中考资料:2011年天津市中考数学试卷及答案
- 格式:doc
- 大小:1.16 MB
- 文档页数:13
2011年天津市初中毕业生学业考试试卷一、选择题耳(本大题共l0小题.每小题3分,共30分) (1)sin45°的值等于 (A)12(B)22(C)32(D) 1(2)下列汽车标志中,可以看作是中心对称图形的是 错误!未指定书签。
(3)根据第六次全国人口普查的统计,截止到2010年11月1日零时,我国总人口约为 1 370 000 000人,将1 370 000 000用科学记数法表示应为(A) 100.13710⨯ (B) 91.3710⨯ (C) 813.710⨯ (D) 713710⨯ (4) 估计10的值在(A) 1到2之问 (B) 2到3之间 (C) 3到4之问 (D) 4刊5之问(5) 如图.将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为(A) 15° (B) 30° (C) 45° (D) 60°(6) 已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是 (A) 相交 (B) 相离 (C) 内切 (D) 外切(7) 右图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是(8)下图是甲、乙两人l0次射击成绩(环数)的条形统计图.则下列说法正确的是错误!未指定书签。
(A) 甲比乙的成绩稔定 (B) 乙比甲的成绩稳定(C) 甲、乙两人的成绩一样稳定 (D) 无法确定谁的成绩更稳定 (9)一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网所用时间计算;方式B 除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。
若上网所用时问为x 分.计费为y 元,如图.是在同一直角坐标系中.分别描述两种计费方式的函救的图象,有下列结论:① 图象甲描述的是方式A :② 图象乙描述的是方式B ;③ 当上网所用时间为500分时,选择方式B 省钱.其中,正确结论的个数是 (A) 3 (B) 2 (C) 1 (D) 0(10)若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是 (A)0x y z ++= (B) 20x y z +-= (C) 20y z x +-= (D) 20z x y +-= 二、填空题(本大题共8小题.每小题3分,共24分) (11) 6-的相反教是__________.(12) 若分式211x x -+的值为0,则x 的值等于__________。
2011年天津市初中毕业生学业考试试卷第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)sin45︒的值等于()(A)12(B)22(C)32(D)1(2)下列汽车标志中,可以看作是中心对称图形的是()(3)根据第六次全国人口普查的统计,截止到2010年11月1日零时,我国总人口约为1 370 000 000人,将1 370 000 000用科学记数法表示应为()(A)100.13710⨯(B)91.3710⨯(C)813.710⨯(D)713710⨯(4)估计10的值在()(A)1到2之间(B)2到3之间(C)3到4之间(D)4到5之间(5)如图,将正方形纸片ABCD折叠,使边AB CB、均落在对角线BD上,得折痕BE BF、,则EBF∠的大小为()(A)15︒(B)30︒(C)45︒(D)60︒(6)已知1O⊙与2O⊙的半径分别为3cm和4cm,若12O O=7cm,则1O⊙与2O⊙的位置关系是()(A)相交(B)相离(C)内切(D)外切(7)右图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度,则它的三视图是()(A)(B)(C)(D)(8)下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( )(A )甲比乙的成绩稳定 (B )乙比甲的成绩稳定(C )甲、乙两人的成绩一样稳定 (D )无法确定谁的成绩更稳定(9)一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网所用时间计费;方式B 除收月基费20元外,再以每分0.05元的价格按上网所用时间计费,若上网所用时间为x 分,计费为y 元,如图,是在同一直角坐标系中,分别描述两种计费方式的函数的图象,有下列结论: ①图象甲描述的是方式A ; ②图象乙描述的是方式B ;③当上网所用时间为500分时,选择方式B 省钱. 其中,正确结论的个数是( )(A )3 (B )2 (C )1 (D )0(10)若实数x y z 、、满足()()()240x z x y y z ----=,则下列式子一定成立的是( ) (A )x+y+z=0 (B )x+y-2z=0 (C )y+z-2x=0 (D )z+x-2y=0第Ⅱ卷二、填空题(本大题共8小题,每小题3分,共24分) (11)6-的相反数是 .(12)若分式211x x -+的值为0,则x 的值等于 .(13)已知一次函数的图象经过点()01,,且满足y 随x 的增大而增大,则该一次函数的解析式可以为 (写出一个即可).(14)如图,点D E F 、、分别是ABC △的边AB BC CA 、、的中点,连接DE EF FD 、、,则图中平行四边形的个数为 .(15)如图,AD AC 、分别是O ⊙的直径和弦,且30CAD OB AD ∠=︒⊥,,交AC 于点B ,若5OB =,则BC 的长等于 .(16)同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为 .(17)如图,六边形ABCDEF 的六个内角都相等,若132AB BC CD DE ====,,,则这个六边形的周长等于 .(18)如图,有一张长为5宽为3的矩形纸片ABCD ,要通过适当的剪拼,得到一个与之面积相等的正方形.