小学数学教师设计课堂练习之“五要”
- 格式:doc
- 大小:24.00 KB
- 文档页数:3
统一,使课本变“薄”,使知识变“少”。
因此在概念教学中,在使学生掌握概念的同时,还应揭示它们之间的本质联系。
如教学“梯形”时,教师将梯形的上底逐渐缩小,直至为0,梯形就变成了三角形。
而延长梯形的短底,使两底相等,则梯形又变成平行四边形或长方形等。
这样不但加强了梯形与其他图形之间的密切联系,而且促进了它们之间的有效分化,学生看到其中一种图形就能想象出另外的图形及相关的知识,大大提高了教学效率。
再如,教学“比”时,通过下表:项目联 系区 别除法被除数除号(÷)除数商一种运算分数分子分数线(—)分母分数值一种数比前项比号(∶)后项比值两个数间的倍数关系就可以密切比、除法、分数的联系,突出比表示两个数之间的关系;除法是一种运算;而分数是一种数的本质属性。
六、举实例,加深理解小学生的形象思维占主导地位,一切学习活动都对具体、形象的事例有所偏爱,对概念的学习也是如此。
因此在概念教学中要多让学生举例,使抽象的概念具体化、形象化,促进学生对概念的理解和掌握。
实例可以分为正面事例、反面事例和侧面事例,正面事例对概念的本质属性具有肯定、支持作用;反面事例可以从反面强化概念的本质属性;侧面事例具有削弱非本质属性对本质属性的干扰和影响的作用。
如教学“三角形”时,不少学生把“围成”与“组成”、“构成”等同起来,教师出示:就能突出“围”字的功效,揭示其内在的意义,强化三角形的本质属性。
再如教学“分数的基本性质”时,教师出示下列一组反面事例:a .分数的分子和分母同时加上或减去一个数,分数的大小不变。
b .分数的分子加上一个数,分母减去同一个数,分数大小不变。
c .分数的分子和分母分别乘以一个数,分数的大小不变。
d .分数的分子和分母分别除以一个数,分数的大小不变。
就可以加深学生对“同时”、“乘以或除以”、“同一个数”、“0除外”的理解和掌握,从反面强化对本质属性的理解和记忆。
总之,在概念教学中要注重教法研究、学法探讨,从而强化概念教学中学生的参与意识,并通过概念教学提高学生的数学素养,培养学生创新能力。
数学课堂练习设计的五个原则数学教学中,课堂练习的设计对帮助学生掌握课本知识,提高综合能力有着重要的作用,同时可以帮助教师及时了解学生掌握的情况,以便对症下药及时补救。
但是如果课堂练习随意化,不仅达不到目的,而且会浪费学生的时间,影响教师的判断以及后续的教学。
根据教育学的规律和具体的教学实践,笔者认为,数学课堂练习的设计应坚持以下五个原则,才能做到科学合理,实用有效。
一、有的放矢的原则课堂练习的设计一定要有明确的目的,既要根据课程标准的要求,又要根据教材的内容,还要针对学生的具体情况。
例如,教学《圆的方程》一课,为了让学生进一步熟悉圆的标准方程的结构特征,由数到形,教师可以设计练习,让学生写出圆心坐标及半径:①;②。
为了让学生通过确定圆心与半径这两个核心要素求解圆的标准方程,同时也为课上探究活动进行知识储备,教师可以设计求出满足下列条件的圆的标准方程的练习:①圆心坐标为C(-3,4),半径为5;②圆心坐标为C(8,-3),且经过M(2,-3);③圆心为直线。
虽然在后面学了圆的一般式方程之后,待定系数方法会比较实用,但由于在直线与圆的位置关系部分经常会用消元法解方程组,所以这种练习是非常有必要的。
通过练习学生明白,只要肯开动脑筋运用数形结合的思想,就容易想出解答的方法,而且学会一题多解。
