定运算,则______.15.若,则的值是_________.16.丽丽写了一个三位数,个位上的数是最小的质数,十位上的数是最小的合数,且这个三位数是3的倍数,这个数最大是_________.17.明明用500元去买篮球,每个篮球a元.若他买了6个篮球,还剩_____元;若,买6个篮球还剩_______元.18.如图是一个计算程序,若输入a的值为,则输出的结果________.19.计算:(1);(2)20.先化简,再求值:,其中,.21.已知x是最大的负整数的相反数,a是的倒数,b的绝对值是2,且.求的值.22.已知互为相反数,互为倒数,,求的值.23.将如图所示的长为,宽为,高为的大理石运往某地用以建设革命历史博物馆.(1)求每块大理石的体积;(结果用科学记数法表示)(2)如果一列火车总共运送了块大理石,共约重千克,求每块大理石约重多少千克?(结果用科学记数法表示)24.外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定送餐量超过40单(送一次外卖称为一单)的部分记为“”,低于40单的部分记为“”,如表是该外卖小哥一周的送餐量:星期一二三四五六日选餐量(单位:单)(1)送餐最多的一天比送餐最少的一天多送______单;(2)求该外卖小哥这一周平均每天送餐多少单?(3)外卖小哥每天的工资由底薪40元加上送单补贴构成.送单补贴的方案如下:每天送餐量不超过40单的部分,每单补贴4元;超过40单的部分,每单补贴8元.求该外卖小哥这一周工资收入多少元?25.【阅读理解】整体思想是从问题的整体性质出发,突出对问题的整体结构的分析和改造,把某些式子或图形看成一个整体,进行整体处理.它作为一种思想方法在数学学习中有广泛的应用,因为一些问题按常规不容易求某一个(或多个)未知量时,根据题目的结构特征,把某一组数或某一个代数式看作一个整体,找出整体与局部的联系,从而找到解决问题的新途径.例如,求的值,我们将作为一个整体代入,则原式.【教材原题】如图,若,求长方形A与B的面积差.【尝试应用】当时,代数式的值为m,当时,求代数式的值;(用含m的代数式表示)【拓展应用】A,B两地相距60千米,某日,甲从A地出发前往B地,同时,乙从B地出发前往A地.已知甲每小时行a千米,乙每小时行b千米,经过2小时,甲、乙二人相遇.直接写出甲、乙两人相距20千米的时间.26.【概念学习】定义新运算:求若干个相同的有理数(均不等于)的商的运算叫做除方.比加,等,类比有理数的乘方,我们把写作,读作“的圈次方”,写作,读作“的圈次方”.一般地,把记作:,读作“的圈次方”.特别地,规定:.【初步探究】(1)直接写出计算结果:;;(2)若为任意正整数,下列关于除方的说法中,正确的有;(横线上填写序号)A.任何非零数的圈次方都等于B.任何非零数的圈次方都等于它的倒数C.圈次方等于它本身的数是或D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数E.互为相反数的两个数的圈次方互为相反数F.互为倒数的两个数的圈次方互为倒数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数的圈次方写成幂的形式:;(4)计算:.。
七年级数学期中测试卷(二)(满分:100分)一、选择题(每小题3分,共30分) 1.3-的相反数是( )A .3-B . 13-C .3D .132.下列四个数中,最大的数是( ) A .(2)-+B . 1--C . 2(1)-D . 03.若(2)3x =-⨯,则x 的倒数是( ) A .16-B .16C . 6-D . 64.下列说法中正确的是( )A .近似数0.720有两个有效数字B .近似数3.6万精确到万位C .近似数2.10精确到十分位 D. 近似数35.0810⨯有三个有效数字 5.下列说法:①相反数等于它本身的数只有0;②倒数等于它本身的数只有1;③绝对值等于它本身的数只有0;④平方等于它本身的数只有1;其中错误的有( ) A .1个B .2个C .3个D .4个6.下列各组中,是同类项的是( )A .222x y xy -和B .22x y x z 和 C .24mn nm 和 D .ab abc -和7.化简:()a b a b ++-的结果是( )A.22a b +B.2bC.2aD. 08.下列概念表述正确的是( ) A .单项式ab 的系数是0,次数是2B .224,3,5435a b ab a b ab --+-是多项式的项 C .单项式3232a b -的系数是2-,次数是5 D .12xy -是二次二项式 9.若x x y xy 52,00+<<-则且等于( )A .7xB . 3y -C . 3x -D . 3x 10.多项式2213383x kxy y xy --+-合并同类项后不含xy 项,则k 的值是( ) A .13B .16C .19D .0二、填空题(每小题2分,共20分)11.如果+20%表示增加20%,那么-6%表示__________________12.地球离太阳约有一亿五千万千米,一亿五千万用科学记数法表示为______________ 13.多项式3232578x xy y x y --+按x 的降幂排列为______________________ 14.已知教室里座位的行数是m ,并且座位的行数是每行座位的23,则教室里总共的座位是_______________ 15.32422()93-÷⨯-=_______ 16.已知有理数b 120110a a b -+-=、满足 ,那么ab =________ 17.已知有理数a 、b 在数轴上的位置如图所示,化简a b b a +--的结果是_________18.已知一个两位数M 的个位数字是a ,十位数字是b ,交换这个两位数的十位上的数与个位上的数的位置,所得的新数记为N ,则M -N=_________________ 19.按一定规律排列的一列数依次为111111,,,,,, (2310152635)---按此规律排列下去,这列数中第七个数是______________20.有两组数,第一组:30.25,1,34--,第二组数:430.35,,510--,从这两组数中各取一个数,将它们相乘,那么所有这样的乘积的总和是_____________三.解答题:21.计算(每小题3分,共18分)①(-8)+10+2+(-1) ② )75.1(6.0)2131(215-÷⨯-⨯-③ 322(10)[(4)(13)2]-+---⨯ ④)24()836143()31(322-⨯+++-⨯-⑤)2()35(a b b a a -+-- ⑥)3(2)]25([52222x x x x x x ---++·· ·ba 017题图22.(每小题5分,共10分)先化简,再求值(1)2213[(33)][2(44)]3,3y x xy y x xy x y ----+-==,其中(2)已知11323()2()32m n mn n mn mn m +=-=--+-,,求的值23.(本题6分)甲、乙两家超市以相同的价格出售同样的商品,但为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超过400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x 元(400>x ) (1)用含x 的整式分别表示顾客在两家超市购买所付的费用。
2024-2025学年七年级数学上学期期中卷(长沙)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版2024七年级上册第一至第四章。
5.难度系数:0.75。
