下(4)《数据的分析》练习题
- 格式:doc
- 大小:159.50 KB
- 文档页数:5
一、选择题1.某篮球队5名场上队员的身高(单位:cm )分别是183、187、190、200、195,现用一名身高为210cm 的队员换下场上身高为195cm 的队员,与换人前相比,场上队员身高的( )A .平均数变大,方差变小B .平均数变小,方差变大C .平均数变大,方差变大D .平均数变小,方差变小 2.已知一组数据:6,2,4,x ,5,它们的平均数是4,则x 的值为( ) A .4B .3C .2D .13.下表是某地援鄂医疗人员的年龄分布A .众数、中位数B .众数、方差C .平均数、方差D .平均数、中位数4.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个得分.若去掉一个最低分,平均分为x ;去掉一个最高分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( ) A .y z x >>B .x z y >>C .y x z >>D .z y x >>5.“按情就是命令,防控就是责任!”在去年新冠肺炎疫情爆发期间,我区教师发扬不畏艰险、无私奉献的精神,挺身而出,协助社区做好疫情监测、排查、防控等工作.现将50名教师参加社区工作时间t (单位:天)的情况统计如下:①平均数一定在40~50之间; ②平均数可能在40~50之间; ③中位数一定是45; ④众数一定是50. 其中正确的推断是( ) A .①④B .②③C .③④D .②③④6.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数与中位数分别是( )A .4次,4次B .3.5次,4次C .4次,3.5次D .3次,3.5次7.已知一组数据x 1,x 2,x 3,把每个数据都减去2,得到一组新数据x 1-2,x 2-2,x 3-2,对比这两组数据的统计量不变的是( ) A .平均数B .方差C .中位数D .众数8.某校八年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的() A .中位数B .众数C .平均数D .不能确定9.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是( )A .30和 20B .30和25C .30和22.5D .30和17.510.小明在计算一组数据的方差时,列出的公式如下:2222221(7)(8)(8)(8)(9)s x x x x x n⎡⎤=⨯-+-+-+-+-⎣⎦,根据公式信息,下列说法中,错误的是( ) A .数据个数是5 B .数据平均数是8 C .数据众数是8 D .数据方差是011.某学校生物兴趣小组11人到校外采集标本,其中3人每人采集4件,4人每人采集3件,4人每人采集5件,则这个兴趣小组平均每人采集标本( ) A .3件 B .4件 C .5件 D .6件 12.五个正整数2、4、5、m 、n 的平均数是3,且m ≠n ,则这五个数的中位数是( )A .5B .4C .3.5D .3二、填空题13.数据﹣3、﹣2、1、3.6、x 、5的中位数是1,那么这组数据的众数是_____. 14.已知x 1,x 2…x 10的平均数是a ;x 11 ,x 12,…x 30的平均数是b ,则x 1,x 2…x 30的平均数是____.15.一组数据2,3-,0,3,6,4的方差是_________.16.某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩2:3:5的比计算学期成绩.小明同学本学期三项成绩依次为90分、80分、90分,则小明同学本学期的体育成绩是_____分.17.甲、乙两名射击运动员在平时某练习中的成绩如下表:甲的成绩乙的成绩环数78910环数78910频数2332频数4664则甲、乙两名射击运动员在该练习中成绩的方差S甲、2S乙的大小关系为________.18.青少年科技创新大赛是一项具有30年历史的全国性青少年科技创新成果和科学探究项目的综合性科技竞赛.某校准备从甲、乙、丙、丁四个科创小组中选出一组参加青少年科技创新大赛.表格反映的是各组平时成绩的平均数x(单位:分),及方差2s,如果要选出一个成绩较好且状态稳定的组去参赛,那么应去的组是________.甲乙丙丁x78872s1 1.20.9 1.819.小天想要计算一组数据92,90,94,86,99,85的方差S02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为S12,则S12__S02(填“>”,“=”或”<”)20.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如表(单位:分),则学期总评成绩优秀的是________.纸笔测试实践能力成长记录甲908395乙889095丙908890三、解答题21.某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为 人,扇形统计图中的m = ,条形统计图中的n = ;(2)求统计调查的初中学生每天睡眠时间的平均数和方差.22.