二、循序渐进的原则课堂练习的设计要有层次性,以便指导学生循序渐进地进行训练。
课堂练习要求的大容量、密台阶、小步子,决定了它不可能是一个层次、一步就可以完成。
例如教学《圆的标准方程》一课,为了让学生掌握基本的知识,教师可要求他们写出下列圆的标准方程:①圆心为原点,半径为3;② 圆心为A(3,4),半径为;③经过点P(5,1),圆心为点C(8,-3)。
然后说出下列方程所表示的圆的圆心坐标和半径:①;②x2+y2-4x+10y+28=0;③。
圆是常见的平面几何图形,学生在初中时就学习过圆的有关知识,高中阶段学习了直线与方程后,知道在平面直角坐标系中直线可以用方程表示,通过方程,可以研究直线间的位置关系,直线与直线的交点等问题。
摘 要在推进课堂素质教育的今天,增强数学教学有效性的意识,尤其注重课堂教学中调动学生学习积极性,进行教学有效性的研究,激发学生的学习动机,促进学生创造性思维的发展,努力培养学生的创新意识,就显得十分迫切与必要。
本文就如何在小学数学课堂教学中调动学生学习积极方面阐述了作者的见解。
关键词 数学教学;调动学生;积极性在培养新世纪创造型人才的今天,激发学生的学习动机,调动学生学习积极性,促进学生创造性思维的发展,努力培养学生的创新意识,已成为新时代的小学数学教师的奋斗方向。
如何在小学数学课堂教学中调动学生学习积极呢?笔者在一线教学中经过多年的的探索与实践,总结出以下“五要”。
一、要有明晰的教学目标,使学生有的放矢作为教师教学思想的充分体现,教学目标是调动学生学习积极性、培养学生创造才能的前提。
教学目标的明晰与否,决定着教学活动的开展是否顺利,通常情况下,有什么样的教学目标,就会培养出什么样的学生。
因此,在教学目标的确立上,要坚定不移地遵循新课标的要求,扎扎实实地完成基础知识和基本技能的教学,将新课标中规定的“了解”“掌握”“熟练”等不同程度的要求一举拿下;在此基础上,教师要注重培养学生敢于突破教材、敢于突破自我的精神,鼓励学生活跃思维、拓宽思路、细心观察、学会合作、大胆质疑、勇于探索。
这样不仅有利于基础知识和基本技能教学目标的完成,而且还为学生的“八仙过海,各显神通”以及创新意识的培养,奠定了良好的基础。
二、要变“学会”为“会学”“乐学”,让学生主动参与古人云:“授人以鱼,不如授人以渔”。
要想真正陪养出学生的创新意识,要让学生主动参与,就不能局限在学生“学会”上,因为,学生的创新意识不是出自于“学会”,而是源自于“会学”“乐学”。
“学会”只不过是要学生接受知识、积累知识以及提高解决问题的能力罢了,而“会学”则不然。
“会学”关键在于一个“新”字上,它强调学生要发现新问题、提出新问题和解决新问题,它的侧重点是学生掌握学习的方法,而不是掌握学习的知识。
小学数学练习题的设计五原则作者:梁小桃来源:《师道·教研》2012年第08期一、趣味性要把知识变为技能,需要反复练习.单调重复的练习,学生会产生厌烦情绪,注意力不集中,有时白白浪费时间.根据巴甫洛夫学说,在学习活动中,如果有多种分析器参加,可以提高大脑皮层的兴奋,促进暂时联系的形成;如果仅有一种分析器连续地进行活动,大脑皮层则容易产生内抑制过程.所以在组织课堂练习时,注意设计练习的趣味性,把个体的活动变为全班学生的活动,使每个学生的手、脑、口、眼、耳等多种感官都参与教学活动,不断提高大脑皮层的兴奋性,使注意力保持持久.这样,将极大地提高了课堂练习的效率.如:在背乘法口诀时,我编了拍手操.