回参考点
- 格式:doc
- 大小:177.50 KB
- 文档页数:10
数控机床回参考点的故障分析和排除数控机床参考点又名原点或零点,是机床的机械原点和电气原点相重合的点,是原点复归后机械上固定的点。
机床参考点确立后,各工件坐标系随之确立,即参考点为工件坐标系的原始参照系。
文章通过对数控机床回参考点的确立,并结合回参考点的故障维修实例,从而归纳总结出回参考的故障排除方法。
标签:数控机床;参考点;测量反馈元件1 参考点的确立数控系统按检测反馈元件测量方式的不同分为绝对脉冲编码器方式和增量脉冲编码器方式两种。
数控系统反馈元件采用绝对脉冲编码器,坐标值实际位置是靠位置检测装置的电池来维持,因此系统断电后,绝对脉冲编码器会记住当前位置。
在数控机床正常使用过程中,只要保证绝对脉冲编码器的后备电池有效,机床开机就不需要再进行回参考点操作。
而采用增量脉冲编码器的数控系统,系统断电后,工件坐标系的坐标值就会消失,因此机床每次开机后都必须先进行回参考点操作,通过参考点来确定机床的坐标原点,从而建立正确的机床坐标系。
除此之外,机床在按下急停开关及机床出现故障并修复后都需要进行一次手动回参考点的操作。
数控机床各轴回参考点的运动中,各轴的运动速度是在机床参数中设定的,并且数控系统是通过PLC的程序编制和数控系统的参数设定决定的,因此,数控机床各轴回参考点是通过PLC和数控系统配合完成的。
2 数控机床回参考点的故障维修实例下面介绍几个第一重型机械集团公司的数控机床回参考点的故障维修实例:例1军工分厂一台型号为TK6516数控铣镗床,数控系统为SIEMENS840D,Y轴出现回参考点位置的准确性差的故障,从而影响加工精度的故障。
维修人员首先检查该机床Y轴测量编码器的+5V电压是正常的,并且该轴在手动方式下能正常工作,回参考点的动作过程也正常,再检查参考点减速速度参数MD34040、位置环增益参数MD32200设置也都正确。
分析可能是由于编码器“零脉冲”受到干扰而引起的此故障,再经过仔细检查该故障轴后,发现该轴编码器的连接电缆的屏蔽线脱落,重新连接脱落的屏蔽线后,该故障轴回参考点位置准确,机床加工精度恢复。
作者简介:吕宝垒(1978-),男,主要从事数控机床的客户培训工作、培训与认证部经理。
2007年获辽宁省科技进步二等奖,2009年获辽宁省百千万人才工程千人层级。
收稿日期:2023-06-28数控机床在装备制造行业中的应用越来越普及,与此同时随着数控设备使用年限的增长,数控机床维修维护的任务也越来越重。
数控机床中光栅尺和电机编码器是最重要的测量系统,如果更换了光栅尺或编码器则就需要对机床的参考点进行重新设定;此外由于数控系统崩溃、系统数据丢失等也需要对机床的参考点重新设定。
实际工作中由于参考点与机床原点有部分重合因此很容易把机床原点和机床参考点混淆在一起,分不清二者之间的区别和联系,有的甚至把它们称之为同一个点,准确理解机床原点和参考点的概念,把握二者之间的区别和联系有利于我们在实际工作中快速排查故障、高效解决此类问题。
1 机床原点及机床坐标系机床原点也称之为机床零点,它是机床坐标系的零点,该点在机床设计之初就确立好了,可以说它是机床各尺寸的设计基准,它的位置是固定不变的也不能被移动。
在机床控制面板上显示的机床各轴的坐标位置就是基于该机床坐标系通过光栅尺等测量系统测得的。
因此,机床原点具有绝对性和唯一性。
基于此在安装调试和维修数控机床时都是采用机床坐标系下的坐标值而不采用工件坐标系下的坐标值。
如图1,机床坐标系是因设计基准而产生的,因此,它在实际机床上是既看不见也不容易测量到的。
在安数控机床原点、参考点、工件零点的区别和联系吕宝垒(格劳博机床(中国)有限公司,辽宁 大连 116600)摘要:机床原点和参考点是定义数控机床运动的两个重要的概念,二者既有区别又有联系。
机床原点也就是机床坐标系的零点是数控机床进行位置测量、控制、显示的统一基准。
本文从新的视角定义了数控机床参考点的概念,概述了参考点在数控机床中的作用以及在什么条件下需要重新设定参考点。
结合实际工作中设定数控机床X、Y、Z 轴参考点的操作方法,通过总结其内在原理进一步阐明了参考点的特性。
数控回参考点操作方法
数控回参考点是指机床在进行数控加工时,通过一系列操作将工件返回到参考点的位置。
具体的操作方法如下:
1. 在程序中设置回参考点的位置。
在数控加工程序中,一般会有一个回参考点的指令,用来设置机床需要返回的位置坐标。
2. 运行数控加工程序。
启动机床的数控系统,加载并运行数控加工程序。
3. 开始加工。
在加工过程中,机床会按照程序中的指令进行相应的加工操作,直至加工完成。
4. 回参考点操作。
当加工完成后,机床会执行回参考点操作,其中包括以下步骤:
- 解除工件夹持。
机床将松开工件的夹持装置,使得工件可以自由移动。
- 移动到回参考点位置。
机床会按照程序中设置的回参考点位置坐标,使得工件返回到参考点的位置上。
- 确认位置。
机床会通过传感器等方式检测工件是否准确到达参考点的位置,以确保位置的准确性和稳定性。
5. 完成回参考点操作。
当机床确认工件已经准确到达参考点的位置后,回参考点操作就完成了。
需要注意的是,回参考点操作的具体步骤可能会因机床类型、数控系统和加工工艺等因素而略有不同,以上只是一般情况下的操作方法。
在实际应用中,操作人员应根据具体情况进行操作,并注意遵守操作规程和注意事项,以确保操作的安全性和有效性。
什么是⽆挡块回参考点?300号报警怎么消除?FANUC系统关于参考点设置,所谓的⽆挡块(without dog)回参考点,是针对增量式回参考点中需采⽤减速挡块⽽⾔的。
⽽之所以不需要挡块(减速信号)确定参考点位置,是因为FANUC编码器可当作绝对式编码器使⽤。
所以,FANUC系统中,⽆挡块回参考点就是指绝对式回参考点(或称绝对式回零)。
⽆挡块回参考点的技术⽅法是:⾸先将轴在⼿动⽅式下移动⾄参考点位置,通过参数实现机械位置与参考点位置的同步,通过电池实现零点位置记忆。
此后开机即能读取零点位置,不需每次都作回零操作。
绝对式回零相关参数如果设备把FANUC编码器当绝对式使⽤,则可按表1设定相关参数。
其中对于APZ的操作决定了参考点设置的有效性。
表1 绝对式回零参数⼀览表序号参数号含义使⽤情境举例11005#1(DLZ)0:⽤减速挡块回参考点1:⽆挡块回参考点121815#5(APC)位置检测器为0: 增量式编码器1: 绝对式编码器131815#4(APZ)使⽤绝对式编码器时,机械位置与参考点位置之间的对应关系0: 尚未建⽴1: 已经建⽴进⾏第 1 次调节或更换绝对位置编码器时,务须将其设定为 “0”。
然后将设定轴⼿动移⾄参考点位置,再将APZ设为1DLZ:without dog zeroAPC:absolute pulse coderAPZ:absolute pulse zero绝对式回零设置步骤1. 确认电池连接和超程保护⽤于编码器位置记忆的电池安装在伺服放⼤器上。
超程保护开关必须有效。
2. 设定参数DLZ和APC将DLZ和APC设为1,此时屏幕出现000号报警。
关机重启,则屏幕出现300号报警,如图1所⽰。
图1 300号报警画⾯3. ⼿动⽅式下将设定轴移⾄参考点位置确定参考点所在机械位置(戳蓝字看参考点在哪个位置),位于机床坐标系极限处。
在JOG或⼿轮⽅式下,将设定轴移动⾄参考点位置,⼀般位于正向超程开关内侧。
机床操作步骤一、开机、关机、复位、回参考点1、开机、复位操作步骤按下操作台右上角的“急停”按钮,合上机床后面的空气开关,手柄的指示标志到“ON”的位置。
松开总电源开关,打开计算机电源,进入数控系统的界面,右旋松开“急停”按钮,系统复位,对应于目前的加工方式为“手动”,显示“手动”。
2、关机操作步骤首先按下“急停”按钮,然后按下总电源开关,最后关闭空气开关,手柄的指示标志到“OFF”的位置。
开、关机操作之前都要求先按下“急停”按钮,目的是减少电冲击。
3、手动回参考点操作步骤按下“回参考点”按键,键内指示灯亮之后,按“+X”键及“+Z”键,刀架移动回到机床参考点。
4、超程解除步骤当出现超程,显示“出错”,“超程解除”指示灯亮。
解除超程的步骤:应先按住“超程解除”键不放,再将工作方式置为“手动”或者“手摇”,哪个方向超程,假设目前是+X方向超程,则选择相反的方向按“-X”键移动刀架,直到“超程解除”指示灯灭,显示“运行正常”。
二、手动操作步骤1、点动操作按“手动”,先设定进给修调倍率,再按“+Z”或者“-Z”、“+X”、“-X”,坐标轴连续移动;在点动进给时,同时按压“快进”按键,则产生相应轴的正向或负向快速运动。