一、选择题(本题共10小题,每小题3分,共30分)1.在一组数7-,p ,13-,0.10100100¼(每两个1中依次多一个0)中,有理数的个数是( )A .1B .2C .3D .42.2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国聘行动”.数据“1160万”用科学记数法表示为( )A .81.1610´B .71.1610´C .611.610´D .80.11610´【答案】B【解析】1160万711600000 1.1610==´,故选B .3.手机移动支付给生活带来便捷.如图是王老师某日微信账单的收支明细(正数表示收入,负数表示支出,单位:元),王老师当天微信收支的最终结果是( )A .收入15元B .支出2元C .支出17元D .支出9元【答案】B【解析】15(8)(9)2+-+-=-(元),即张老师当天微信收支的最终结果是支出2元.故选B .4.下列各组数中,相等的一组是( )A .()2--与2--B .21-与()21-C .()32-与32-D .223与223æöç÷èø5.下列说法中,错误的是( )A .数字0是单项式B .22356x y y xy -+是四次三项式C .单项式2223x y p -的系数是23p -D .多项式332x x -+-的常数项是2【答案】D【解析】A 、数字0是单项式,故不符合题意;B 、22356x y y xy -+是四次三项式,故不符合题意;6.下列去括号中,正确的是( )A .()3232x x +-=-+B .()116322a b a b -=-C .()2222x x x x--=--D .()24386a a --=--7.有理数a b 、在数轴上的位置如图所示,则下列各式正确的是( )A .0ab >B .0a b +<C .0a b ->D .0b a ->8.若1x =时,式子39ax bx ++的值为4.则当1x =-时,式子39ax bx ++的值为( )A .14-B .4C .13D .14【答案】D【解析】因为1x =时,式子39ax bx ++的值为4,所以94a b ++=,所以5a b +=-,当1x =-时,39ax bx ++9a b =--+()9a b =-++59=--+()14=.故选D .9.由于受禽流感影响,某市2月份鸡的价格比1月份下降%a ,3月份比2月份下降%b ,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则( )A .()241%%m a b =--B .()241%%m a b =-C .24%%m a b =--D .()()241%1%m a b =--【答案】D【解析】因为2月份鸡的价格比1月份下降%a ,1月份鸡的价格为24元/千克,所以2月份鸡的价格为()241%a -元,因为3月份比2月份下降%b ,所以3月份鸡的价格为()()241%1%a b --元,即()()241%1%m a b =--.故选D .10.如图,长方形ABCD 长为a ,宽为b ,若()123412S S S S ==+,则4S 等于( ),ab=1:2,二、填空题(本题共6小题,每小题3分,共18分)11.在数轴上,A ,B 两点之间的距离是5,若点A 表示的数是2,则点B 表示的数是__________.【答案】−3或7/7或-3【解析】根据数轴的特点分两种情况讨论:①当点B 在点A 的右边时,2+5=7;②当点B 在点A 的左边时,2-5=-3.所以点B 表示的数是-3或7.故答案为:-3或7.12.把3.1415926精确到百分位的近似值为__________.【答案】3.14【解析】把3.1415926精确到百分位的近似值为3.14,故答案为:3.14.1314.某种商品的原价每件a 元,第一次降价打“八折”,第二次降价又减10元.则两次降价后的售价为__________元.【答案】()0.810a -【解析】第一次降价打“八折”为0.8a 元,第二次降价又减10元为()0.810a -元,故答案为:()0.810a -元.15.如果a ,b 满足()2320a b ++-=,那么b a =__________.【答案】916.一个四位正整数n ,各数位上的数字均不为0,若其千位数字比百位数字大2,十位数字比个位数字小3,将n 的千位数字和百位数字去掉后得到一个两位数s ,将n 的十位数字和个位数字去掉后得到一个两位数t ,记()3s tF n +=,若()F n 为整数,则称数n 为“善雅数”,若“善雅数”n 满足101s t ++能被13整除,则n = .……同理可得当4,5,6,7b =时,d 不能为整数,所以2,6b d ==,所以24,33a b c d =+==-=,所以4236n =,故答案为:4236.三、解答题(本题共9小题,共72分,其中第17、18、19题各6分,第20、21题各8分,22、23题各9分,24、25题各10分)17.(6分)计算3125(2)|4|2æöéù´+----¸ç÷ëû.18.(6分)定义一种新的运算“⊕”,规则如下:3a b ab Å=-.(1)142æöÅ-=ç÷èø______;19.(6分)先化简,再求值:()()22222322a b ab a b ab a b -+---,其中2a =,1b =-.【解析】()()22222322a b ab a b ab a b-+---22222423a b ab a b ab a b+=-+--2ab =-,(3分)把2a =,1b =-代入得原式()221212=-´-=-´=-.(6分)20.(8分)如图所示:已知a b c ,,在数轴上的位置(1)化简:a b c b b a+--+-(2)若a 的绝对值的相反数是2b -,-的倒数是它本身,24c =,求()2a b c a b c -++-+-的值.【解析】(1)解:由数轴可得:0c b a <<<,所以0,0,0+>-<-<a b c b b a ,所以原式2a b c b b a a b c =++--+=-+.(4分)(2)因为a 的绝对值的相反数是2b -,-的倒数是它本身,24c =,0c <,所以2,1,2a b c ==-=-,所以2()2224149a b c a b c a b c a b c a b c -++-+-=-++--+=-++=---=-.(8分)21.(8分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克?(2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元/千克收购,按9.5元/千克进行苹果销售,运费及包装费等平均为2.5元/千克,则李军该周销售苹果一共收入多少元?【解析】(1)解:130-(-70)=200(千克)答:李军该周销售苹果最多的一天比最少的一天多200千克.(3分)(2)2000×7+30-50-70+130-20+50+110=14180(千克)答:李军该周实际销售苹果的总量是14180千克.(6分)(3)14180×(9.5-5-2.5)=28360(元).答:李军该周销售苹果一共收入28360元.(8分)22.(9分)如图,学校有一块长方形地皮,计划在白色扇形部分种植花卉,其余阴影部分种草皮.(1)用代数式表示图中阴影部分的面积;(2)当6a =,4b =时,草皮种植费用为6元每单位面积,求草皮的种植费用为多少?(π取3)23.(9分)已知关于x 的整式2332A x ax x =+-+,整式22422B x ax x =+-+,若a 是常数,且3A B -不含x 的一次项.(1)求a 的值;(2)若b 为整数,关于x 的一元一次方程230bx x +-=的解是整数,求5a b +的值.24.(10分)定义:若a+b=2,则称a与b是关于2的平衡数.(1)3与__________是关于2的平衡数,7﹣x与__________是关于2的平衡数.(填一个含x的代数式)(2)若a=x2﹣4x﹣1,b=x2﹣2(x2﹣2x﹣1)+1,判断a与b是否是关于2的平衡数,并说明理由.(3)若c=kx+1,d=x﹣3,且c与d是关于2的平衡数,若x为正整数,求非负整数k的值.【解析】(1)因为2﹣3=﹣1,所以3与﹣1是关于2的平衡数,因为2﹣(7﹣x)=2﹣7+x=x﹣5,所以7﹣x与x﹣5是关于2的平衡数,故答案为:﹣1,x﹣5;(2分)(2)a与b是关于2的平衡数,理由:因为a=x2﹣4x﹣1,b=x2﹣2(x2﹣2x﹣1)+1,所以a+b=(x2﹣4x﹣1)+[x2﹣2(x2﹣2x﹣1)+1]=x2﹣4x﹣1+x2﹣2(x2﹣2x﹣1)+1=x2﹣4x﹣1+x2﹣2x2+4x+2+1=2,所以a与b是关于2的平衡数;(6分)(3)因为c=kx+1,d=x﹣3,且c与d是关于2的平衡数,所以c+d=2,所以kx+1+x﹣3=2,所以(k+1)x=4,因为x为正整数,所以当x =1时,k +1=4,得k =3,当x =2时,k +1=2,得k =1,当x =4时,k +1=1,得k =0,所以非负整数k 的值为0或1或3.(10分)25.(10分)数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为231-=,2与3-的距离可表示为()23--.(1)数轴上表示3和8的两点之间的距离是__________;数轴上表示3-和9-的两点之间的距离是__________;(2)数轴上表示x 和2-的两点A 和B 之间的距离是__________;如果AB 4=,则x 为__________;(3)数a ,b ,c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.(4)当代数式123x x x ++-+-取最小值时,x 的值为__________.【解析】(1)解:835-=,()396---=.故答案为:5,6;(2分)(2)解:数轴上表示x 和4-的两点A 和B 之间的距离是()22x x --=+,24x +=,则24x +=或24x +=,即2x =或6-.故答案为:2x +,2或6-;(4分)(3)解:由数轴可知,0a c +<,0c b +<,0a b ->,则|a c c b a b+-++-()()()a c cb a b =-++++-ac c b a b=--+++-0=;(8分)(4)解:代数式123x x x ++-+-的几何意义是:数轴上表示数x 的点到表示1-,2,3的三点的距离之和,显然只有当2x =时,距离之和才是最小,则123x x x ++-+-取最小值时,x 的值为2;故答案为:2.(10分)。