学生边拍手边背口诀,伴随着优美动听的音乐,张张可爱的笑脸随着节拍,左右晃动,课堂气氛十分活跃.过去学生干巴巴地背口诀,有的滥竽充数,有的没有做到口诵心记,往往流于形式.如今这种活泼新颖的练习方法,学生十分喜欢,提高了学习效率.趣味性的练习方式主要有:开小小运动会、打数学扑克、评选优秀邮递员、猫捉老鼠、夺红旗、一把钥匙开一把锁、开数学医院、放风筝、摘苹果、开火车、接力赛等等.为了使练习更有趣味性,我制作了十几种小动物头饰,做游戏时,让学生戴在头上.无论是一面红旗或一个头饰,还是一幅色彩鲜艳的图画,都增强了练习的趣味性,使学生兴趣盎然,争先恐后地做数学练习.二、生活性数学来源于生活实际,学习数学可以解决生活中的实际问题.教学中,联系生活实际,寻找生活中的数学素材,将学生熟悉的蕴含着数学知识的生活实例引进课堂,就能使学生亲身体验到“数学就在自己身边、身边到处存在着数学问题”,可有效地唤起学生的求知欲望,并培养学生灵活运用知识解答实际问题的能力.如在教学“计量单位”时结合日记设计一题:早晨,我从2分米长的床上起来,刷牙﹑洗脸后,坐在8米高的餐桌前喝了一杯250克的牛奶和一个65千克的鸡蛋.然后,背起3吨重的书包,向学校跑去.这是学生熟悉的场景,边读边在头脑中形成相应的表象,学生根据已有认知,对不符合实际的计量单位进行订正,强烈的表现欲使大家争先恐后地举手发言,学习的积极性马上调动了起来.课堂中生活化的练习,不仅能更好地调动学生的学习积极性,而且从生活场景出发,更容易引导学生探索、巩固知识.比如在教学“可能性”时,我把体育彩票拿到课堂上来,讨论中奖的可能性;在学平面图形面积,把学校征用的土地,家庭装修等搬到课堂上,讨论图形面积的有关问题;教学统计知识,把书店职员做的调查、统计、建议这一系列的工作让学生来做;从小朋友过“六一”节的场景引出幼儿(1)班买来64个苹果,160颗水果糖,平均分给班里的全体小朋友,刚好分完.这个班有多少人?”……形象、具体、生动、亲切的生活事例,使学生感受到数学在日常生活中广泛的作用,理解了数学的价值,增进了对数学的热爱.三、实践性“纸上得来终觉浅,绝知此事要躬行”,为此,倡导数学练习设计的实践性,在体验中学习知识,在实践中运用知识、盘活知识,通过实践使之再学习、再探索、再提高,这不失为一种好的练习方法.如学习《千克和克的认识》后可以布置让学生调查物品的重量:一袋洗衣粉、一个鸡蛋、一袋大米、一台电视机;学了《数的组成》让学生探究商场里的商品为什么都包装成一包一包、一盒一盒和一箱一箱的原因;学了《认识钟表》后可以让学生在星期日记录整点时的活动;学习《统计》后可以让学生统计城市里主要道路上车辆通行的情况,为交通局制定车辆分流方案提供参考,这样的练习设计,引导学生从小课堂走向大社会,给学生以更广阔的学习数学的空间,学生学到的将不仅仅是数学知识本身,更重要的是观察、分析、合作、交流、创新、实践等综合素质得到了培养和训练.四、开放性有效的数学学习过程不能单纯地依赖模仿和记忆.因此练习的设计要减少指令性成分,增强练习的开放性.这种开放性练习具有很高的创造教育价值,极富挑战性.它有利于拓宽学生的思维空间,能有效的挖掘学生的创造潜力,在培养学生的创新意识方面有着很大的优势.教师要不失时机地运用开放性的练习引导学生学会分析、学会筛选、学会思考、学会整合.如教学“简单的统计”后,我没有复印大量的统计表让学生填写,而是设计了这样一个开放性题目:根据自己的兴趣爱好去统计某一类事物,并制成简单的统计表.