聪聪利用暑假到工厂进行社会实践活动,他跟在张师傅后学加工某种机器零件,共加工9天,每天加工的机器零件个数如下:1,2,3,4,5,6,7,8,9. (1)求聪聪这9天加工零件数的平均数;(2)聪聪问张师傅加工的零件数,张师傅说;我每天加工的零件数是两位数,并且每天加工零件数的个位上数字都与你相同,这9天加工零件数的平均数比你多30但方差和你一样,听完张师傅的话,聪聪笑着说,张师傅我知道了,根据上面的信息,请你直接写出张师傅每天加工的零件数.23.某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图(横轴的数据为组中值),请结合直方图提供的信息,回答下列问题:(1)该班共有__________名同学参加这次测验; (2)这次测验成绩的中位数落在__________分数段内;(3)若该校一共有600名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?24.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测试,两个人在相同条件下各射靶5次,甲命中的环数分别是:10、6、10、6、8,乙命中的环数分别是:7、9、7、8、9.经过计算,甲命中的平均数为8x =甲,方差为23.2S =甲.(1)求乙命中的平均数x 乙和方差2S 乙;(2)现从甲、乙两名队员中选出一人去参加射击比赛,你认为应该选哪名队员去?为什么?25.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A :6070x ≤<;B :7080x ≤<;C :8090x ≤<;D :90100x ≤≤(1)请将条形统计图补充完整;(2)在扇形统计图中,计算出D :90100x ≤≤这一组对应的圆心角是_______度;(3)所抽取学生成绩的中位数在哪个组内,并说明理由;(4)若该学校有1500名学生,估计这次竞赛成绩在A :6070x ≤<组的学生有多少人?26.某学校开展了“远离新冠珍爱生命”的防“新冠”安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:.8085,A x < .8590,.9095,.95100B x C x D x <<).下面给出了部分信息:七年级10名学生的竞赛成绩是:80,86,99,96,90,99,100,82,89,99;抽取的八年级10名学生的竞赛成绩没有低于80分的,且在C 组中的数据是:94,94,90. 根据以上信息,解答下列问题: (1)直接写出图表中,,a b c 的值;(2)计算d 的值,并判断七、八年级中哪个年级学生的竞赛成绩更稳定?请说明理由; (3)该学校七、八年级共2160人参加了此次竞赛活动,估计参加此次竞赛活动获得成绩优秀(95x ≥)的学生人数是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别计算出原数据和新数据的平均数和方差即可得. 【详解】解:原数据的平均数为15×(183+187+190+200+195)=191(cm ), 方差为15×[(183-191)2+(187-191)2+(190-191)2+(200-191)2+(195-191)2]=35.6(cm 2),新数据的平均数为15×(183+187+190+200+210)=194(cm ), 方差为15×[(183-194)2+(187-194)2+(190-194)2+(200-194)2+(210-194)2]=95.6(cm 2),∴平均数变大,方差变大, 故选:C . 【点睛】本题主要考查方差和平均数,解题的关键是掌握方差的计算公式. 2.B解析:B 【分析】根据算术平均数的计算公式列方程解答即可. 【详解】 解:由题意得:642545x +++=+,解得:x=3. 故选:B . 【点睛】本题考查了算术平均数的计算方法,掌握计算公式是解决问题的前提.3.A解析:A 【分析】由频数分布表可知后两组的频数和为18,即可得知总人数,结合前两组的频数知出现次数最多的数据及中位数,进而可得答案. 【详解】解:由表可知,年龄为31岁与年龄为32岁的频数和为m +18−m =18, 则总人数为:15+20+18=53,故该组数据的众数为30岁,中位数为:30岁,即对于不同的m ,关于年龄的统计量不会发生改变的是众数和中位数, 故选:A . 【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.4.B解析:B 【分析】根据题意,可以判断x 、y 、z 的大小关系,从而可以解答本题. 【详解】解:由题意可得,去掉一个最低分,平均分为x ,此时x 的值最大;若去掉一个最高分,平均分为y ,则此时的y 一定小于同时去掉一个最高分和一个最低分后的平均分为z , 故x z y >>, 故选:B . 【点睛】本题考查算术平均数,解答本题的关键是明确算术平均数的含义.5.B解析:B 【分析】先按平均数公式列出代数式,50t ≥取最小值40.8x =,当73t >天时平均数大于50天,按中位数定义将数据排序,第25与26的平均数在45天,众数定义是t 即可判断. 