2、增量进给将坐标轴选择波段开关置于“OFF”档,按一下控制面板上的“增量”按键(指示灯亮),按一下“+Z”或者“-Z”、“+X”、“-X”,则沿选定的方向移动一个增量值。
请注意与“点动”的区别,此时按住“+Z”或者“-Z”、“+X”、“-X”不放开,也只能移动一个增量值,不能连续移动。
增量进给的增量值由“×1”、“×10”、“×100”、“×1000”四个增量倍率按键控制。
增量倍率按键和增量值的对应关系如表所示。
3、手摇进给以X轴为例,说明手摇进给操作方法。
将坐标轴选择开关置于“X”档,顺时针/逆时针旋转手摇脉冲发生器一格,可控制X轴向正向或负向移动一个增量值。
摘要:发那科、三菱,西门子几种常用数控系统参考点的工作原理、调整和设定方法,并举例说明参考点的故障现象,解决方法。
关键词:参考点相对位置检测系统绝对位置检测系统1 概述当数控机床更换、拆卸电机或编码器后,机床会有报警信息:编码器内的机械绝对位置数据丢失了,或者机床回参考点后发现参考点和更换前发生了偏移,这就要求我们重新设定参考点,所以我们对了解参考点的工作原理十分必要。
参考点是指当执行手动参考点回归或加工程序的G28指令时机械所定位的那一点,又名原点或零点。
每台机床有一个参考点,根据需要也可以设置多个参考点,用于自动刀具交换(ATC)、自动拖盘交换(APC)等。
通过G28指令执行快速复归的点称为第一参考点(原点),通过G30指令复归的点称为第二、第三或第四参考点,也称为返回浮动参考点。
由编码器发出的栅点信号或零标志信号所确定的点称为电气原点。
机械原点是基本机械坐标系的基准点,机械零件一旦装配好,机械参考点也就建立了。
为了使电气原点和机械原点重合,将使用一个参数进行设置,这个重合的点就是机床原点。
机床配备的位置检测系统一般有相对位置检测系统和绝对位置检测系统。
相对位置检测系统由于在关机后位置数据丢失,所以在机床每次开机后都要求先回零点才可投入加工运行,一般使用挡块式零点回归。
绝对位置检测系统即使在电源切断时也能检测机械的移动量,所以机床每次开机后不需要进行原点回归。
由于在关机后位置数据不会丢失,并且绝对位置检测功能执行各种数据的核对,如检测器的回馈量相互核对、机械固有点上的绝对位置核对,因此具有很高的可信性。
当更换绝对位置检测器或绝对位置丢失时,应设定参考点,绝对位置检测系统一般使用无挡块式零点回归。
2 使用相对位置检测系统的参考点回归方式:(1)发那科系统:1)工作原理:当手动或自动回机床参考点时,首先,回归轴以正方向快速移动,当挡块碰上参考点接近开关时,开始减速运行。
当挡块离开参考点接近开关时,继续以FL速度移动。
电机采用绝对编码器时参数的配置在选择电机型号的时候,注意选择编码器的类型为绝对编码器。
MD30240[0]=4 反馈编码器类型MD34200[0]=0 回参考点模式3:光栅距离码回零1:零脉冲,如编码器0:不回参考点,如绝对编码器2.第二测量系统采用绝对编码器参数的配置MD30240[1]=4 反馈编码器类型MD34200[1]=0 回参考点模式3.绝对编码器回参考点的步骤:(1)设MD34210=1(2)将机床切换到JOG-FEF(手动回参考点方式),按一下机床面板上的RESET 键,然后按住轴移动方向键“+”(当MD34010=1时按“+”,若MD34010=0时按“-”),此时机床不移动,并将侧位置设为机床零点,即坐标显示为零并出现回参考点完成的标志,数控系统会自动将偏置写到MD34090中,回完参考点后MD34210变为2,回参考点成功。
机床采用绝对编码器作为测量系统能在断电之后记住机床的坐标,不需要每次上电后回参考点,这就是采用绝对编码器的好处,但是注意同样容量的电机采用绝对编码器时会比采用普通的增量编码器的容量要降10%,这是选用带绝对编码器电机时需要注意的。
绝对编码器分为多圈和单圈的,如过用绝对编码器作为直线轴的测量系统的话,必须采用多圈,常用的为4096圈,注意在机床轴的整个行程中,编码器旋转的圈数不能超过4096圈,否则会造成断电后无法记忆机床的坐标。
1.电机采用绝对编码器时参数的配置在选择电机型号的时候,注意选择编码器的类型为绝对编码器。