还可以根据你所统计出的数据发表你的看法或提出你的意见.你可以独立完成,也可以和同学合作完成.通过调查,我发现学生都很喜欢这次作业,连平时一直作业拖拉的学生也早早的完成了.又如:设计一个逛花店的情境,在花店中有各种各样的花:康乃馨多少钱一枝、百合多少钱一枝、玫瑰多少钱一枝……让学生根据以上信息提出问题.学生的问题是丰富多彩的,而且又是非常现实的,若学生可以利用自己的经验解决这些问题,就可以了.这样的目标要求是开放的、动态的,更关注了学生发展领域的目标.五、层次性课堂上教师要始终面向全体,心中装着各层次学生的教学目标,进行全方位的运筹设计,确保各层次学生都能达到自己的目标.如“圆的周长”一课:对于能力较弱层面的学生让他们在合作学习初步认识圆周率,掌握圆周长计算公式,能进行计算即可;中等层面的学生要求在此基础上积极参与公式的推导,理解圆的周长和圆周率的意义,经历观察、猜想、实践、证明等数学活动,培养其动手实践与合作学习的能力;而优秀层面的学生要求在经历了以上数学活动后能产生一些新的问题,如圆周长的一半也可以用字母πr表示,培养他们自主探索和善于创造性发现问题的能力.并且能把推导圆周长的活动过程由他们去引领其他学生从问题的产生推向问题的解决,培养学生形成解决问题的一些基本策略.。
设计数学问题需做到”五要”美国著名科学家哈尔莫斯说:”问题是数学的心脏,有了问题,思维才有了方向;有了问题,思维才有了动力;有了问题,思维才有了创新”。
在课堂教学中如何设计数学问题呢?笔者认为做到”五要”。
一要有创造性在数学教学中,问题应不同于简单模仿例题的习题,它不是对数学教材内容的简单模仿,不能靠学生计算的熟练程度来解决,它是数学知识的升华,要在学生原有的基础上具有一定的创造性。
如在教学”求平均数”时设计这样一个问题:有一个游泳池平均水深1.3米,一个身高1.5米,一点也不懂游泳的小孩,如果掉在这个游泳池中。
会不会有危险?这个问题就不是例题的简单模仿,不能光凭学生对平均数的求法的熟练程度来解决这个问题,而要对平均数的概念要有深刻的理解。
在解决该问题的过程中,学生需要在一个具有现实背景的问题情境中去准确把握”平均数”的意义,即”平均水深1.3米”意味着什么。
这个问题是单纯的计算无法解决的,只有真正理解平均数的概念,才能解决这个问题。
不同的学生由于经验背景、认知特点和思维方式的差异,往往导致他们对同一数学现象作出不同的认识、理解和分析,从而表现出鲜明的个性化色彩。
教师提的问题可以”大气”些,这样才能给不同的学生留有充分思考、想象的余地和自由发挥的空间。
二要重视情境运用数学知识的形成源于生活的实际需要和数学内部的需要。
义务教育阶段学生学习的大量知识均来源于生活实际。
这就为我们努力从学生的生活实际入手提出问题提供了大量的背景材料。
因此设计问题更应贴近学生的生活,使数学问题从学生的生活情境中自然生成,使数学和生活变得更为密切,为学生主动从数学的角度去分析现实问题、解决现实问题提供示例。
如在教学归一应用题时,设计这样一个问题:先发给每个同学一张32开的白纸,让同学们用直尺量出这张纸的长和宽。
(学生很快量出,并能正确回答)然后问:请大家量出这张纸的厚度。
(学生量来量去量不出来,由此展开探究。
)这个问题设计就重视了学生情境的运用,通过学生的实践活动(情境活动),出现一个问题,并与数学有机的联系在一起。
数学2013·11为了追求优质高效的课堂,练习是必不可少的,为了更好地提高课堂教学效率,对练习的设计要求就非常高。