(Ⅰ)该正方形的边长为 (结果保留根号);(Ⅱ)现要求只能用两条裁剪线,请你设计一种裁剪的方法,在图中画出裁剪线,并简要说明剪拼的过程:___________________________.三、解答题(本大题共8小题,共66分.解答应写出文字说明、演算步骤或推理过程) (19)(本小题6分)解不等式组215432x x x x +>-⎧⎨+⎩,≤.(20)(本小题8分)已知一次函数1y x b =+(b 为常数)的图象与反比例函数2ky x=(k 为常数,且0k ≠)的图象相交于点()31P ,.(Ⅰ)求这两个函数的解析式;(Ⅱ)当3x >时,试判断1y 与2y 的大小,并说明理由.(21)(本小题8分)在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数 0 1 2 3 4 人数 3 13 16 171 (Ⅰ)求这50个样本数据的平均数、众数和中位数;(Ⅱ)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.(22)(本小题8分)已知AB 与O ⊙相切于点C ,OA OB =,OA OB 、与O ⊙分别交于点D E 、. (Ⅰ)如图①,若O ⊙的直径为8,10AB =,求OA 的长(结果保留根号); (Ⅱ)如图②,连接CD DE 、,若四边形ODCE 为菱形,求ODOA的值___________________________.(23)(本小题8分)某校兴趣小组坐游轮拍摄海河两岸美景.如图,游轮出发点A 与望海楼B 的距离为300m ,在A 处测得望海楼B 位于A 的北偏东30︒方向,游轮沿正北方向行驶一段时间后到达C ,在C 处测得望海楼B 位于C 的北偏东60︒方向,求此时游轮与望海楼之间的距离BC (3取 1.73,结果保留整数).(24)(本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.某商品现在的售价为每件35元,每天可卖出50件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?设每件商品降价x 元、每天的销售额为y 元.(Ⅰ)分析:根据问题中的数量关系,用含x 的式子填表:原价 每件降价1元 每件降价2元… 每件降价x元每件售价(元) 35 34 33 … 每天销量(件) 50 52 54…(Ⅱ)(由以上分析,用含x 的式子表示y ,并求出问题的解)(25)(本小题10分)在平面直角坐标系中,已知O 为坐标原点,点()()3004A B ,,,.以点A 为旋转中心,把ABO △顺时针旋转,得ACD △.记旋转角为ABO α∠,为β.(Ⅰ)如图①,当旋转后点D 恰好落在AB 边上时,求点D 的坐标;(Ⅱ)如图②,当旋转后满足BC x ∥轴时,求α与β之间的数量关系;(Ⅲ)当旋转后满足AOD β∠=时,求直线CD 的解析式(直接写出结果即可).(26)(本小题10分)已知抛物线211112C y x x =-+∶,点()11F ,.(Ⅰ)求抛物线1C 的顶点坐标;(Ⅱ)①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证112AF BF+=; ②取抛物线1C 上任意一点()()01p p p P x y x <<,,连接PF ,并延长交抛物线1C 于点()Q Q Q x y ,,试判断112PF QF+=是否成立?请说明理由; (Ⅲ)将抛物线1C 作适当的平移,得抛物线()22212C y x h =-∶,若2x m <≤时,2y x ≤恒成立,求m 的最大值.2011年天津市初中毕业生学业考试数学试题参考答案一、选择题(本大题共10小题,每小题3分,共30分) (1)B (2)A (3)B (4)C (5)C (6)D (7)A (8)B (9)A (10)D 二、填空题(本大题共8小题,每小题3分,共24分) (11)6 (12)1(13)1y x =+(答案不惟一,可以是形如10y kx k =+>,的一次函数) (14)3(15)5 (16)16(17)15(18)(Ⅰ)15;(Ⅱ)如图,①作出()154190BN BM MN MNB ===∠=︒,,; ②画出两条裁剪线()15AK BE AK BE BE AK ==⊥,,; ③平移ABE △和ADK △.此时,得到的四边形BEFG 即为所求. 三、解答题(本大题共8小题,共66分)(19)(本小题6分)解:215432x x x x +>-⎧⎨+⎩Q ,①≤,②解不等式①,得6x >-.解不等式②,得2x ≤.∴原不等式组的解集为62x -<≤. (20)(本小题8分)解:(Ⅰ)()31P Q 点,在一次函数1y x b =+的图象上,13b ∴=+,解得2b =-.∴一次函数的解析式为12y x =-.()31P Q 点,在反比例函数2ky x=的图象上, 13k∴=,解得3k =. ∴反比例函数的解析式为23y x=. (Ⅱ)12y y >,理由如下: 当3x =时,121y y ==.又当3x >时,一次函数1y 随x 的增大而增大,反比例函数2y 随x 的增大而减小,∴当3x >时,12y y >.(21)(本小题8分)解:(Ⅰ)观察表格,可知这组样本数据的平均数是0311321631741250x ⨯+⨯+⨯+⨯+⨯==,∴这组样本数据的平均数为2.Q 这组样本数据中,3出现了17次,出现的次数最多, ∴这组数据的众数为3.Q 将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2, 有2222+=, ∴这组数据的中位数为2.(Ⅱ)Q 在50名学生中,读书多于2册的学生有18名,有3001810850⨯=.∴根据样本数据,可以估计该校八年级300名学生在本次活动中读书多于2册的约有108名. (22)(本小题8分)解:(Ⅰ)如图①,连接OC ,则4OC =.AB Q 与O ⊙相切于点C , ∴OC AB ⊥.∴在OAB △中,由10OA OB AB ==,,得152AC AB ==. 在Rt AOC △中,由勾股定理,得22224541OA OC AC =+=+=. (Ⅱ)如图②,连接OC ,则OC OD =.Q 四边形ODCE 是菱形, OD DC ∴=. ODC ∴△为等边三角形,有60AOC ∠=︒. 