MD30240[0]=4 反馈编码器类型MD34200[0]=0 回参考点模式2.第二测量系统采用绝对编码器参数的配置MD30240[1]=4 反馈编码器类型MD34200[1]=0 回参考点模式3.绝对编码器回参考点的步骤:(1)设MD34210=1(2)将机床切换到JOG-FEF(手动回参考点方式),按一下机床面板上的RESET 键,然后按住轴移动方向键“+”(当MD34010=1时按“+”,若MD34010=0时按“-”),此时机床不移动,并将侧位置设为机床零点,即坐标显示为零并出现回参考点完成的标志,数控系统会自动将偏置写到MD34090中,回完参考点后MD34210变为2,回参考点成功。
机床回参考点有两种情况:一种是绝对值式的,一种是增量式的。
对于增量式的来说又分为零脉冲在参考点开关之外和零脉冲在参考点开关之上。
这两种情况由机床数据MD34050 REFP_SEARCH_MARKER_REVERSE[0][编码器零脉冲在参考点开关的反向(编码器号)]来决定。
当MD34050=1时用上升沿触发,而MD34050=0用下降沿触发。
增量式的回参相对来说比较麻烦,它需要在每次开机或者传输程序后会造成参考点丢失,都要重新会参考点。
为了防止发生事故可以设置MD20700 REFP_NC_START_LOCK=1(未回参考点NC 启动禁止)来保护机床。
对于增量式来说有以下几种方式会参考点:1 手动方式回参:它是通过设置相应的参数,然后点击MCP上的Reform键触发,至于回参的方向则由MD 34010 REFP_CAM_DIR_IS_MINUS(负向逼近参考点)的值来决定。
如果按错方向键或者按键的过程中中断则程序没有反映或者回参失败。
2 触发方式回参:它是通过MD11300 JOG-INC-MODE-LEVELTRIGGRD(返回参考点触发方式)来决定的。
将该数据设置为0时,只需要点击相应的方向键,方向还是由MD34010来决定。
如果按错后程序没有反映。
它只需要点击相应的方向键一下就可以自动回参考点。
其实并不只对进给轴有效,对主轴也也可以有效,那就是与机床参数MD34200ENC_REFP_MODE[n]有关。
当该数据为1时,主轴也可以采用触发方式回参,那就意味着我们可能不是用Bero回参了。
如果有多个进给轴的话,它们可以按照顺序回参,顺序在MD34110 REFP_CYCLE_NR 中定义,也可以都定义为同一个那么所有的轴就是同时进行。
3 通道方式回参:使用接口信号“使能回参考点”(V32000001.0)启动通道专用回参考点运行。
系统使用信号“回参考点有效”(V33000001.0)响应成功启动。
一、一般的机床数据10循环时间10取样实际值分配系数10速度设定输出的超前时间10位置控制器输出保持时间的偏置10中断程序段监控时间(失效-激活)10重新启动延迟10缺少总线时脉冲抑制的等待时间10监控周期的系数10检查周期时间的显示10安全数据再确认循环时间显示10文件存取号10安全报警禁用级10安全方式屏蔽10安全诊断功能10对于 SPL-差额停止反应10通讯的系数10安全通讯循环时间10最大PLC周期10确认的平均时间10启动的监控时间10与MMC通讯的时间限制10过载时屏幕更新处理10在零件程序中监控时间MMC命令10同时发生的MMC节点数量10位置的显示方式10与驱动通讯的时间限制10与驱动通讯的系数10与MMC通讯的系数10预留:10任务的启动时间限制10任务到准备任务的系数10运行时间分量10模拟的换刀时间10齿轮换挡时间10线性位置的计算精度10角度位置的计算精度10激活比例系数10机床数据比例系数10基本公制长度单位10的转换系数10有效转换的基本设定10位置表的比例系统10对rel.6.3的比较>和<兼容10不同的显示变量方式10刀具数据的物理单位10刀具数据的单位10刀沿数据的物理单位10刀沿数据的单位10的模拟输入数10的模拟输出数10模拟输入的比例10模拟输出的比例10预留:10数字输入字节的数量10数字输出字节的数量10开关量输入输出短路10模拟输入的配置10模拟输出的配置10数字输入配置10数字输出的配置10更新NCK I/O 设备10外设的引导时间10的处理10安全-地址主控-设备10安全-地址输入-设备10安全-地址输出-设备10输入分配 $A_INSE 到 PROFIsafe-de 10输出分配 $A_OUTSE 到 PROFIsafe-de 