下面将根据自身教学实践及研究,谈谈对课堂练习有效性的几点认识。
一、循序渐进,遵循阶梯性根据小学生的认知规律,练习设计必须由易到难,由简到繁,由单一到综合,逐步提高。
为了使学生熟练掌握综合性知识,应准确控制练习量,在课堂教学的有限时间内,应针对每一知识的层次要求,选择出适量的练习题给学生练,不搞题海战术。
对不同的学生应有不同的数量和质量的要求。
例如,在教《圆柱体表面积》时,我结合课本中的题目,设计了以下一组练习题:(1)一个圆柱形汽油桶,底面积是78.5平方分米,高是20分米,做这样一个汽油桶需要铁皮多少平方分米?(得数保留整十平方分)(2)一个圆柱形汽油桶,底面半径是5分米,高是20分米,做这样一个汽油桶需要铁皮多少平方分米?(得数保留整十平方分米)(3)一个圆柱形汽油桶,底面直径是10分米,高是20分米,做这样一个汽油桶需要铁皮多少平方分米?(得数保留整十平方分米)(4)做一个高5分米,底面半径1分米的无盖圆柱形铁皮水桶,大约要铁皮多少平方分米?(5)一种圆柱形铁皮通风管,横截面的直径是10厘米,长1米,做这样的通风管需要铁皮多少平方厘米?这样的一组练习很具有代表性,又有层次性,学生在这一组练习中,认识到所给不同的已知条件,求相同的一个问题的情形,同时又明白了实际生活中要根据具体问题来灵活确定求哪些面的面积,在交流和讨论的过程中进一步清楚了解答这类问题时要注意统一单位并要根据具体情况取近似值等。
以上的练习是由易到难,有简到繁,层层递进,有利于发展学生的思维空间,提高学习能力。
二、突出重点,注重针对性在平时的教学中,教师要善于总结经验,设计的习题要目标明确,注重针对性,有的放矢。
做到重点内容反复练,难点内容要着重练,易错的地方要突出练,易混的地方对比练。
这样的才能帮助学生领会知识、掌握知识。
谈小学数学课堂练习设计“五要”小学数学课堂练习是学生掌握新知识巩固旧知识的主要形式,但多练不是指局限于机械重复的练习,而是要根据不同环节和不同目的而设计不同认知水平的习题。
因此,练习的设计需要优化,这就要求教师在设计练习时,要精心钻研教材,设计的练习要使学生在知识的技能和技巧方面能有所提高。
如何设计课堂练习呢?我认为:一、要有目的性在数学课堂教学中,教学目标也是学生的学习目标,练习的设计应该受教学目标的制约。
只有根据教学目标设计出来的练习,才有可能做到少而精。
数学教学目标分为三级:认识、理解、掌握。
因此,练习的设计也要相应分为三级,要注意三级之间不可偏废和越级。
二、要有层次性在小学数学课本里配备的练习题在编排上体现了由浅入深,循序渐进的特点,教师要认真钻研教材,仔细分析研究编排意图,将这些习题进行分类归纳,并根据整体性原则和学生的认识规律,设计的练习要做到循序渐进逐步提高。
在探究新知过后,练习可分三个层次进行训练:第一层是基本练习,可设计与例题相仿的题,目的是让学生熟悉新知识;第二个层次是深化练习可设计一些变式题、判断题、改错题等,其目的是提高学生灵活应用知识的能力;第三个层次是综合性练习,可设计一些新旧知识结合的题,其目的是把学生新学的知识纳入学生原有知识结构体系中。
如:我教学《两位数加一位数、整十数》(一)说计算方法:①35+3、②30+15、③25+60(基本练习);(二)比较每组两题有什么区别和联系①64+3和64+30 ②1+47和10+47 、③40+6和40+56(对比练习),(三)口算:①24+30+5、②40+5+14、③7+92+60 (综合练习)三、要有针对性数学课堂教学中的练习设计一定要有针对性,每次设计的一个练习都要突出一个重点,把练习的意图体现出来。