由(Ⅰ)知,90OCA ∠=︒,∴1302A OC OA ∠=︒∴=,.12OD OA ∴=. (23)(本小题8分)解:根据题意,300AB =.如图,过点B 作BD AC ⊥,交AC 的延长线于点D . 在Rt ADB △中, 30BAD ∠=︒Q ,1130015022BD AB ∴==⨯=.在Rt CDB △中,sin BDDCB BC∠=Q , 150300173sin sin 603BD BC DCB ∴===∠︒≈.答:此时游轮与望海楼之间的距离约为173m .(24)(本小题8分)解:(Ⅰ)35x -;502x +.(Ⅱ)根据题意,每天的销售额()()()35502035y x x x =-+<<, 配方,得()2251800y x =--+,∴当5x =时,y 取得最大值1800.答:当每件商品降价5元时,可使每天的销售额最大,最大销售额为1800元. (25)(本小题10分)解:(Ⅰ)Q 点()()3004A B ,,,,得34OA OB ==,,∴在Rt ABO △中,由勾股定理,得225AB OA OB =+=.根据题意,有3DA OA ==.如图①,过点D 作DM x ⊥轴于点M ,则MD OB ∥,ADM ABO ∴△∽△.有AD AM DMAB AO BO==, 得59335AD AM AO AB ==⨯=·,312455AD DM BO AB ==⨯=·.又OM OA AM =-,得96355OM =-=.∴点D 的坐标为61255⎛⎫⎪⎝⎭,.(Ⅱ)如图②,由已知,得CAB AC AB ∠=α=,.ABC ACB ∴∠=∠.∴在ABC △中,由180ABC ACB CAB ∠+∠+∠=︒, 得2ABC α=180︒-∠.又BC x Q ∥轴,得90OBC ∠=︒, 有9090ABC ABO ∠=︒-∠=︒-β,αβ∴=2.(Ⅲ)直线CD 的解析式为7424y x =-+或7424y x =-. (26)(本小题10分)解:(Ⅰ)()22111111222y x x x =-+=-+Q ,∴抛物线1C 的顶点坐标为112⎛⎫⎪⎝⎭,.(Ⅱ)①根据题意,可得点()01A ,,()11F Q ,,AB x ∴∥轴,得1AF BF ==, 112AF BF∴+=. ②112PF QF+=成立. 理由如下:如图,过点()P P P x y ,作PM AB ⊥于点M ,则()1101P P P FM x PM y x =-=-<<,,Rt PMF ∴△中,由勾股定理,得()()2222211P P PF FM PM x y =+=-+-.又点()P P P x y ,在抛物线1C 上, 得()211122P P y x =-+,即()2121P P x y -=-. ()222211P P P PF y y y ∴=-+-=, 即P PF y =.过点()Q Q Q x y ,作QN AB ⊥,与AB 的延长线交于点N , 同理可得Q QF y =.90PMF QNF MFP NFQ ∠=∠=︒∠=∠Q ,, PMF QNF ∴△∽△.有PF PM QF QN=. 这里1111P Q PM y PF QN y QF =-=-=-=-,,11PF PFQF QF -∴=-, 即112PF QF+=. (Ⅲ)令3y x =,设其图象与抛物线2C 交点的横坐标为00x x ',,且00x x '<, Q 抛物线2C 可以看作是抛物线212y x =左右平移得到的, 观察图象,随着抛物线2C 向右不断平移,00x x ',的值不断增大, ∴当满足2x m <≤,2y x ≤恒成立时,m 的最大值在0x '处取得. 可得,将02x =代入()212x h x -=, 有()21222h -=, 解得4h =或0h =(舍去),()22142y x ∴=-.此时,由23y y =,得()2142x x -=,第 11 页 共 11 页 解得0028x x '==,, m ∴的最大值为8.。
2011年天津市初中毕业生学业考试试卷数 学 第Ⅰ卷注意事项。
1.每题选出答案后.用2B 铅笔把“答题卡“上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后.再选涂其他答案标号的信息点。
2.本卷共l0题.共30分.一、选择题耳(本大题共l0小题.每小题3分,共30分.在每小题给出的四个选顶中. 只有一项是符合题目要求的) (1)sin45°的值等于 (A)12(B)22(C)32(D) 1(2)下列汽车标志中,可以看作是中心对称图形的是(3)根据第六次全国人口普查的统计,截止到2010年11月1日零时,我国总人口约为 1 370 000 000人,将1 370 000 000用科学记数法表示应为(A) 100.13710⨯ (B) 91.3710⨯ (C) 813.710⨯ (D) 713710⨯(4) 估计10的值在(A) 1到2之问 (B) 2到3之间 (C) 3到4之问 (D) 4刊5之问(5) 如图.将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为(A) 15° (B) 30° (C) 45° (D) 60°(6) 已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是 (A) 相交 (B) 相离 (C) 内切 (D) 外切(7) 右图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是(8)下图是甲、乙两人l0次射击成绩(环数)的条形统计图.则下列说法正确的是(A) 甲比乙的成绩稔定 (B) 乙比甲的成绩稳定(C) 甲、乙两人的成绩一样稳定 (D) 无法确定谁的成绩更稳定(9)一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网所用时间计算;方式B 除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。