10外部接口的输入分配10外部接口的输出分配10可直接在 NC 读取的 PLC 输入字节数量10直接读PLC输入位起始地址10可直接在 NC 写入的 PLC 输入字节数量10直接写PLC输出位起始地址10输入循环升级时间10用于PLCIO左最高位/右最高位10编辑循环输入字节数量10编译循环输出字节数10编译循环的NCK输出10编辑循环的硬件调试屏蔽10分配软件凸轮到机床轴10负凸轮1 - 16(32)的时间响应10正凸轮1 - 16(32)的时间响应10设备上1 - 8凸轮的配置10设备上9 -16凸轮的配置10设备上17 - 24凸轮的配置10设备上25 - 32凸轮的配置10凸轮信号输出的屏蔽10凸轮特性10测量的软挡块10比较器字节1的模拟量输出10比较器字节2的模拟量输出10比较器字节1的参数化10比较器字节2的参数化10框架)旋转的输入类型10几何轴转换的FRAME10改变几何轴的工作区限制10镜象参考轴10镜象改变10全局基础FRAME复位后激活10上电后复位全局基础FRAME10在子程序存储时FRAME行为10轴变化的保护范围10欧拉角的名称10普通矢量的名称10方向矢量的名称10旋转矢量的名称10临时矢量的名称10第二路径方向编程名称10底角的名称10插补参数的名称10定义轮廓角度名称10定义轮廓半径名称10定义轮廓斜面名称10中间坐标点的名称10位置信息名称10轴位置信息名称10多项式编程不带 G 功能 POLY 编程10程序预处理阶段10块信号停止预防10空运行激活10跳越有效10编程测试模式10程序段搜索模式10更新的设定数据10未配置的NC代码列表10带预处理停止的 M 代码10复位后 M 代码 f.主轴激活10 代码由子程序代替10代码替换的子程序名称10代码替换的子程序名称10带参数的 M 代码替代10功能替换的参数化10上电操作方式10参数更改10手动(JOG)键的功能10手动(JOG)键的功能10,G153,SUPA的说明10删除TP编辑启动禁止10第一 M 功能通道同步10通道同步的最后M功能10功能激活 ASUP10功能没激活 ASUP10中断程序激活(ASUP)10测量信号结构10带G68双刀架10调用的M功能10功能macro调用的子程序名称10调用的G功能10功能macro调用的子程序名称10启动(M96)的中断数10快速返回的中断数(G10.6)10代码的最大号码10合适的 CNC 系统定义10模式:G代码系统10外部NC语言的用户G代码表10带或不带数值运算命令10增量系统10刀具的位置号10外部语言的刀具编程模式10插补10分度轴表1位置数10分隔位置表110分度轴表2的位置数10分隔位置表211辅助功能组的辅助功能数量11辅助功能组说明11程序全局用户数据(PUD)系数有效11除GUD模块以外的地址11上电时装载标准数据11仅保存修改过的机床数据11初始化文件出错时的系统反应11文件备份的结构11号11停机处理11语言元素的默认值激活11在工件目录处理 INI 文件11在DRAM选择目录11中选择目录11记录文件的存储类型11方式中的INC和REF11方向改变手轮的阀值11每个间隔位置的手轮脉冲数11每个凸轮爪位置的轮廓手轮脉冲11手轮号码在 VDI 接口中描述11手轮的增量大小11第三手轮:驱动类型11第三手轮:驱动号/测量电路号11第三手轮:输入模块/测量电路11手轮:11信号影响方式组11安全集成测试机床数据11地址单元的INTEGER整数显示11地址单元的REAL显示11地址单元的INTEGER整数输入11地址单元的REAL输入11地址单元的内容重写11轴变量服务器出错11激活内部轨迹功能11报警输出的屏蔽11报警激活11报警响应 CHAN_NOREADY 有效11报警参数作为文本输出11记录文件大小(KB)11数字化时的通道定义11选择 3 轴或 3+2 轴数字化11参数化搜索11异步往复的模式表单11重新配置的属性11中PLC轨迹数据的缓存深度11中PLC轨迹数据的缓存深度11中PLC轨迹数据的缓存深度11受保护的同步动作11最大允许的IPO负载11固定的BAG响应11运行时不考虑停止的原因11优先级有效11用户定义 ASUP 程序激活11用户定义ASUP编程的保护级11的程序名称11使能间隔在MD $MC_AXCONF_MACHAX_USED 