【详解】1542563574513201040205050l lx ⨯+⨯+⨯+⨯++==,4220+5l x +=, 50t ≥, 4220+20+20.8=40.85tx +=≥, 4220+505tx +=>, 73t >,当73t >天时平均数大于50天,中位数:按表知数据已经排序,第25与26的平均数在45天, 众数:t(50t ≥),②平均数可能在40~50之间正确,③中位数一定是45正确.①平均数一定在40~50之间不正确,④众数一定是50不正确. 其中正确的推断是②,③ 故选择:B . 【点睛】本题考查平均数,中位数,众数,掌握平均数,中位数,众数的定义,会根据具体内容确定平均数,中位数,以及众数是解题关键.6.A解析:A 【分析】加权平均数:若n 个数x 1,x 2,x 3,…,x n 的权分别是w 1,w 2,w 3,…,w n ,则(x 1w 1+x 2w 2+…+x n w n )÷(w 1+w 2+…+w n )叫做这n 个数的加权平均数,依此列式计算即可求出参加篮球运动次数的平均数, 根据中位数的定义,将这组数据按从小到大或从大到小排列,处在中间位置的数据是中位数,当数据的个数为偶数时,中间两个数据的平均数为这组数据的中位数. 【详解】解:(2×2+3×2+4×10+5×6)÷20 =(4+6+40+30)÷20 =80÷20 =4(次).由于这组数据共有20个,所以中位数为第10和11个数据的平均数,因此这组数据的中位数为(4+4)÷2=4(次) 故选:A. 【点睛】本题考查的是加权平均数和中位数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确,掌握相关定义是解题的关键.7.B解析:B 【分析】根据平均数与方差的计算公式、中位数与众数的定义即可得. 【详解】由中位数与众数的定义得:中位数和众数均会变化 原来一组数据的平均数为1233x x x x ++= 新的一组数据的平均数为1231232222233x x x x x x x -+-+-++=-=-则这两组数据的平均数发生变化原来一组数据的方差为22221231()()()3S x x x x x x ⎡⎤=-+-+-⎣⎦新的一组数据的方差为2221231(22)(22)(22)3x x x x x x ⎡⎤--++--++--+⎣⎦2221231()()()3x x x x x x ⎡⎤=-+-+-⎣⎦ 2=S则这两组数据的方差不变 故选:B .【点睛】本题考查了平均数与方差的计算公式、中位数与众数的定义,熟记掌握数据整理中的相关概念和公式是解题关键.8.A解析:A 【分析】11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前5名,故应知道自己的成绩和中位数. 故选:A . 【点睛】本题考查了统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.9.C解析:C 【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得. 【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30, 所以该组数据的众数为30、中位数为20252+=22.5, 故选C . 【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.D解析:D 【分析】根据题目中的方差公式可以判断各个选项中的结论是否正确,从而可以解答本题. 【详解】解:∵2222221(7)(8)(8)(8)(9)s x x x x x n⎡⎤=⨯-+-+-+-+-⎣⎦, ∴数据个数是5,故选项A 正确,数据平均数是:788895++++=8,故选项B 正确,数据众数是8,故选项C正确,数据方差是:s2=15[(7−8)2+(8−8)2+(8−8)2+(8−8)2+(9−8)2]=25,故选项D错误,故选:D.【点睛】本题考查了方差、样本容量、算术平均数、众数,解题的关键是明确题意,会求一组数据的方差、样本容量、算术平均数、众数.11.B解析:B【分析】根据加权平均数的计算公式,先列出算式,再进行计算即可.【详解】解:∵3人每人采集4件,4人每人采集3件,4人每人采集5件,∴则这个兴趣小组平均每人采集标本是(4×3+3×4+5×4)÷11=4(件).故选:B.【点睛】本题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是找出权重,根据公式列出算式.12.D解析:D【分析】根据五个正整数2、4、m、n的平均数是3,且m≠n,可以得到m、n的值,从而可以得到这组数据的中位数.【详解】∵五个正整数2、4、5、m、n的平均数是3,且m≠n,∴(2+4+5+m+n)÷5=3,∴m+n=4,∴m=1,n=3或m=3,n=1,∴这组数据按照从小到大排列是1,2,3,4,5,∴这五个数的中位数是3,故选:D.【点睛】本题考查平均数和中位数,解答本题的关键是明确平均数、中位数的含义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.二、填空题13.1【分析】先根据中位数的定义求出x的值再根据众数的定义即可求解【详解】解:∵数据﹣3﹣2136x5的中位数是1∴x =1∴这组数据的众数是1故答案为:1【点睛】本题为统计题考查众数与中位数的意义中位数解析:1【分析】先根据中位数的定义求出x 的值,再根据众数的定义即可求解.