2011天津中考数学试题及答案一、选择题1.在等差数列 $a_1,a_2,a_3,\\dots, a_n$ 中,若a1+a2=7,a4+a5=21,则a3+a7=()A. -7B. 0C. 7D. 14正确答案:C2.在等比数列 $b_1,b_2,b_3,\\dots, b_n$中,已知b1+b3=18,b2+b4=36,则b5=()A. 6B. 12C. 18D. 24正确答案:D3.若 $\\frac{x+2y}{3}=\\frac{9-2x}{5}$,则 $\\frac{x}{9-2x}+\\frac{y}{x+2y}=$()A. 1B. -1C. 0D. 2正确答案:A二、解答题1.设 $x=\\sqrt{2}-1-\\sqrt{3}$,求x2−3x的值。
解析:先将 $x=\\sqrt{2}-1-\\sqrt{3}$ 化简为 $x=-(\\sqrt{3}+\\sqrt{2}+1)$,然后进行平方和相乘运算得到结果。
答案:$x^2-3x=10-6\\sqrt{2}$2.已知a,b是实数,解方程 $\\frac{2x-1}{3}+\\frac{3x-2}{2}=a+b$。
解析:将方程中的分数通分,再进行合并同类项运算,得到x的表达式。
答案:$x=\\frac{8a+5b-2}{12}$三、总结本文分享了2011年天津中考数学试题及答案,试题包括选择题和解答题。
选择题主要考察等差数列、等比数列和简单的方程求解,需要学生灵活运用这些知识点进行计算。
解答题则需要学生通过运算和化简,得到最终的结果。
通过完成这些题目,学生可以巩固相关知识,并提升解题能力。
希望本文对大家的学习有所帮助,如果有任何问题或疑问,欢迎留言讨论。
2011中考试题:数学(天津卷)本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页.试卷满分120分.考试时间100分钟.答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码.答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效.考试结束后,将本试卷和“答题卡”一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.2.本卷共10题,共30分.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)sin 45︒的值等于( )(A )12(B)2 (C)2 (D )1 (2)下列汽车标志中,可以看作是中心对称图形的是( )(3)根据第六次全国人口普查的统计,截止到2010年11月1日零时,我国总人口约为1 370 000 000人,将1 370 000 000用科学记数法表示应为( )(A )100.13710⨯ (B )91.3710⨯ (C )813.710⨯ (D )713710⨯(4)(A)1到2之间 (B)2到3之间 (C)3到4之间 (D)4到5之间(5)如图,将正方形纸片ABCD 折叠,使边AB CB 、均落在对角线BD 上,得折痕BE BF 、,则EBF ∠的大小为( )(A)15︒ (B)30︒ (C)45︒ (D)60︒(6)已知1O ⊙与2O ⊙的半径分别为3cm 和4cm ,若12O O =7cm ,则1O ⊙与2O ⊙的位置关系是( )(A )相交 (B )相离 (C )内切 (D )外切(7)右图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度,则它的三视图是( ) (A ) (B ) (C ) (D )(8)下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( )(A )甲比乙的成绩稳定 (B )乙比甲的成绩稳定(C )甲、乙两人的成绩一样稳定 (D )无法确定谁的成绩更稳定(9)一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网所用时间计费;方式B 除收月基费20元外,再以每分0.05元的价格按上网所用时间计费,若上网所用时间为x 分,计费为y 元,如图,是在同一直角坐标系中,分别描述两种计费方式的函数的图象,有下列结论:①图象甲描述的是方式A ;②图象乙描述的是方式B ;③当上网所用时间为500分时,选择方式B 省钱.其中,正确结论的个数是( )(A )3 (B )2 (C )1 (D )0(10)若实数x y z 、、满足()()()240x z x y y z ----=,则下列式子一定成立的是( )(A )8 (B )6 (C )4 (D )2011年天津市初中毕业生学业考试试卷数 学第Ⅱ卷。
天津市2011-2014历年中考数学真题及答案.(优选)2014年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
试卷满分120分。
考试时间100分钟。
答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝各你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-6)×(-1)的结果等于(A)6 (B)-6 (C)1 (D)-1(2)cos60o的值等于[来源:学科网ZXXK](A )21(B )33(C)23(D)3(3)下列标志中,可以看作是轴对称图形的是(A)(B)(C)(D)(4)为让市民出行更加方便,天津市政府大力发展公共交通.2013年天津市公共交通客运量约为1608 000000人次.将1608 000 000用科学记数法表示应为(A)160.8×107(B)16.08×108(C)1.608×109(D)0.1608×1010(5)如图,从左面观察这个立体图形,能得到的平面图形是(A)(B)(C)(D)(6)正六边形的边心距为3,则该正六边形的边长是(A)3(B)2(C)3 (D)32[来源:学。
科。
网Z。
X。
X。