11打开在#MC_AXCONF_MACHAX_USED中的保护11可能的电子齿轮箱数量11卡代码12轴进给倍率开关编码12轴进给倍率系数12灰度 - 编码轨迹进给率开关12路径进给倍率的系数12灰度码快速运行倍率开关12快速进给的倍率系数12灰度码主轴倍率开关12主轴倍率的系数12回参考点速度的倍率12进给倍率12二进制编码的倍率限定12在倍率0时运行12直线轴的固定进给率12旋转轴的固定进给率12主轴固定转速12在NCU组中的NCU代码12号,总线终止阻抗有效12联接总线波特率12信息存储区重复的最大量12在轴系列1中的轴清单12在轴系列2中的轴清单12在轴系列3中的轴清单12在轴系列4中的轴清单12在轴系列5中的轴清单12在轴系列6中的轴清单12在轴系列7中的轴清单12在轴系列8中的轴清单12在轴系列9中的轴清单12在轴系列10中的轴清单12在轴系列11中的轴清单12在轴系列12中的轴清单12在轴系列13中的轴清单12在轴系列14中的轴清单12在轴系列15中的轴清单12在轴系列16中的轴清单12轴系列名称12数字PLC输入地址的起始地址12数字输入地址号12数字PLC输出地址的起始地址12数字输出地址号12模拟PLC输入地址的起始地址12模拟输入地址号12模拟PLC输出地址的起始地址12模拟输出地址号13驱动在运行13逻辑驱动号13驱动模块的功率部分代码13模块识别13驱动类型13逻辑驱动地址13标准通讯类型13使用DP功能13驱动类型 Profibus13诊断驱动母线13探头极性改变13带数字输出的测量脉冲模拟13带Profibus驱动的测头操作类型13探头延迟时间14绝对值编码器的波特率14启动延迟14延时14输入字节的个数(从PLC)14输出字节的个数(到PLC)14用户数据的号(INT)14用户数据的号(HEX)14用户数据的号(FLOAT)14用户数据(INT)14用户数据(HEX)14用户数据(FLOAT)14用户数据(HEX)17全局MMC信息(没有物理单元17全局MMC状态信息(没有物理单元) 17替换刀具的最大号17卸载后刀具 - 数据的运行状态17产生新刀具:默认设置17对于 HMI 标记的刀具-数据-变化17中log存储最优化深度18更新PLC接口18卡的版本和日期18自由无缓冲内存[bytes]18自由缓冲内存[bytes]。
4.6 参考点报警类故障维修20例慧聪网 2006年5月8日15时12分网友评论 0 条进入论坛4.6.1 回参考点位置调整不当引起的故障维修10例例141.回参考点出现超程报警的故障维修故障现象:某配套FANUC 0M的加工中心,在开机手动回参考点的过程中,出现超程报警。
分析及处理过程:经了解,该机床为用户新添设备,操作人员未进行过系统的培训,在开机后,未将工作台移出参考点减速区域之外,即开始了回参考点动作,造成了机床的越位。
在退出超程保护后,手动移动工作台,移出参考点减速区后,重新回参考点,机床恢复正常。
例142.回参考点后机床无法继续操作的故障维修故障现象:某配套FANUC 0M的数控机床,在回参考点时发现:机床在参考点位置停止后,参考点指示灯不亮,机床无法进行下一步操作。
机床关机后,又可手动操作,回参考点后上述现象又出现。
分析及处理过程:根据以上现象判断,机床回参考点动作属于正常。
考虑到机床已在参考点附近停止运动,因此,初步判断其原因可能是参考点定位精度未达到规定的要求所引起的。
通过机床的诊断功能,在诊断页面下对系统的“位置跟随误差”(DGN800~802)进行了检查,发现机床的Y轴的跟踪误差超过了定位精度的允许范围。
经调整伺服驱动器的“偏移”电位器,使“位置跟随误差”DGN800-802的值接近“0”后,机床恢复正常工作。
例143.参考点位置不稳定的故障维修故障现象:某配套FANUC 0系统的数控机床,回参考点动作正常,但参考点位置随机性大,每次定位都有不同的值。
分析及处理过程:由于机床回参考点动作正常,证明机床回参考点功能有效。
进一步检查发现,参考点位置虽然每次都在变化,但却总是处在参考点减速挡块放开后的位置上。
因此,可以初步判定故障的原因是由于脉冲编码器“零脉冲”不良或丝杠与电动机间的联接不良引起的故障。