【详解】解:∵数据﹣3、﹣2、1、3.6、x 、5的中位数是1,∴x =1,∴这组数据的众数是1.故答案为:1.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.14.【分析】利用平均数的定义利用数据x1x2…x10的平均数为ax11x12…x30的平均数为b 可求出x1+x2+…+x10=10ax11+x12+…+x30=20b 进而即可求出答案【详解】因为数据x1 解析:23a b + 【分析】利用平均数的定义,利用数据x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 30的平均数为b ,可求出x 1+x 2+…+x 10=10a ,x 11+x 12+…+x 30=20b ,进而即可求出答案.【详解】因为数据x 1,x 2,…,x 10的平均数为a ,则有x 1+x 2+…+x 10=10a ,因为x 11,x 12,…,x 30的平均数为b ,则有x 11+x 12+…+x 30=20b ,∴x 1,x 2,…,x 30的平均数=10+2300a b =23a b +. 故答案为:23a b +. 【点睛】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数. 15.【分析】先求得数据的平均数然后代入方差公式计算即可【详解】解:数据的平均数=(2-3+3+6+4)=2方差故答案为【点睛】本题考查方差的定义牢记方差公式是解答本题的关键解析:253【分析】先求得数据的平均数,然后代入方差公式计算即可.【详解】解:数据的平均数=16(2-3+3+6+4)=2, 方差2222222125(22)(32)(02)(32)(62)(42)63s ⎡⎤=-+--+-+-+-+-=⎣⎦. 故答案为253. 【点睛】本题考查方差的定义,牢记方差公式是解答本题的关键.16.87【分析】根据加权平均数的计算方法进行计算即可【详解】解:故答案为:87【点睛】本题考查加权平均数的意义和计算方法理解加权平均数的意义掌握加权平均数的计算方法是正确解答的前提解析:87【分析】根据加权平均数的计算方法进行计算即可.【详解】 解:90280390587235x ⨯+⨯+⨯==++, 故答案为:87.【点睛】 本题考查加权平均数的意义和计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是正确解答的前提.17.【分析】根据方差的定义列式计算即可【详解】解:∵甲的平均成绩=×(7×2+8×3+9×3+10×2)=85乙的平均成绩为×(7×4+8×6+9×6+10×4)=85∴s 甲2=(7-85)2×2+(8解析:22S S =甲乙【分析】根据方差的定义列式计算即可.【详解】解:∵甲的平均成绩=110×(7×2+8×3+9×3+10×2)=8.5, 乙的平均成绩为120×(7×4+8×6+9×6+10×4)=8.5,∴s甲2=110[(7-8.5)2×2+(8-8.5)2×3+(9-8.5)2×3+(10-8.5)2×2]=1.05s乙2=120[(7-8.5)2×4+(8-8.5)2×6+(9-8.5)2×6+(10-8.5)2×4]=1.05,∴s甲2=s乙2,故答案为:s甲2=s乙2.【点睛】本题主要考查方差,解题的关键是掌握方差的定义.18.丙【分析】根据方差和平均数的意义进行解答即可【详解】解:∵乙组丙组的平均数比甲组丁组大∴乙组丙组优先∵丙组的方差比乙组的小∴丙组的成绩比较稳定∴丙组的成绩较好且状态稳定应选的组是丙组故答案为丙【点睛解析:丙【分析】根据方差和平均数的意义进行解答即可.【详解】解:∵乙组、丙组的平均数比甲组、丁组大,∴乙组、丙组优先∵丙组的方差比乙组的小,∴丙组的成绩比较稳定,∴丙组的成绩较好且状态稳定,应选的组是丙组,故答案为丙.【点睛】本题考查了方差和平均数的意义,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.19.=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数那么这组数据的波动情况不变即方差不变即可得出答案【详解】∵一组数据中的每一个数据都加上(或都减去)同一个常数后它的平均数都加上(或都减去解析:=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则S12=S02.故答案为:=.【点睛】本题考查方差的意义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.20.甲乙【分析】根据加权平均数的定义分别计算三人的加权平均数然后与90比较大小即可得出答案【详解】解:根据题意得:甲的总评成绩是:90×50+83×20+95×30=901乙的总评成绩是:88×50+9解析:甲、乙【分析】根据加权平均数的定义分别计算三人的加权平均数,然后与90比较大小即可得出答案.【详解】解:根据题意得:甲的总评成绩是:90×50%+83×20%+95×30%=90.1,乙的总评成绩是:88×50%+90×20%+95×30%=90.5,丙的总评成绩是:90×50%+88×20%+90×30%=89.6,则学期总评成绩优秀的有甲、乙二人;故答案为:甲、乙.