K]第(5)题(7)如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心.若∠B =25o ,则∠C 的大小等于(A )20o (B )25o(C )40o(D )50o[来源:学科网ZXXK](8)如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于(A )3:2 (B )3:1 (C )1:1(D )1:2(9)已知反比例函数xy 10=,当1<x <2时,y 的取值范围是 (A )0<y <5 (B )1<y <2 (C )5<y <10(D )y>10(10)要组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为 (A )()28121=+x x(B )()28121=-x x (C )()281=+x x(D )()281=-x x(11)某公司招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁 测试成绩[来源:学科网]面试 86 92 90 83[来源:Z,xx,]笔90838392(百分制)试如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.公司将录取 (A )甲 (B )乙(C )丙 (D )丁(12)已知二次函数y =ax 2+b x+c (a ≠0)的图象如下图所示,且关于x 的一元二次方程ax 2+bx +c -m =9没有实数根,有下列结论:①b 2-4ac >0;②abc <0;③m >2.其中,正确结论的个数是(A )0 (B )1 (C )2 (D )32014年天津市初中毕业生学业考试试卷数 学 第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在“答题卡”上。
2011年天津市初中毕业生学业考试试卷数 学 第Ⅰ卷注意事项。
1.每题选出答案后.用2B 铅笔把“答题卡“上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后.再选涂其他答案标号的信息点。
2.本卷共l0题.共30分.一、选择题耳(本大题共l0小题.每小题3分,共30分.在每小题给出的四个选顶中. 只有一项是符合题目要求的) (1)sin45°的值等于 (A)12 (B) 22 (C) 32(D) 1(2)下列汽车标志中,可以看作是中心对称图形的是(3)根据第六次全国人口普查的统计,截止到2010年11月1日零时,我国总人口约为 1 370 000 000人,将1 370 000 000用科学记数法表示应为 (A) 100.13710⨯ (B) 91.3710⨯ (C) 813.710⨯ (D) 713710⨯(4) 估计10的值在(A) 1到2之问 (B) 2到3之间 (C) 3到4之问 (D) 4刊5之问 (5) 如图.将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为(A) 15° (B) 30° (C) 45° (D) 60° (6) 已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是(A) 相交 (B) 相离 (C) 内切 (D) 外切(7) 右图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是(8)下图是甲、乙两人l0次射击成绩(环数)的条形统计图.则下列说法正确的是(A) 甲比乙的成绩稔定 (B) 乙比甲的成绩稳定(C) 甲、乙两人的成绩一样稳定 (D) 无法确定谁的成绩更稳定(9)一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网所用时间计算;方式B 除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。
2011年天津市初中毕业生学业考试试卷12一、选择题耳(本大题共l0小题.每小题3分,共30分.在每小题给出的四个选顶中.3只有一项是符合题目要求的)4(1)sin45°的值等于 B5(A) 12(B)22(C)32(D) 16(2)下列汽车标志中,可以看作是中心对称图形的是 A78(3)根据第六次全国人口普查的统计,截止到2010年11月1日零时,我国总人口约9为1 370 000 000人,将1 370 000 000用科学记数法表示应为 B10(A) 100.13710⨯ (B) 91.3710⨯ (C) 813.710⨯ (D) 713710⨯11(4) 估计10 C12(A) 1到2之问 (B) 2到3之间 (C) 3到4之问 (D) 4刊135之问14(5) 如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得15折痕BE、BF,则∠EBF的大小为 C16(A) 15° (B) 30° (C) 45° (D) 60°17考点:翻折变换(折叠问题);正方形的性质.18专题:计算题.19分析:利用翻折变换的不变量,可以得到∠EBF为直角的一半.20解答:解:∵将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、21 BF ,∴∠ABE=∠DBD=∠DBF=∠FBC ,∴∠EBF= 12∠ABC=45°,故选C .22 点评:本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,23 折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键24 (6) 已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位25 置关系是 D26 (A) 相交 (B) 相离 (C) 内切 (D) 外切27 (7) 右图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的28 三视图是 A2930 (8)下图是甲、乙两人l0次射击成绩(环数)的条形统计图.