20232024学年全国初中七年级上数学人教版期中试卷一、选择题(每题2分,共20分)1.下列数中,哪个是整数?A. 3.14B. 5C. 2/3D. 0.252.一个等边三角形的每个内角是多少度?A. 60°B. 90°C. 120°D. 180°3.下列哪个是方程?A. 3x + 5 = 7B. x + y = 5C. 2x 3yD. 4x + 2y = 64.下列哪个数是负数?A. 0B. 3C. 5D. 25.一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?A. 12B. 16C. 24D. 326.下列哪个数是质数?A. 4B. 6C. 7D. 97.下列哪个数是分数?A. 0B. 3C. 5/7D. 88.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?A. 24B. 30C. 32D. 349.下列哪个数是偶数?A. 3B. 5C. 8D. 910.一个正方形的边长是5厘米,它的面积是多少平方厘米?A. 10B. 15C. 20D. 25二、填空题(每题2分,共20分)1.一个等差数列的前三项分别是2,5,8,那么它的第四项是多少?2.一个长方形的长是12厘米,宽是6厘米,它的面积是多少平方厘米?3.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?4.一个正方形的边长是8厘米,它的面积是多少平方厘米?5.一个等差数列的前三项分别是3,7,11,那么它的第四项是多少?6.一个长方形的长是15厘米,宽是5厘米,它的面积是多少平方厘米?7.一个等腰三角形的底边长是8厘米,腰长是10厘米,它的周长是多少厘米?8.一个正方形的边长是7厘米,它的面积是多少平方厘米?9.一个等差数列的前三项分别是1,5,9,那么它的第四项是多少?10.一个长方形的长是10厘米,宽是4厘米,它的面积是多少平方厘米?三、解答题(每题10分,共50分)1.解方程:2x 3 = 72.一个长方形的长是12厘米,宽是5厘米,求它的面积。
2024-2025学年七年级上学期人教版数学期中测试卷1.下列式子:①;②;③;④,计算结果是负数的有()A .②③B .①④C .②④D .①③2.将一组有理数“,,,,,0,,”按正数、负数、整数、分数分类,其中准确且无遗漏的是()A .正数:B .负数:,,,C .整数:,,,D .分数:3.下列结论中正确的是()A .单项式的系数是,次数是4B .单项式的次数是1,没有系数C .多项式是三次三项式D .在,,,中,整式有2个4.如图,未标出原点的数轴上有A ,B ,C ,D ,E ,F 六个点,若相邻两点之间的距离相等,则点D 所表示的数是()A .15B .12C .11D .105.点O ,A ,B ,C 在数轴上的位置如图所示,O 为原点,,.若点C 表示的数为a ,则的长度是()A .B .C .D .6.将两边长分别为a 和b (a >b )的正方形纸片按图1、图2两种方式置于长方形ABCD 中,(图1、图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1上中阴影部分的周长为C 1,图2中阴部分的周长为C 2,则C 1-C 2的值()A .0B .a -bC .2a -2bD .2b -2a7.绝对值大于1.5并且小于3的整数是______.8.小华探究“幻方”时,提出了一个问题:如图,将0,,,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)9.多项式与多项式的和不含关于x的二次项,则a的值是_____.10.如图,在一个长方形中放入三个正方形,从大到小正方形的边长分别为a,b,c,则右上角阴影部分的周长与左下角阴影部分的周长差为_______.11.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“○”的个数为_____个.12.已知:,且.则_________.13.(1)若有理数、满足,,且,求的值;(2)先化简,再求值:,其中,.14.请帮助小华同学找出下列运算过程中出现的错误.解:原式第一步第二步第三步第四步第五步(1)小华同学在第______步开始出现错误;(2)请写出正确的解题过程.15.一建筑物的地面结构与数据如图所示(图中各图形均为长方形或正方形,单位:米).(1)用含,的式子表示地面总面积;(2)图中阴影部分需要铺设地砖,铺地砖每平方米的平均费用为20元,若,,则铺地砖的总费用为多少元?16.某登山队5名队员以大本营为基底,向距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负.行程记录如下(单位:米),,,,,,,,,.(1)它们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在行进中全程均使用了氧气,每人每100米消耗氧气升.求共使用了多少升氧气?17.按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:输入n32﹣……输出答案﹣1……(2)你发现的规律是.(3)用简要过程说明你发现的规律的正确性.18.已知,.(1)当时,求代数式的值;(2)试判断、的大小关系,并说明理由.19.有理数,,,且,(1)如下图,在数轴上将a,b,c三个数填在相应的括号中;(2)用“”或“”或“”填空0,0,0;;(3)化简:.20.已知:A=2x2+ax﹣5y+b,B=bx2﹣x﹣y﹣3.(1)求3A﹣(4A﹣2B)的值;(2)当x取任意数值,A﹣2B的值是一个定值时,求(a+A)﹣(2b+B)的值.21.阅读材料,解决下列问题:【阅读材料】求个相同因数的积的运算叫做乘方,记为.若,,,则叫做以10为底的对数,记作:.如:,此时,4叫做以10为底10000的对数,记作:,(规定.【解决问题】(1)计算:,,,;(2)计算:;【拓展应用】(3)写出与之间的数量关系;(4)猜想的值,并验证.22.下图是2023年10月的月历,观察月历,回答问题:(1)小欢国庆假期外出旅行三天,三天日期之和是12,小欢是星期几出发的?(2)“S型”、“田型”两个阴影图形分别覆盖其中四个方格(可以重叠覆盖),设“S型”阴影覆盖的最小数字为m,四个数字之和为,“田型”阴影覆盖的四个数字之和为.①2023年是建国74周年,的值能否等于74?若能,求m的值;若不能,说明理由;②若,求的值.23.已知数轴上A、两点对应的数分别为、,且满足.(1)求点A、两点对应的有理数是______、______;(2)若点到点A的距离正好是5,求点所表示的数应该是多少?(3)若点所表示的数为9,现有一只电子蚂蚁从点发,以2个单位创秒的速度向左运动,经过多少秒时,到A的距离刚好等于到的离的2倍?(4)若点所表示的数为9,现有一只电子蚂蚁从点山发,以2个单位每秒的速度向右运动,若运动的时间为秒,的值不随时间的变化而改变,求的值.。
人教版七年级上学期期中数学试卷及答案一、选择题(每题3分,共30分)1.﹣2022的倒数是()A.B.2022C.﹣D.﹣20222.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有()个.A.2B.3C.4D.53.2021年是伟大的中国共产党百年华诞,从南陈北李相约建党历经百年沧桑发展到今天已有近9800万党员,其中9800万用科学记数法表示为()A.9.8×103B.98×106C.9.8×107D.0.98×1084.单项式﹣3xy2的系数和次数分别是()A.3、3B.﹣3、3C.3、2D.﹣3、25.下列比较大小正确的是()A.B.C.﹣0.01<﹣1D.6.下列计算正确的是()A.6a﹣5a=1B.a+2a2=3aC.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b7.将正整数1至2022按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2018B.2019C.2040D.20498.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)9.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0B.|b|<|c|C.|a|>|b|D.abc<010.