如:新知导入的练习题就要设计学习新知识时所用到的知识、技能及其思考方法的练习。
如:教学《十几减9》时,可设计“9加几”的题和“9加几填未知加数”的题,并复习已学过的加、减法的关系,这样就为学习新课《十几减9》作好了铺垫。
有效的数学课堂练习应做到“五注重”数学课堂练习是掌握数学知识,形成技能技巧的重要手段,是培养学生能力、发展学生智力的重要途径。
练习有无效练习与有效练习之分。
课堂练习的有效性是指能使学生快速、深刻地巩固知识,熟练技能,同时还要能发展学生的思维,培养学生的综合能力。
那种靠大量的反复训练让学生掌握知识的练习不是有效练习,那种只让学生掌握知识而忽视学生能力发展的练习也不是我们所提倡的有效练习。
笔者根据平时的教学实践,认为有效的课堂练习应做到“五注重”。
一、有效的练习应注重层次性《数学课程标准》指出:“数学教育要面向全体学生……使不同的人在数学上得到不同的发展。
”这表明在使所有学生获得共同的数学教育的同时,还要让更多的学生有机会接触、了解或钻研自己感兴趣的数学问题,最大限度地满足每一个学生的数学需要。
因此,教师设计的练习应充分体现因材施教、因人施教、分层施教的原则,从教材和学生的实际出发,根据教学内容的要求与学生的心理特点,有针对性地设计练习。
教师还要充分考虑学生的差异,在练习数量和质量的要求上注意灵活、机动,使练习具有层次性,可以满足各层次学生的需要。
练习设计中的层次性,是指练习有坡度,由易到难,从简单到复杂,从基本练习到变式练习再到综合练习、实践练习、开放练习,使每个层次的学生都有“事”可做。
二、有效的练习应注重趣味性儿童的心理特点是好奇、好动、好玩。
设计练习时要充分考虑到儿童的心理特点,从新的练习形式、新的题型、新的要求出发,避免陈旧、呆板、单调重复的练习模式,保持练习的形式新颖,生动有趣。
如让学生做练习的主人,设计改错题;让学生当医生,设计判断题;让学生当法官,设计操作实验题……从而调动学生各个感官参与练习。
也可以根据学生的年龄和心理特点,从学生的生活经验出发,设计生动有趣、直观形象的数学练习,如猜谜语、讲故事、做游戏、直观演示、模拟表演、各类小竞赛等。
这种游戏性、趣味性、竞赛性的练习,既能激发学生的求知欲望,培养学生做练习的兴趣,又能取得满意的练习效果,使学生在轻松、愉快的氛围中完成练习,在生动、具体的情境中理解和认识数学知识,教师何乐而不为呢?三、有效的练习应注重开放性设计练习时,教师要有意识地设计一些能开拓学生思路的习题,使学生自主探索不同的解决问题策略。
小学数学教师设计课堂练习之“五要”
新课标要求教师要认真钻研教材,理解编排意图,根据学生知识水平的差异,对教材里习题作适当调整、组合、补充,组织行之有效的练习,使之能有层次性、针对性、多样性、开放性、实践性,适应不同程度学生的需要。
众所周知,练习是教学的重要环节,既是检查学生新知识掌握程度的重要手段,又是教学效果的最真实可靠的反馈。
如何让数学课堂练习散发出新课程的气息,进一步优化练习,使学生掌握知识,形成技能,提高分析、解决问题的能力,是新理念下教师们所应该思考的问题。
一、设计课堂练习要以生为本
我们设计练习时要遵循认知规律,以生为本,还要注意难易适度,要有层次、有梯度。
教师在设计时,可以根据教学目标挖掘习题本身的内在力量,设计游戏、猜谜语、走数学迷宫等活动,开展口头练习、书面练习、实践练习等。