则下列说法正确的是 B3132 (A) 甲比乙的成绩稔定 (B) 乙比甲的成绩稳定33 (C) 甲、乙两人的成绩一样稳定 (D) 无法确定谁的成绩更稳定 34 方差;条形统计图.35 专题:计算题;数形结合.36 分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,37表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定38 解答:解:通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B . 39 点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明40 这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分41 布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.42 (9)一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.143 元的价格按上网所用时间计算;方式B 除收月基费20元外.再以每分0.0544 元的价格按上网所用时间计费。
2011年天津市初中毕业生学业考试试卷一、选择题耳(本大题共l0小题.每小题3分,共30分.在每小题给出的四个选顶中. 只有一项是符合题目要求的)(1)sin45°的值等于 B (A) 12 (B) 22 (C) 32 (D) 1(2)下列汽车标志中,可以看作是中心对称图形的是 A(3)根据第六次全国人口普查的统计,截止到2010年11月1日零时,我国总人口约为1 370 000 000人,将1 370 000 000用科学记数法表示应为 B(A) 100.13710⨯ (B) 91.3710⨯ (C) 813.710⨯ (D) 713710⨯(4) 估计10的值在 C(A) 1到2之问 (B) 2到3之间 (C) 3到4之问 (D) 4刊5之问(5) 如图.将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为 C(A) 15° (B) 30° (C) 45° (D) 60°考点:翻折变换(折叠问题);正方形的性质.专题:计算题.分析:利用翻折变换的不变量,可以得到∠EBF 为直角的一半.解答:解:∵将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,∴∠ABE=∠DBD=∠DBF=∠FBC ,∴∠EBF= 12∠ABC=45°,故选C . 点评:本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键(6) 已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是 D(A) 相交 (B) 相离 (C) 切 (D) 外切(7) 右图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是 A(8)下图是甲、乙两人l0次射击成绩(环数)的条形统计图.则下列说确的是 B(A) 甲比乙的成绩稔定 (B) 乙比甲的成绩稳定(C) 甲、乙两人的成绩一样稳定 (D) 无法确定谁的成绩更稳定 方差;条形统计图.专题:计算题;数形结合.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定解答:解:通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B .点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.(9)一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网所用时间计算;方式B 除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。
2011年天津市初中毕业生学业考试试卷数 学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页.试卷满分120分.考试时间100分钟.答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码.答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效.考试结束后,将本试卷和“答题卡”一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.2.本卷共10题,共30分.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) (1)sin 45︒的值等于( ) (A )12(B )22 (C )32 (D )1(2)下列汽车标志中,可以看作是中心对称图形的是( )(3)根据第六次全国人口普查的统计,截止到2010年11月1日零时,我国总人口约为 1 370 000 000人,将1 370 000 000用科学记数法表示应为( )(A )100.13710⨯ (B )91.3710⨯ (C )813.710⨯ (D )713710⨯ (4)估计10的值在( )(A)1到2之间 (B)2到3之间 (C)3到4之间 (D)4到5之间 (5)如图,将正方形纸片ABCD 折叠,使边AB CB 、均落在对角线BD 上,得折痕BE BF 、,则EBF ∠的大小为( )(A)15︒ (B)30︒ (C)45︒ (D)60︒(6)已知1O ⊙与2O ⊙的半径分别为3cm 和4cm ,若12O O =7cm ,则1O ⊙与2O ⊙的位置关系是( ) (A )相交 (B )相离 (C )内切 (D )外切(7)右图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度,则它的三视图是( )(A ) (B ) (C ) (D )(8)下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( )(A )甲比乙的成绩稳定 (B )乙比甲的成绩稳定(C )甲、乙两人的成绩一样稳定 (D )无法确定谁的成绩更稳定(9)一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网所用时间计费;方式B 除收月基费20元外,再以每分0.05元的价格按上网所用时间计费,若上网所用时间为x 分,计费为y 元,如图,是在同一直角坐标系中,分别描述两种计费方式的函数的图象,有下列结论:①图象甲描述的是方式A ;②图象乙描述的是方式B ;③当上网所用时间为500分时,选择方式B 省钱. 