观察下列等式:①32﹣12=2×4②52﹣32=2×8③72﹣52=2×12那么第n(n为正整数)个等式为()A.n2﹣(n﹣2)2=2×(2n﹣2)B.(n+1)2﹣(n﹣1)2=2×2nC.(2n)2﹣(2n﹣2)2=2×(4n﹣2)D.(2n+1)2﹣(2n﹣1)2=2×4n二、填空题(每题3分,共24分)11.绝对值最小的非负整数为.12.用四舍五入法把数2.685精确到0.01约等于.13.若单项式﹣5x2y a与﹣2x b y5的和仍为单项式,则这两个单项式的和为.14.如图,在数轴上,注明了四段范围,若某段内有两个整数,则这段是.15.已知(a﹣3)2+|b﹣2|=0,|m|=|n|,且mn≠0,则的值为16.若|m2﹣5m﹣2|=1,则2m2﹣10m+2022的值为.17.观察等式:2+22=23﹣2:2+22+23=24﹣2;2+22+23+24=25﹣2,…已知按一定规律排列的一组数:250、251、252、…、299、2100,若250=a,则用含a的式子表示这组数的和是.18.对于一个大于1的正整数n进行如下操作:①将n拆分为两个正整数a、b的和,并计算乘积a×b;②对于正整数a、b分别重复此操作,得到另外两个乘积;③重复上述过程,直至不能再拆分为止(即拆分到正整数1);当n=20时,所有的乘积的和为.三、解答题(共66分)19.(16分)计算题:(1)13+(﹣7)﹣(﹣9)+5×(﹣2);(2)(﹣+﹣)÷(﹣);(3)﹣12021﹣(1﹣0.5)××[3﹣(﹣3)3];(4)|﹣3|×÷÷(﹣3)2.20.一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”,求得的结果为9x2﹣2x+7.已知B=x2+3x﹣2,求正确答案.21.在一次食品安检中,抽查某企业10袋奶粉,每袋取出100克,检测每100克奶粉蛋白质含量与规定每100克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100克奶粉含蛋白质为多少?(2)每100克奶粉含蛋白质不少于14克为合格,求合格率为多少?22.已知关于x的整式(|k|﹣3)x3+(k﹣3)x2﹣k.(1)若是二次式,求k2+2k+1的值:(2)若是二项式,求k的值.23.一个正两位数的个位数字是a,十位数字比个位数字大2(1)请列式表示这个两位数,并化简;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新两位数与原两位数的和能被22整除.24.某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:班级1班2班3班4班实际购买量(本)a33c21实际购买量与计划购数量的差值(本)+12b﹣8﹣9(1)直接写出a=,b=,c=(2)根据记录的数据可知4个班实际购书共本(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书售价为30元,请计算这4个班整体购书的最低总花费是多少元?25.已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c.(1)填空:abc0,a+b ac,ab﹣ac0;(填“>”,“=”或“<”).(2)若|a|=2,且点B到点A、C的距离相等.①当b2=16时,求c的值.②求b、c之间的数量关系.③P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,求b的值.参考答案一、选择题(每题3分,共30分)1.﹣2022的倒数是()A.B.2022C.﹣D.﹣2022【分析】根据倒数的定义可得答案.解:﹣2022的倒数是,故选:C.【点评】本题考查了倒数,掌握倒数的定义是解答本题的关键.倒数:乘积是1的两数互为倒数.2.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有()个.A.2B.3C.4D.5【分析】根据相反数的定义,有理数的乘方和绝对值的性质化简,然后根据正数和负数的定义判定即可.解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选:B.【点评】本题考查了正数和负数,主要利用了相反数的定义,有理数的乘方和绝对值的性质.3.2021年是伟大的中国共产党百年华诞,从南陈北李相约建党历经百年沧桑发展到今天已有近9800万党员,其中9800万用科学记数法表示为()A.9.8×103B.98×106C.9.8×107D.0.98×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:9800万=98000000=9.8×107.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.单项式﹣3xy2的系数和次数分别是()A.3、3B.﹣3、3C.3、2D.﹣3、2【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.解:单项式﹣3xy2的系数和次数分别是:﹣3,3.故选:B.【点评】此题主要考查了单项式,正确掌握单项式系数与次数确定方法是解题关键.5.下列比较大小正确的是()A.B.C.﹣0.01<﹣1D.【分析】先化简各数,然后根据正数大于负数,两个负数比较,绝对值大的反而小,即可判断.解:A、﹣|﹣|=﹣,﹣()=,<,故A不符题意,B、﹣(﹣)=,2=,>,故B符合题意,C、0.01<1,故﹣0.01>﹣1,故C不符题意,D、=,=,<,故﹣>﹣,故D不符题意,故选:B.【点评】本题考查了相反数,绝对值,以及有理数的大小比较,准确化简各数是解题的关键.6.下列计算正确的是()A.6a﹣5a=1B.a+2a2=3aC.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b【分析】根据去括号法则和合并同类项法则计算即可求解.解:A.6a﹣5a=a,即A项不合题意,B.a和2a2不是同类项不能合并,即B项不合题意,C.﹣(a﹣b)=﹣a+b,即C项符合题意,D.2(a+b)=2a+2b,即D项不合题意,故选:C.【点评】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.7.将正整数1至2022按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2018B.2019C.2040D.2049【分析】设最小的数为x,则三个数之和为3x+3,再根据最小的数不能等在第7列和第8列得出结论即可.解:设最小的数为x,则三个数之和为3x+3,若3x+3=2018,解得x=,故A选项不符合题意;若3x+3=2019,解得x=672,∵672÷8=84,即672在第8列,故B选项不符合题意,若3x+3=2040,解得x=679,∵679÷8=84……7,即679在第7列,故C选项不符合题意,若3x+3=2049,解得x=682,∵682÷8=85……2,即682在第2列,故D选项符合题意,故选:D.【点评】本题主要考查一元一次方程的应用,熟练根据题中等量关系列方程求解是解题的关键.8.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)【分析】先提价的价格是原价+20,再降价的价格是降价前的1﹣15%,得出此时价格即可.解:根据题意可得:(1﹣15%)(x+20),故选:D.【点评】本题考查了列代数式,解答本题的关键是读懂题意,列出代数式.9.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0B.|b|<|c|C.|a|>|b|D.abc<0【分析】根据数轴和ac<0,b+a<0,可以判断选项中的结论是否成立,从而可以解答本题.解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴如果a=﹣2,b=0,c=2,则b+c>0,故选项A错误;如果a=﹣2,b=﹣1,c=0.9,则|b|>|c|,故选项B错误;如果a=﹣2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选:C.【点评】本题考查数轴,解题的关键是明确数轴的特点,能举出错误选项的反例.10.观察下列等式:①32﹣12=2×4②52﹣32=2×8③72﹣52=2×12那么第n(n为正整数)个等式为()A.n2﹣(n﹣2)2=2×(2n﹣2)B.(n+1)2﹣(n﹣1)2=2×2nC.(2n)2﹣(2n﹣2)2=2×(4n﹣2)D.(2n+1)2﹣(2n﹣1)2=2×4n【分析】①(2×1+1)2﹣(2×1﹣1)2=2×4×1,②(2×2+1)2﹣(2×2﹣1)2=2×4×2,根据以上规律得出即可.