只有让学生参与到学习活动中来,才能产生强大的学习动机,才能更加积极主动地学习,使练习产生事半功倍的效果。
二、设计课堂练习要富有创意
教师在设计练习时必须灵活设计课堂练习的内容,要富有创意。
要明确每一道题的练习意义,培养学生学习数学的兴趣、发展数学思维能力,真正实现练习的有效性。
有创意的练习,能使学生兴趣盎然的投入到学习活动中去,能稳定学生的注意力,深化学生的思维,激发学生学习的主动性和积极性。
如《质数与合数》一课,为了避免学生的厌学情绪,教师可以精心设计如下练习。
在1-20中,奇数有___,偶数有___,合数有___,质数有___,这一练习让学生个体独立完成。
然后让学生小组合作讨论完成“发现了什么?”同学们得出了很多结论,如:质数不一定全是奇数;合数不一定全是偶数等。
这样不仅题型有所改变,而且练习形式也体现了个体与小组结合的特点。
这样的设计使知识性与趣味性得到了统一。
三、设计课堂练习要层次分明
在课堂中要以各种形式加强对基础知识的练习,应该做到新知识及时练,相关知识结合练,主要知识加强练。
首先,要根据教学内容和教学目标,准确地把握住各部分知识结构中的重点和难点;其次,要遵循由易到难,由简到繁的发展顺序去安排,使不同层次的学生都有获得成功的快乐。
如在教学《加法的交换律和结合律》时,教师可以设计一组层次性非常强的习题:第一层次(基本题)简便计算下列各题:45+140+15,52+75+48+15。
第二层次(变式题)简便计算下列各题:(52+13)+(87+48),(163+61)+(37+139)。
第三层次(综合题,新知适当结合旧知)下列各题能简便计算的简便计算:(36+29)+127,(98+52)+(48+102),(29+38)+62+71。
第四层次(发展题,供学有余力者用)计算:2+3-4+5-6+7-8+9-10+11-12+13-14+15。
这样,所有学生都能量力而行,尝到了成功的欢乐,对数学学习更有信心了,使他们学习更加主动与积极。
四、设计课堂练习要开放灵活
开放性是相对封闭性练习来讲的,一般是指条件不完备、问题不完备、答案不唯一、解题方法不统一的练习,具有发散性、探究性、发展性和创新性。
有利于促进学生积极思考,激活思路,充分调动起学生内部的智力活动,能从不同方向去寻求最佳解题策略。
课堂练习适当增加练习的开放性,能使学生的思路更广阔、更灵活。
开放的方法有(1)条件开放,培养学生思维的选择性(2)问题开放,培养学生思维的多样性(3)综合开放,培养学生思维的广阔性。
如在学完《长方体和正方体的表面积》后,教师给学生创设了一道开放题:“计算装修自己家的房子要用多少钱?看谁家的装修既漂亮又省钱?”不要以为这样的题目很简单,其实不然。
大家想想要用到多少知识:长度的测量、长方体和正方体的表面积的计算、商品价格的调查、装修材料的选择……这样的设计既体现了数学教学的开放化和个性化,又培养学生的创新精神和实践能力,还有助于学生知识技能的掌握和巩固。
五、设计课堂练习要典型精华
一节课时间有限,因此我们课堂练习的设计要少而精,这就要求我们设计的练习具备典型性,既能集中体现课堂教学内容的精华,做到题量适当,恰到好处,又能通过设计的练习达到巩固知识,举一反三、拓展思维、培养基本技能的目的。
总之,有效提高数学课堂练习的质量,需要很多策略的相互渗透和相互使用,在不同的教学内容下需要教师智慧的、合理的采用相应的策略。