其中,正确结论的个数是( )(A )3 (B )2 (C )1 (D )0(10)若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是( ) (A)0x y z ++= (B) 20x y z +-= (C) 20y z x +-= (D) 20z x y +-=2011年天津市初中毕业生学业考试试卷数 学第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在“答题卡”上. 2.本卷共16题,共90分.二、填空题(本大题共8小题,每小题3分,共24分) (11)6-的相反数是 .(12)若分式211x x -+的值为0,则x 的值等于 .(13)已知一次函数的图象经过点()01,,且满足y 随x 的增大而增大,则该一次函数的解析式可以为 (写出一个即可).(14)如图,点D E F 、、分别是ABC △的边AB BC CA 、、的中点,连接DE EF FD 、、,则图中平行四边形的个数为 .(15)如图,AD AC 、分别是O ⊙的直径和弦,且30CAD OB AD ∠=︒⊥,,交AC 于点B ,若5OB =,则BC 的长等于 .(16)同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为 . (17)如图,六边形ABCDEF 的六个内角都相等,若132AB BC CD DE ====,,,则这个六边形的周长等于 .(18)如图,有一张长为5宽为3的矩形纸片ABCD ,要通过适当的剪拼,得到一个与之面积相等的正方形.(Ⅰ)该正方形的边长为 (结果保留根号);(Ⅱ)现要求只能用两条裁剪线,请你设计一种裁剪的方法,在图中画出裁剪线,并简要说明剪拼的过程:___________________________.三、解答题(本大题共8小题,共66分.解答应写出文字说明、演算步骤或推理过程) (19)(本小题6分) 解不等式组215432x x x x +>-⎧⎨+⎩,≤.(20)(本小题8分)已知一次函数1y x b =+(b 为常数)的图象与反比例函数2ky x=(k 为常数,且0k ≠)的图象相交于点()31P ,.(Ⅰ)求这两个函数的解析式;(Ⅱ)当3x >时,试判断1y 与2y 的大小,并说明理由.(21)(本小题8分)在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数 01234人数3 13 16 17 1(Ⅰ)求这50个样本数据的平均数、众数和中位数;(Ⅱ)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.已知AB 与O ⊙相切于点C ,OA OB =,OA OB 、与O ⊙分别交于点D E 、. (Ⅰ)如图①,若O ⊙的直径为8,10AB =,求OA 的长(结果保留根号); (Ⅱ)如图②,连接CD DE 、,若四边形ODCE 为菱形,求ODOA的值___________________________.(23)(本小题8分)某校兴趣小组坐游轮拍摄海河两岸美景.如图,游轮出发点A 与望海楼B 的距离为300m ,在A 处测得望海楼B 位于A 的北偏东30︒方向,游轮沿正北方向行驶一段时间后到达C ,在C 处测得望海楼B 位于C 的北偏东60︒方向,求此时游轮与望海楼之间的距离BC (3取1.73,结果保留整数).第(23)题注意:为了使同学们更好地解答本题,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.某商品现在的售价为每件35元,每天可卖出50件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?设每件商品降价x元、每天的销售额为y元.(Ⅰ)分析:根据问题中的数量关系,用含x的式子填表:原价每件降价1元每件降价2元…每件降价x元每件售价(元)35 34 33 …每天销量(件)50 52 54 …(Ⅱ)(由以上分析,用含x的式子表示y,并求出问题的解)在平面直角坐标系中,已知O 为坐标原点,点()()3004A B ,,,.以点A 为旋转中心,把ABO △顺时针旋转,得ACD △.记旋转角为ABO α∠,为β.(Ⅰ)如图①,当旋转后点D 恰好落在AB 边上时,求点D 的坐标;(Ⅱ)如图②,当旋转后满足BC x ∥轴时,求α与β之间的数量关系;(Ⅲ)当旋转后满足AOD β∠=时,求直线CD 的解析式(直接写出结果即可).已知抛物线211112C y x x =-+∶,点()11F ,.(Ⅰ)求抛物线1C 的顶点坐标;(Ⅱ)①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证112AF BF+=; ②取抛物线1C 上任意一点()()01p p pP x y x<<,,连接PF ,并延长交抛物线1C 于点()Q Q Q x y ,,试判断112PF QF+=是否成立?请说明理由; (Ⅲ)将抛物线1C 作适当的平移,得抛物线()22212C y x h =-∶,若2x m <≤时,2y x ≤恒成立,求m 的最大值.2011年天津市初中毕业生学业考试数学试题参考答案一、选择题(本大题共10小题,每小题3分,共30分) (1)B (2)A (3)B (4)C (5)C (6)D (7)A (8)B (9)A (10)D 二、填空题(本大题共8小题,每小题3分,共24分) (11)6 (12)1(13)1y x =+(答案不惟一,可以是形如10y kx k =+>,的一次函数) (14)3 (15)5 (16)16(17)15 (18)(Ⅰ)15;(Ⅱ)如图,①作出()154190BN BM MN MNB ===∠=︒,,; ②画出两条裁剪线()15AK BE AK BE BE AK ==⊥,,; ③平移ABE △和ADK △.