解:第n(n为正整数)个等式为(2n+1)2﹣(2n﹣1)2=2×4n,故选:D.【点评】本题考查了幂的乘方与积的乘方、完全平方公式等知识点,能根据已知算式得出规律是解此题的关键.二、填空题(每题3分,共24分)11.绝对值最小的非负整数为0.【分析】根据绝对值的性质得出.解:绝对值最小的非负整数:0;故答案为:0.【点评】本题主要考查绝对值,掌握绝对值的性质是解题关键.12.用四舍五入法把数2.685精确到0.01约等于 2.69.【分析】对千分位上的数字4进行四舍五入即可求解.解:用四舍五入法把数2.685精确到0.01约等于2.69,故答案为:2.69.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若单项式﹣5x2y a与﹣2x b y5的和仍为单项式,则这两个单项式的和为﹣7x2y5.【分析】根据题意可知单项式﹣5x2y a与﹣2x b y5是同类项,由此可求得a、b的值,然后再合并这两个单项式即可.解:∵单项式﹣5x2y a与﹣2x b y5的和仍为单项式,∴b=2,a=5,∴﹣5x2y a+(﹣2x b y5)=﹣5x2y5+(﹣2x2y5)=﹣7x2y5.故答案是:﹣7x2y5.【点评】本题主要考查的是同类项、合并同类项,掌握同类项的定义是解题的关键.14.如图,在数轴上,注明了四段范围,若某段内有两个整数,则这段是②.【分析】根据数轴的意义及其表示数的性质,可确定四段中各包含的整数个数,即可确定正确答案.解:段①﹣2.3~﹣1.1中有整数﹣2;段②﹣1.1~0.1中有整数﹣1和0;段③0.1~1.3中有整数1;段④1.3~2.5中有整数2;∴有两个整数的是段②.故答案为:②【点评】本题考查的是数轴表示数的意义,解答本题关键是能够确定数轴上从左到右所表示的数依次增大.15.已知(a﹣3)2+|b﹣2|=0,|m|=|n|,且mn≠0,则的值为±1【分析】利用非负数的性质,以及绝对值的代数意义确定出各自的值,代入原式计算即可求出值.解:∵(a﹣3)2+|b﹣2|=0,|m|=|n|,且mn≠0,∴a=3,b=2,m=±n,则原式=±1,故答案为:±1【点评】此题考查了分式的值,以及非负数的性质,熟练掌握运算法则是解本题的关键.16.若|m2﹣5m﹣2|=1,则2m2﹣10m+2022的值为2024或2028.【分析】先求出m2﹣5m=3或m2﹣5m=1,分两种情况分别带入原式计算.解:∵|m2﹣5m﹣2|=1,∴m2﹣5m=3或m2﹣5m=1,∴①m2﹣5m=1时,2m2﹣10m+2022=2+2022=2024,②m2﹣5m=3时,2m2﹣10m+2022=2×3+2022=2028,综上所述:2m2﹣10m+2022的值是2024或2008.【点评】本题主要考查了代数式、绝对值,掌握整体代入思想解决问题,绝对值性质的应用是解题关键.17.观察等式:2+22=23﹣2:2+22+23=24﹣2;2+22+23+24=25﹣2,…已知按一定规律排列的一组数:250、251、252、…、299、2100,若250=a,则用含a的式子表示这组数的和是2a2﹣a.【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故答案为:2a2﹣a.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.18.对于一个大于1的正整数n进行如下操作:①将n拆分为两个正整数a、b的和,并计算乘积a×b;②对于正整数a、b分别重复此操作,得到另外两个乘积;③重复上述过程,直至不能再拆分为止(即拆分到正整数1);当n=20时,所有的乘积的和为190.【分析】根据题意的操作过程寻找规律即可求解.解:根据题意,可进行如图操作,当n=20时,所有的乘积的和为:4×16+1×3+1×2×1×1+10×6+3×7+1×2+1×1+2×5+1×1+1×4+2×2+1×1+1×1+1×5+2×3+1×1+1×2+1×1=190.故答案为:190.【点评】本题考查了数字的变化类、有理数的乘法,解决本题的关键是寻找数字的变化规律.三、解答题(共66分)19.(16分)计算题:(1)13+(﹣7)﹣(﹣9)+5×(﹣2);(2)(﹣+﹣)÷(﹣);(3)﹣12021﹣(1﹣0.5)××[3﹣(﹣3)3];(4)|﹣3|×÷÷(﹣3)2.【分析】(1)先算乘法,再算加减法即可;(2)先把除法转化为乘法,然后根据乘法分配律计算即可;(3)先算乘方和括号内的式子,然后计算括号外的乘法,最后算减法即可;(4)先算乘方,再算乘除法即可.解:(1)13+(﹣7)﹣(﹣9)+5×(﹣2)=13+(﹣7)+9+(﹣10)=5;(2)(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣60)=×(﹣60)﹣×(﹣60)+×(﹣60)﹣×(﹣60)=﹣40+6+(﹣10)+24=﹣20;(3)﹣12021﹣(1﹣0.5)××[3﹣(﹣3)3]=﹣1﹣×(3+27)=﹣1﹣×30=﹣1﹣5=﹣6;(4)|﹣3|×÷÷(﹣3)2=××÷9=×××=.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.20.一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”,求得的结果为9x2﹣2x+7.已知B=x2+3x﹣2,求正确答案.【分析】本题考查整式的加减运算灵活运用,要根据题意列出整式,再去括号,然后合并同类项进行运算.【解答】根据题意得A=9x2﹣2x+7﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=(9﹣2)x2﹣(2+6)x+4+7=7x2﹣8x+11.∴2A+B=2(7x2﹣8x+11)+x2+3x﹣2=14x2﹣16x+22+x2+3x﹣2=15x2﹣13x+20.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.根据题中的关系求出A,进一步求得2A+B.21.在一次食品安检中,抽查某企业10袋奶粉,每袋取出100克,检测每100克奶粉蛋白质含量与规定每100克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100克奶粉含蛋白质为多少?(2)每100克奶粉含蛋白质不少于14克为合格,求合格率为多少?【分析】(1)平均每100克奶粉含蛋白质为:标准克数+其余数的平均数,把相关数值代入即可求解;(2)找到合格的奶粉的数目,除以总数目即为所求的合格率.解:(1)+15=14.6(g);(2)其中﹣3,﹣4,﹣5,﹣1.5为不合格,那么合格的有6个,合格率为=60%.【点评】用到的等量关系为:平均数=标准+和标准相比其余数的平均数;合格率等于合格数目与总数目之比.22.已知关于x的整式(|k|﹣3)x3+(k﹣3)x2﹣k.(1)若是二次式,求k2+2k+1的值:(2)若是二项式,求k的值.【分析】(1)由整式为二次式,根据定义得到|k|﹣3=0且k﹣3≠0,求出k的值,再代入计算求出k2+2k+1的值;(2)由整式为二项式,得到①|k|﹣3=0且k﹣3≠0;②k=0;依此即可求解.解:(1)∵关于x的整式是二次式,∴|k|﹣3=0且k﹣3≠0,解得k=﹣3,∴k2+2k+1=9﹣6+1=4;(2)∵关于x的整式是二项式,∴①|k|﹣3=0且k﹣3≠0,解得k=﹣3;②k=0.故k的值是﹣3或0.【点评】此题考查了多项式,关键是熟悉几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.23.一个正两位数的个位数字是a,十位数字比个位数字大2(1)请列式表示这个两位数,并化简;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新两位数与原两位数的和能被22整除.【分析】(1)直接利用十位数的表示方法分析得出答案;(2)直接表示数新的两位数,进而合并同类项得出答案.解:(1)由题意可得:10(a+2)+a=11a+20;(2)由题意可得,新两位数是:10a+a+2=11a+2,故两位数的和是:11a+20+11a+2=22(a+1),故新两位数与原两位数的和能被22整除.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.24.某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:班级1班2班3班4班实际购买量(本)a33c21实际购买量与计划购数量的差值(本)+12b﹣8﹣9(1)直接写出a=42,b=3,c=22(2)根据记录的数据可知4个班实际购书共118本(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书售价为30元,请计算这4个班整体购书的最低总花费是多少元?