为确认问题的原因,鉴于故障机床伺服系统为半闭环结构,维修时脱开了电动机与丝杆间的联轴器,并通过手动压参考点减速挡块,进行回参考点试验;多次试验发现,每次回参考点完成后,电动机总是停在某一固定的角度上。
以上证明,脉冲编码器“零脉冲”无故障,问题的原因应在电动机与丝杠的联接上。
仔细检查发现,该故障是由于丝杆与联轴器间的弹性胀套配合间隙过大,产生联接松动:修整胀套,重新安装后机床恢复正常。
例144.参考点发生整螺距偏移的故障维修故障现象:某配套FANUCOM的数控铣床,在批量加工零件时,某天加工的零件产生批量报废。
分析及处理过程:经对工件进行测量,发现零件的全部尺寸相对位置都正确,但X轴的全部坐标值都相差了整整10mm。
分析原因,导致X轴尺寸整螺距偏移(该轴的螺距是10mm)的原因是由于参考点位置偏移引起的。
对于大部分系统,参考点一般设定于参考点减速挡铁放开后的第一个编程器的“零脉冲”上;若参考点减速挡块放开时刻,编码器恰巧在零脉冲附近,由于减速开关动作的随机性误差,可能使参考点位置发生1个整螺距的偏移。
这一故障在使用小螺距滚珠丝杠的场合特别容易发生。
对于此类故障,只要重新调整参考点减速挡块位置,使得挡块放开点与“零脉冲”位置相差在半个螺距左右,机床即可恢复正常工作。
本机床经以上处理后,故障排除,机床恢复正常,全部零件加工正确。
例145.参考点减速信号不良引起的故障维修故障现象:某配套FANUC llM的加工中心,在回参考点过程中,发生超程报警。
分析及处理过程:经检查,发现该机床在“回参考点减速”挡块压上后,坐标轴无减速动作,由此判断故障原因应在减速信号上。
通过系统的诊断显示,发现该信号的状态在“回参考点减速”挡块压上/松开后,均无变化。
对照原理图检查线路,最终确认该轴的“回参考点减速”开关由于切削液的侵入而损坏;更换开关后,机床恢复正常。
例146.伺服电动机重新安装后引起的回参考点故障维修故障现象:某配套SIEMENS 802D的数控铣床,在用户首次开机时,在回参考点的过程中出现超程报警。
分析及处理过程:经了解,该机床是在重新安装后的第一次开机,且在机床搬送过程中拆下了Z轴电动机,并对电动机进行了重新安装。
分析原因,判断机床在搬送过程中,由于Z轴(主轴箱)位置产生了移动,使得电动机与丝杆间的相对联接位置发生了变化,导致参考点偏离了原来的位置,引起了Z轴超程报警。
在退出超程保护后,经重新调整参考点偏置值,机床恢复正常。
例147.减速挡块固定不良引起回参考点超程的故障维修故障现象:某配套SIEMENS 810M的加工中心,在回参考点的过程中,发生超程报警。
分析及处理过程:经检查,发现该机床的回参考点减速挡块放开位置,处在机床行程极限开关之后,与系统回参考点设置要求不符。
机床参考点减速挡块尚未脱开,超程保护信号已经发出,导致了机床超程报警。
进一步检查发现,该挡块未可靠固定于卡轨内,在开关与挡块长期接触后,位置产生了移动,导致了超程报警。
重新固定挡块后,机床恢复正常。
例148.偶然因素引起参考点发生整螺距偏移的故障维修故障现象:某配套SIEMENS 802D的数控铣床,在停机后重新起动机床,发现零件Y方向的定位位置产生了整螺距偏移。
分析及处理过程:原因分析同上例,初步判断其原因是由于参考点位置偏移引起的。
但检查参考点减速挡块,发现安装位置正确、固定可靠。
重新回参考点多次,Y方向的定位位置都正确,故其故障原因与参考点减速挡块的安装无关。
经认真检查,发现该轴行程开关上有较多的铁屑,由此判断参考点减速挡块的误动作是由于偶然性铁屑干涉所引起的。
维修时在参考点减速开关上增加了防护后,机床恢复正常工作,并从此再无此现象出现。
例149.回参考点不到位的故障维修故障现象:某配套SIEMENS 810M的数控机床,在回参考点时发现:机床在参考点位置停止后,“未到位”灯不熄灭,机床无法进行下一步操作:机床关机后,又可手动操作,回参考点后上述现象又出现。
分析及处理过程:分析过程同上例。
通过机床的诊断功能〖DIAGNOS〗,在轴诊断〖SERVICEAXIS〗页面下对系统各坐标轴的“位置跟随误差”进行了检查,发现机床Z轴的跟踪误差超过了定位精度的允许范围。
由于SIEMENS 810系统可以进行自动漂移补偿,其操作方法如下:1)按系统软功能键〖DIAGNOS〗,并进行系统软功能键扩展。
2)按系统软功能键〖NC-MD〗。
3)按系统软功能键〖AXIS-MDl〗。