此时,得到的四边形BEFG 即为所求. 三、解答题(本大题共8小题,共66分) (19)(本小题6分)解:215432x x x x +>-⎧⎨+⎩ ,①≤,②解不等式①,得6x >-. 解不等式②,得2x ≤.∴原不等式组的解集为62x -<≤.(20)(本小题8分)解:(Ⅰ)()31P 点,在一次函数1y x b =+的图象上,13b ∴=+,解得2b =-.∴一次函数的解析式为12y x =-.()31P 点,在反比例函数2ky x=的图象上, 13k∴=,解得3k =. ∴反比例函数的解析式为23y x=. (Ⅱ)12y y >,理由如下: 当3x =时,121y y ==.3x >y x y x∴当3x >时,12y y >.(21)(本小题8分)解:(Ⅰ)观察表格,可知这组样本数据的平均数是0311321631741250x ⨯+⨯+⨯+⨯+⨯==,∴这组样本数据的平均数为2.这组样本数据中,3出现了17次,出现的次数最多, ∴这组数据的众数为3.将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2, 有2222+=,∴这组数据的中位数为2.(Ⅱ) 在50名学生中,读书多于2册的学生有18名,有3001810850⨯=.∴根据样本数据,可以估计该校八年级300名学生在本次活动中读书多于2册的约有108名.(22)(本小题8分)解:(Ⅰ)如图①,连接OC ,则4OC =.AB 与O ⊙相切于点C , ∴OC AB ⊥.∴在OAB △中,由10OA OB AB ==,,得152AC AB ==.在Rt AOC △中,由勾股定理,得22224541OA OC AC =+=+=.(Ⅱ)如图②,连接OC ,则OC OD =.四边形ODCE 是菱形, OD DC ∴=. ODC ∴△为等边三角形,有60AOC ∠=︒.由(Ⅰ)知,90OCA ∠=︒,∴1302A OC OA ∠=︒∴=,. 12OD OA ∴=. (23)(本小题8分)解:根据题意,300AB =.如图,过点B 作BD AC ⊥,交AC 的延长线于点D . 在Rt ADB △中, 30BAD ∠=︒ ,1130015022BD AB ∴==⨯=. 在Rt CDB △中,sin BD DCB BC ∠=, 150300173sin sin 603BD BC DCB ∴===∠︒≈. 答:此时游轮与望海楼之间的距离约为173m .(24)(本小题8分)解:(Ⅰ)35x -;502x +.(Ⅱ)根据题意,每天的销售额()()()35502035y x x x =-+<<,配方,得()2251800y x =--+, ∴当5x =时,y 取得最大值1800.答:当每件商品降价5元时,可使每天的销售额最大,最大销售额为1800元.(25)(本小题10分)解:(Ⅰ) 点()()3004A B ,,,,得34OA OB ==,, ∴在Rt ABO △中,由勾股定理,得225AB OA OB =+=.根据题意,有3DA OA ==.如图①,过点D 作DM x ⊥轴于点M ,则MD OB ∥,ADM ABO ∴△∽△.有AD AM DMAB AO BO==, 得59335AD AM AO AB ==⨯=·,312455AD DM BO AB ==⨯=·. 又OM OA AM =-,得96355OM =-=. ∴点D 的坐标为61255⎛⎫ ⎪⎝⎭,. (Ⅱ)如图②,由已知,得CAB AC AB ∠=α=,.ABC ACB ∴∠=∠.∴在ABC △中,由180ABC ACB CAB ∠+∠+∠=︒,得2ABC α=180︒-∠.又BC x ∥轴,得90OBC ∠=︒,有9090ABC ABO ∠=︒-∠=︒-β,αβ∴=2.(Ⅲ)直线CD 的解析式为7424y x =-+或7424y x =-. (26)(本小题10分)解:(Ⅰ)()22111111222y x x x =-+=-+ , ∴抛物线1C 的顶点坐标为112⎛⎫ ⎪⎝⎭,. (Ⅱ)①根据题意,可得点()01A ,, ()11F ,,AB x ∴∥轴,得1AF BF ==,112AF BF∴+=. ②112PF QF+=成立. 理由如下:如图,过点()P P P x y ,作PM AB ⊥于点M ,则()1101P P P FM x PM y x =-=-<<,, Rt PMF ∴△中,由勾股定理,得()()2222211P P PF FM PM x y =+=-+-. 又点()P P P x y ,在抛物线1C 上, 得()211122P P y x =-+,即()2121P P x y -=-. ()222211P P P PF y y y ∴=-+-=,即P PF y =.过点()Q Q Q x y ,作QN AB ⊥,与AB 的延长线交于点N , 同理可得Q QF y =. 90PMF QNF MFP NFQ ∠=∠=︒∠=∠ ,, PMF QNF ∴△∽△. 有PF PM QF QN=. 这里1111P Q PM y PF QN y QF =-=-=-=-,, 11PF PF QF QF -∴=-,即112PF QF+=.(Ⅲ)令3y x =,设其图象与抛物线2C 交点的横坐标为00x x ',,且00x x '<, 抛物线2C 可以看作是抛物线212y x =左右平移得到的, 观察图象,随着抛物线2C 向右不断平移,00x x ',的值不断增大, ∴当满足2x m <≤,2y x ≤恒成立时,m 的最大值在0x '处取得. 可得,将02x =代入()212x h x -=, 有()21222h -=, 解得4h =或0h =(舍去),()22142y x ∴=-. 此时,由23y y =,得()2142x x -=, 解得0028x x '==,, m ∴的最大值为8.。