【分析】根据正负数表示相反意义的量,可用正负数表示各数,根据有理数的加法,可得答案.解:(1)a=21+9+12=42,b=33﹣30=3,c=30﹣8=22,故答案为:42,+3,22;(2)4个班一共购买数量=42+33+22+21=118(本);故答案为:118;(3)如果每次购买15本,则可以购买7次,且最后还剩13本书单独购买,即最低总花费=30×(15﹣2)×7+30×13=3120(元).【点评】本题考查了正数和负数,利用正数和负数表示相反意义的量,利用了有理数的加法运算.25.已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c.(1)填空:abc<0,a+b>ac,ab﹣ac>0;(填“>”,“=”或“<”).(2)若|a|=2,且点B到点A、C的距离相等.①当b2=16时,求c的值.②求b、c之间的数量关系.③P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,求b的值.【分析】(1)根据数轴上的点所在位置即可得结论;(2)①根据数轴上点的位置确定b的取值即可求解;②根据数轴上两个点之间的距离即可得结论;③根据绝对值的意义把算式化简,再根据点P在运动过程中与算式的值保持不变即可求解.解:(1)根据数轴上A、B、C三点的位置,可知a<0<b<c,|a|<|b|<|c|所以abc<0,a+b>ac,ab﹣ac>0.故答案为<,>,>.(2)①∵|a|=2且a<0,∴a=﹣2,∵b2=16且b>0,∴b=4.∵点B到点A,C的距离相等,∴c﹣b=b﹣a∴c﹣4=4﹣(﹣2),∴c=10答:c的值为10.②∵c﹣b=b﹣a,a=﹣2,∴c=2b+2,答:b、c之间的数量关系为c=2b+2.③依题意,得x﹣c<0,x+a>0∴|x﹣c|=c﹣x,|x+a|=x+a∴原式=bx+cx+c﹣x﹣10(x+a)=bx+cx+c﹣x﹣10x﹣10a=(b+c﹣11)x+c﹣10a∵c=2b+2∴原式=(b+2b+2﹣11)x+c﹣10×(﹣2)=(3b﹣9)x+c+20∵当P点在运动过程中,原式的值保持不变,即原式的值与x无关∴3b﹣9=0,∴b=3.答:b的值为3.【点评】本题考查了整式的加减、数轴、绝对值、有理数的乘方,解决本题的关键是综合运用以上知识.。
2015-2016学年辽宁省鞍山市台安县七年级(上)期中数学试卷一、选择题(每小题2分,共16分,请把正确答案填入下面对应表格中)1.下列各数中,绝对值最大的数是( )A.﹣3 B.﹣2 C.0 D.12.下列各式中不是整式的是( )A.3x B.C.D.x﹣3y3.下列各组数中,互为相反数的是( )A.﹣(﹣2)与2 B.(﹣2)2与4 C.|﹣2|与2 D.﹣22与44.若﹣3x2m y3与2x4y n是同类项,则|m﹣n|的值是( )A.0 B.1 C.7 D.﹣15.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边6.下列根据等式基本性质变形正确的是( )A.由﹣x=y,得x=2y B.由3x﹣2=2x+2,得x=4C.由2x﹣3=3x,得x=3 D.由3x﹣5=7,得3x=7﹣57.如图,是李明同学在求阴影部分的面积时,列出的4个式子,其中错误的是( )A.ab+(c﹣a)a B.ac+(b﹣a)a C.ab+ac﹣a2D.bc+ac﹣a28.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程( )A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2 二、填空题(每小题2分,共16分)9.在一条东西走向的跑道上,设向东的方向为正方形,如果小芳向东走了8m,记作“+8m”,那么她向西走了10m,应该记作__________.10.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:__________.11.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞越,将300000用科学记数法表示为__________.12.已知x2+3x+5的值是7,则式子x2+3x﹣2的值为__________.13.若关于x的方程(2a+1)x2+5x b﹣2﹣7=0是一元一次方程,则方程ax+b=0的解是__________.14.若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含二次项,则m的值为__________.15.李明与王伟在玩游戏,游戏的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,其结果是__________.16.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得:=__________.三、解答题(17题10分,18、19题各6分,共22分)17.(1)计算:(﹣4)2×[(﹣)+(﹣)](2)计算:﹣22﹣(1﹣0.5)××[2﹣(﹣4)2].18.化简,求值.已知:(a+2)2+|b﹣3|=0,求(ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.19.解方程:=3x﹣.四、解答题(每小题8分,共24分)20.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重__________千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?21.已知多项式+2xy2﹣4x3+1是六次四项式,单项式26x2n y5+m的次数与该多项式的次数相同,求(﹣m)3+2n的值.22.关于x的方程x﹣2m=﹣3x+4与2﹣m=x的解互为相反数.求m的值.五、23.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.六、列方程解应用题24.假期里,某学校组织部分学生参加社会实践活动,分乘大、小两辆车去农业科技园区体验生活,早晨6点钟出发,计划2小时到达;(1)若大车速度为80km/h,正好可以在规定时间到达,而小车速度为100km/h,如果两车同时到达,那么小车可以晚出发多少分钟?(2)若小车每小时能比大车多行30千米,且大车在规定时间到达,小车要提前30分钟到达,求大、小车速度.(3)若小车与大车同时以相同速度出发,但走了20分钟以后,发现有物品遗忘,小车准备返回取物品,若小车仍想与大车同时在规定时间到达,应提速到原来的多少倍?2015-2016学年辽宁省鞍山市台安县七年级(上)期中数学试卷一、选择题(每小题2分,共16分,请把正确答案填入下面对应表格中)1.下列各数中,绝对值最大的数是( )A.﹣3 B.﹣2 C.0 D.1【考点】绝对值;有理数大小比较.【分析】根据绝对值是实数轴上的点到原点的距离,可得答案.【解答】解:|﹣3|>|﹣2|>|1|>|0|,故选:A.【点评】本题考查了绝对值,绝对值是实数轴上的点到原点的距离.2.下列各式中不是整式的是( )A.3x B.C.D.x﹣3y【考点】整式.【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3x是单项式,是整式,故A不符合题意;B、既不是单项式,又不是多项式,不是整式,故B符合题意;C、是单项式,是整式,故C不符合题意;D、x﹣3y是多项式,是整式,故D不符合题意.故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义.3.下列各组数中,互为相反数的是( )A.﹣(﹣2)与2 B.(﹣2)2与4 C.|﹣2|与2 D.﹣22与4【考点】相反数;有理数的乘方.【分析】利用化简符号法则,绝对值的性质,有理数的乘方,以及只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、﹣(﹣2)=2,不是互为相反数,故本选项错误;B、(﹣2)2=4,不是互为相反数,故本选项错误;C、|﹣2|=2,不是互为相反数,故本选项错误;D、﹣22=﹣4,﹣4与4互为相反数,故本选项正确.故选D.【点评】本题考查了相反数的定义,绝对值的性质,有理数的乘方,是基础题,熟记概念是解题的关键.4.若﹣3x2m y3与2x4y n是同类项,则|m﹣n|的值是( )A.0 B.1 C.7 D.﹣1【考点】同类项.【分析】根据同类项的定义得出2m=4,n=3,求出后代入,即可得出答案.【解答】解:∵﹣3x2m y3与2x4y n是同类项,∴2m=4,n=3,∴m=2,∴|m﹣n|=|2﹣3|=1,故选B.