4)调整光标,定位于参数NC-MD2722。
5)按操作面板上的程序编辑“修改”键,系统对Z轴进行自动漂移补偿。
经自动漂移补偿,使“位置跟随误差”的值接近“0”后,机床恢复正常工作。
例150.不能回参考点的故障维修故障现象:某配套SIEMENS 802S的数控铣床,发生X轴手动回不到参考点故障。
分析及处理过程:802S属于步进电动机驱动,无位置测量反馈元器件。
其回参考点方式与一般的闭环系统不同,采用的是接近开关回参考点方式。
SIEMENS 802S有两种型式,即:①使用减速信号、参考点检测信号的双开关方式;②仅使用参考点检测信号的单开关方式。
由于第二种型式只能设置一种回参考点的速度,参考点定位精度与接近开关的检测精度、回参考点速度的设置有关,因此在数控机床上通常很少使用。
在这两种型式中,又有如图4-14所示的两种参考点信号的检测方式,其中方式一(图4-14a)为以接近开关上升沿作为参考点位置的回参考点方式;方式二(图4-14b)为以接近开关上升沿、下降沿的中点作为参考点位置的回参考点方式。
这两种方式的选择可以通过机床参数MD-34200进行设定,MD-34200=2为方式一;MD-34200=4为方式二。
该机床选择的是使用减速信号、回参考点双开关方式;设定MD-34200=4,其回参考点的动作与普通的机床有所区别。
其动作过程如下:1)坐标轴以“寻找减速开关”的速度Vc(参数MD-34020设定),向固定方向运动。
图4-15 802S回参考点动作图2)压上减速开关后,以“参考点减速”速度Vm(参数MD-34040设定)反向运动,寻找“参考点检测信号”的上升沿与下降沿的“中点”位置。
3)“中点”到达后,减至“参考点定位速度”Vp(参数MD-34070设定),继续运动。
4)到达机床参数设定的参考点偏移位置(参数MD-34080、MD34090设定)后,回参考点结束(参见图4-15)。
经检查发现,该机床的“参考点减速”动作正常,因此可以判定故障原因在参考点检测开关上。
进一步检查发现,该机床X轴参考点检测开关发讯挡块与接近开关间的距离较大,在回参考点过程中,接近开关始终无信号输出。
重新调整发讯挡块后故障消失,机床恢复正常。
维修体会与维修要点:手动回参考点操作是建立机床坐标系的前提,绝大部分数控机床开机后的第一动作一般都是手动回参考点操作。
虽然在不同的数控系统中,回参考点的方法有所不同,但在绝大部分系统中,回参考点的动作过程如下(参见图4—16):1)在手动方式(JOG)下,选择“回参考点”操作方式。
2)按对应轴的方向键。
3)坐标轴以机床参数设定的“回参考点快速”速度,向参考点移动。
4)当“参考点减速”挡块压上后,参考点减速信号(*DEC)生效,电动机减速至机床参数设定的“参考点搜索速度”。
5)越过参考点减速挡块后,*DEC信号恢复,坐标轴继续以搜索速度运动。
6)在参考点减速挡块放开后,位置检测装置的第一个“零脉冲”到达后即开始计数,当到达机床参数设置的“参考点偏移量”后,坐标轴停止运动,回参考点运动结束。
由上述动作可见,影响回参考点动作的主要因素有:1)数控系统的操作方式,它必须选择回参考点(Ref)方式。
2)“参考点减速”信号必须按要求输入。
3)位置检测装置“零脉冲”必须正确。
4)数控系统的参数设置必须正确。
在以上因素中,维修时常见的故障是减速.6.2 “零脉冲”不良故障维修5例例151.FANUC 6M回参考点时发生ALM091报警的维修故障现象:某配套FANUC 6M的卧式加工中心,在回参考点时发生ALM091报警。
分析及处理过程:FANUC 6M发生“ALM091”的含义是“脉冲编码器同步出错”,在FANUC 6M中可能的原因有以下两个方面:1)编码器“零脉冲”不良。
2)回参考点时位置跟随误差值小于128μm。
维修时对回参考点的跟随误差(诊断参数DGN800)进行了检查,检查发现此值为200μm左右,达到了规定的值。
进一步检查该机床的位置环增益为16.67 S-1,回参考点速度设置为200mm/min,属于正常范围,因此初步排除了参数设定的原因。
可能的原因是脉冲编码器“零脉冲”不良。
经测量,在电动机侧,编码器电源(+5V电压)只有+4.5V左右,但伺服单元上的+5V电压正确。
因此,可能的原因是线路压降过大而导致的编码器电压过低。