【点评】本题考查了同类项的定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,是同类项.5.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边【考点】实数与数轴.【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选C.【点评】本题考查了实数与数轴,理解绝对值的定义是解题的关键.6.下列根据等式基本性质变形正确的是( )A.由﹣x=y,得x=2y B.由3x﹣2=2x+2,得x=4C.由2x﹣3=3x,得x=3 D.由3x﹣5=7,得3x=7﹣5【考点】等式的性质.【分析】根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质2,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.【解答】解:A、等是左边乘以﹣﹣3,右边乘以3,故A错误;B、等式的两边都加(2﹣2x),得x=4,故B正确;C、等式的两边都减2x,得x=﹣﹣3,故C错误;D、等式的两边都加5,得3x=7+5,故D错误;故选:B.【点评】本题考查了等式的性质,利用了等式的性质1,等式的性质2.7.如图,是李明同学在求阴影部分的面积时,列出的4个式子,其中错误的是( )A.ab+(c﹣a)a B.ac+(b﹣a)a C.ab+ac﹣a2D.bc+ac﹣a2【考点】列代数式.【专题】计算题;整式.【分析】根据图形表示出阴影部分面积,化简得到结果,即可作出判断.【解答】解:根据题意得:阴影部分面积S=ab+a(c﹣a)=ac+a(b﹣a)=ab+ac﹣a2.故选D.【点评】此题考查了列代数式,正确表示出阴影部分面积是解本题的关键.8.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程( )A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2 【考点】由实际问题抽象出一元一次方程.【专题】几何图形问题.【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.二、填空题(每小题2分,共16分)9.在一条东西走向的跑道上,设向东的方向为正方形,如果小芳向东走了8m,记作“+8m”,那么她向西走了10m,应该记作﹣10m.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:正”和“负”相对,所以向东是正,则向西就是负,因而向西运动10m应记作﹣10m.故答案为:﹣10m.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.10.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:练习本每本0.8元,小明买了a本,共付款0.8a元(答案不唯一).【考点】代数式.【专题】开放型.【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a元.【点评】本题考查了代数式的意义,此类问题应结合实际,根据代数式的特点解答.11.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞越,将300000用科学记数法表示为3×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300000用科学记数法表示为:3×105.故答案为:3×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.已知x2+3x+5的值是7,则式子x2+3x﹣2的值为0.【考点】代数式求值.【分析】首先根据已知列出方程x2+3x+5=7,通过移项推出x2+3x=2,通过代入式子即可推出结果为0.【解答】解:∵x2+3x+5=7,∴x2+3x=2,∴x2+3x﹣2=2﹣2=0.故答案为0.【点评】本题主要考查代数式的求值,关键在于根据已知推出x2+3x=2.13.若关于x的方程(2a+1)x2+5x b﹣2﹣7=0是一元一次方程,则方程ax+b=0的解是x=6.【考点】一元一次方程的定义.【分析】根据一元一次方程的定义可知2a+1=0,b﹣2=1,从而得到a、b的值,然后将a、b 的值代入方程ax+b=0求解即可.【解答】解:∵关于x的方程(2a+1)x2+5x b﹣2﹣7=0是一元一次方程,∴2a+1=0,b﹣2=1.解得:a=﹣,b=3.将a=﹣,b=3代入ax+b=0得:﹣x+3=0.解得x=6.故答案为:x=6.【点评】本题主要考查的是一元一次方程的定义,由一元一次方程的定义得到2a+1=0,b﹣2=1是解题的关键.14.若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含二次项,则m的值为4.【考点】整式的加减.【分析】先把两式相加,合并同类项得5x3﹣8x2+2mx2﹣4x+2,不含二次项,即2m﹣8=0,即可得m的值.【解答】解:据题意两多项式相加得:5x3﹣8x2+2mx2﹣4x+2,∵相加后结果不含二次项,∴当2m﹣8=0时不含二次项,即m=4.【点评】本题主要考查整式的加法运算,涉及到二次项的定义知识点.15.李明与王伟在玩游戏,游戏的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你帮忙算一算,其结果是8.【考点】有理数的混合运算.【专题】计算题;新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题意得:原式=2×(﹣5)﹣3×(﹣6)=﹣10+18=8.故答案为:8.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得:=1﹣.【考点】规律型:图形的变化类.【专题】规律型.【分析】由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.【解答】解:=1﹣故答案为:1﹣.【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、解答题(17题10分,18、19题各6分,共22分)17.(1)计算:(﹣4)2×[(﹣)+(﹣)](2)计算:﹣22﹣(1﹣0.5)××[2﹣(﹣4)2].【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式先计算乘方运算,再利用乘法分配律计算即可;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可.【解答】解:(1)原式=16×(﹣﹣)=﹣12﹣10=﹣22;(2)原式=﹣4﹣××(﹣14)=﹣4+=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.化简,求值.已知:(a+2)2+|b﹣3|=0,求(ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:原式=ab2﹣1+7a2b﹣2+2ab2+2﹣2a2b=ab2+5a2b﹣1,∵(a+2)2+|b﹣3|=0,∴a+2=0,b﹣3=0,即a=﹣2,b=3,则原式=﹣42+60﹣1=17.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.解方程:=3x﹣.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得2(2x﹣1)﹣2×6=18x﹣3(x+4),去括号得4x﹣2﹣12=18x﹣3x﹣12,移项得4x﹣18x+3x=2+12﹣12,合并同类项得﹣11x=2,系数化成1得x=﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四、解答题(每小题8分,共24分)20.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重﹣0.5千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【考点】正数和负数.【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案;(2)根据有理数的加法运算,可得答案;(3)根据单价乘以数量等于总价,可得答案.【解答】解:(1)∵|﹣3|>|﹣2.5|>|﹣2|=|2|>|1.5|>|1|>|﹣0.5|,∴﹣0.5的最接近标准.故答案为:﹣0.5千克;(2)由题意,得1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=﹣5.5(千克).答:与标准重量比较,8筐白菜总计不足5.5千克;(3)由题意,得(25×8﹣5.5)×2.6=194.5×2.6=505.7(元).答:出售这8筐白菜可卖505.7元.【点评】本题考查了正数和负数,利用了绝对值的意义,有理数的加法运算.21.已知多项式+2xy2﹣4x3+1是六次四项式,单项式26x2n y5+m的次数与该多项式的次数相同,求(﹣m)3+2n的值.【考点】多项式;单项式.【分析】利用多项式与单项式的次数与系数的确定方法得出关于m与n的等式进而得出答案.【解答】解:由于多项式是六次四项式,所以m+1+2=6,解得:m=3,单项式26x2n y5﹣m应为26x2n y2,由题意可知:2n+2=6,解得:n=2,所以(﹣m)3+2n=(﹣3)3+2×2=﹣23.【点评】此题主要考查了多项式与单项式的次数,正确得出m,n的值是解题关键.22.关于x的方程x﹣2m=﹣3x+4与2﹣m=x的解互为相反数.求m的值.【考点】一元一次方程的解.【专题】计算题.【分析】将m看做已知数分别表示出两方程的解,根据互为相反数两数之和为0列出关于m的方程,求出方程的解即可得到m的值.【解答】解:x﹣2m=﹣3x+4,移项合并得:4x=2m+4,解得:x=m+1,根据题意得:m+1+2﹣m=0,解得:m=6.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.五、23.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.【考点】有理数的除法.【分析】(1)根据倒数的定义可知:()与()互为倒数;(2)利用乘法的分配律可求得()的值;(3)根据倒数的定义求解即可;(4)最后利用加法法则求解即可.【解答】解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.()=()×36=9+3﹣14﹣1=﹣3;(3)因为前后两部分互为倒数,所以()=﹣;(4)根据以上分析,可知原式==﹣3.【点评】本题主要考查的是有理数的乘除运算,发现()与()互为倒数是解题的关键.六、列方程解应用题24.假期里,某学校组织部分学生参加社会实践活动,分乘大、小两辆车去农业科技园区体验生活,早晨6点钟出发,计划2小时到达;(1)若大车速度为80km/h,正好可以在规定时间到达,而小车速度为100km/h,如果两车同时到达,那么小车可以晚出发多少分钟?(2)若小车每小时能比大车多行30千米,且大车在规定时间到达,小车要提前30分钟到达,求大、小车速度.(3)若小车与大车同时以相同速度出发,但走了20分钟以后,发现有物品遗忘,小车准备返回取物品,若小车仍想与大车同时在规定时间到达,应提速到原来的多少倍?【考点】一元一次方程的应用.【专题】应用题.【分析】(1)计算出小车需要的时间,然后可得出可以晚出发的时间;(2)设大车速度为每小时x千米,则小车速度为每小时(x+30)千米,根据小车要提前30分钟到达,可得出方程,解出即可.(3)设原速度为a,小车提速到原来的m倍,根据仍按时到达可得出方程,解出即可.【解答】解:(1)总路程=80×2=160km,小车需要的时间为:=1.6(小时),故小车可以晚出发0.4小时,即24分钟,(2)设大车速度为每小时x千米,则2x=1.5(x+30),解得x=90,即大车速度为每小时90千米,小车速度为每小时120千米.(3)设原速度为a,小车提速到原来的m倍,根据题意得:a+2a=(2﹣)ma,解得:m=1.4,答:应提速到原来的1.4倍.【点评】本题考查了一元一次方程的应用,属于行程问题,解答本题的关键是仔细审题,找到等量关系,利用方程思想解答.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………………密………………………………….封……………………….线…………………………………………………………………………..5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
一、选择题(有且只有一个正确,每小题3分,共24分) 1、下面几何体中,截面图形不可能是圆的是( )
A.圆柱
B.圆锥
C.球
D.正方体
2、将正方体展开后,不能得到的展开图是(
)
A
B
C
D
3、下列各题中计算结果正确的是(
)
A 、2x+3y=5xy
B 、3.5ab-7
2
ab =0
C 、2245a b ab ab -=-
D 、2x x +=3x
4、下列各组代数式中,属于同类项的是(
)
A.4ab 与4abc
B.-mn 与mn 2
3
C.b a 232与232ab
D.y x 2与2x
5、下列题中,正确的是( )
A 、倒数等于本身的数只有1;
B 、平方等于本身的数有+1,0,-1;
C 、相反数等于本身的数只有0;
D 、绝对值等于本身的数只有0和1。
6、绝对值小于3的整数有 个。
( )
A 、7
B 、6
C 、5
D 、2
7、一个长方形的周长为30,若它的一边长用字母x 表示,则此长方形的面积为
( )
A 、x(15-x)
B 、x(30-x)
C 、x(30-2x)
D 、x(15+x)
8、已知a =4,b 是1
3
-的倒数,且a<b,则a+b 等于(
)
A 、-7
B 、7或-1
C 、-7或1
D 、1
二、填空(每题2分,共26分)
1、如果把秦淮河的水位比警戒水位高0.1米记作+0.1米,那么比警戒水位
低0.2米记作_______米。
2、圆柱的主视图是长方形,左视图是________形,俯视图是______形。
3、-3的绝对值是______ ,-3的倒数是____ 。
4、某日傍晚,南京的气温由上午的零上5℃下降了7℃,这天傍晚南京的气温 是 ___℃。
5、数轴上,与表示-2的点的距离为2的点所表示的数为_______。
6、比较下列数的大小:
① 0 _____ -0.5 ②34-
____45
- 7、若要使得图中平面展开图折叠成正方体后,相对面上的数互为相反数,则图中a=____,b=_____。
8、代数式232
3ab c -的系数是________ 。
9、数a 的1
8
与这个数的平方的和可以用代数式表示为__________。
10、举一个实例,使问题中的数量关系可用代数式1
32
a b +表示:
____________________________________________________________________。
11、观察下列这组数的规律,在括号内填写一个恰当的数:
12345
,,,,,2481632
--( )。
b
a
-32-1
12、用计算器计算:31
93 3.52
⨯+=________。
13若321
3
n x y -和145m x y - 是同类项,则m n =________。
三、计算、化简题(写出必要的演算过程,每题4分,共24分)
1、 23-17-(-7)+(-16);
2、315(24)()468
-⨯-+-;
3、2
9)43(212÷⨯-;
4、2
25
142(1.6)()(1)25
-⨯--÷---;
5、 a+(4a-3b)-(a- 2b);
6、先化简,再求值 .
2(xy 2+3y 3-x 2y )-(-2x 2y+y 3+xy 2 )-4y 3,其中x=2,y=-3 .
四、解答题(共26分)
1、画出下图(由7个相同的小正方体搭成的几何体)的主视图、左视图和俯视图。
(6分)
2、在数轴上标出表示下列各数的点,并把它们用“<”连接起来。
(6分)
1
4.5,,3,(1)2
--+
--- 。
3、 下图是一个数值转换机示意图,请按要求在括号内填写转换步骤,在表格中
填写数值。
(5分)
输入a
( ) ( )
( )
输出
2
1
3-a 4、由相同的梯形拼成如下图形,请观察图形并填表:(5分)
1
2
1
1
如果图形的周长为2003,那么这时拼成这个图形的梯形个数n=__________.
5、你会玩“二十四点”游戏吗?(4分)
请你在‘2,-3,4,-5,6’五个数中,任选四个数利用有理数的混合运算,使四个数的运算结果为24(每个数只能用一次).写出你的算式(至少写两个)
附加题(3’×2+4’ =10’ )
1、数a的任意正奇数次幂都等于a的相反数,则()
A、a=0
B、a=-1
C、a=1
D、不存在这样的a值。
2、有三个正整数a、b、c,其中a与b互质,b与c互质,给出下面四个判断:
⑴(a+c)2不能被b 整除;⑵ a2+c2不能被b整除;
⑶(a+b)2不能被c整除;⑷ a2+b2不能被c整除。
其中,不正确的判断有()
A、4个
B、3个
C、2个
D、1个
3、如图,长方体的每个面上都写着一个自然数,并且相对两个面所写两数之和相等。
若10的对面写的是质数a ,12的对面写的是质数b ,15的对面写的是质数c,求a2+b2+c2-ab-ac-bc是多少?
10
12
15。