【点睛】本题考查了加权平均数,根据加权成绩等于各项成绩乘以不同的权重的和是解题的关键.三、解答题21.(1)40,25,15;(2)平均数:7,方差:1.15【分析】(1)根据5h的人数和所占的百分比,可以求得本次接受调查的初中学生人数,然后即可计算出m和n的值;(2)根据统计图中的数据,可以得到平均数,计算出方差.【详解】解:(1)本次接受调查的初中学生有:4÷10%=40(人),m%=10÷40×100%=25%,即m=25,n=40×37.5%=15,故答案为:40,25,15;(2)由条形统计图可得,x=140×(5×4+6×8+7×15+8×10+9×3)=7,s2=140[(5﹣7)2×4+(6﹣7)2×8+(7﹣7)2×15+(8﹣7)2×10+(9﹣7)2×3]=1.15.【点睛】本题考查了扇形统计图及条形统计图的信息关联、平均数和方差,熟练掌握概念和求法是解题的关键.22.(1)5件;(2)31,32,33,34,35,36,37,38,39【分析】(1)利用平均数的定义即可求解;(2)根据“平均数比你多30但方差一样”可得张师傅每天加工的零件数都比聪聪多30,即可求解.【详解】解:(1)这9天加工零件数的平均数为:12345678959++++++++=(件); (2)∵每天加工零件数的个位上数字都与聪聪的相同,这9天加工零件数的平均数比聪聪多30,且方差一样,∴张师傅每天加工的零件数为:31,32,33,34,35,36,37,38,39.【点睛】本题考查平均数和方差,掌握平均数和方差的定义是解题的关键.23.(1)40;(2)70.5~80.5;(3)285人【分析】(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案; (3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.【详解】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是600×14540+=285(人). 【点睛】本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.24.(1)8x =乙;20.8S =乙;(2)乙,见解析 【分析】(1)利用平均数以及方差的定义得出即可;(2)利用方差的意义,分析得出答案即可.【详解】解:(1)()7978958x =++++÷=乙(个),()()()()()222222178987888980.85S ⎡⎤=-+-+-+-+-=⎣⎦乙; (2)应选乙去,理由:∵x x =甲乙 ∵2 3.2S =甲,20.8S =乙,∴22S S >甲乙,∴乙的波动小,成绩更稳定∴应选乙去参加射击比赛.【点睛】此题主要考查了平均数以及方差,正确记忆相关定义是解题关键.25.(1)见解析;(2)108 ;(3)C 组;见解析;(4)150人【分析】(1)根据B 组人数和所占的百分比,可以求得本次调查的人数,再根据条形统计图中的数据,可得到C 组的人数,即可补全条形统计图;(2)用360°乘以D 组对应的百分比可得其对应圆心角度数;(3)根据条形统计图中的数据,可以得到所抽取学生成绩的中位数落在哪个组内;(4)根据条形统计图中的数据,可以计算出这次竞赛成绩在A :60≤x <70组的学生有多少人.【详解】解:(1)∵被调查的总人数为12÷20%=60(人),∴C 组人数为60-(6+12+18)=24(人),补全图形如下:(2)D 组对应圆心角度数为:360°1810860⨯=︒, 故答案为:108; (3)中位数是第30、31个数据的平均数,而第30、31个数据均落在C 组, 所以中位数落在C 组;(4)1500615060⨯=(人), 答:这次竞赛成绩在A :60≤x <70组的学生有150人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.26.无。
专题20.9 数据的分析(挑战综合(压轴)题分类专题)(专项练习)★【综合类型一】平均数与加权平均数1. 【新知学习】在气象学上,“入夏”由两种平均气温与22℃比较来判断:衢州市2021年5月5日~5月14日的两种平均气温统计表 (单位:℃)2021年5月5日6日7日8日9日10日11日12日13日14日x (日平均气温)20212221242625242527y (五天滑动平均气温)……21.622.823.62424.825.4……注:“五天滑动平均气温”指某一天及其前后各两天的日平均气温的平均数,如:585657585951011212221242622.855y x x x x x =++++=++++=月日月日月日月日月日月日()()(℃).已知2021年的y 从5月8日起首次连续五天大于或等于22℃,而58y 月日对应着56x 月日~510x 月日,其中第一个大于或等于22℃的是57x 月日,则5月7日即为我市2021年的“入夏日”.【新知应用】已知我市2022年的“入夏日”为下图中的某一天,请根据信息解决问题:衢州市2022年5月24日~6月2日的两种平均气温折线统计图(1)求2022年的527y 月日.(2)写出从哪天开始,图中的y 连续五天都大于或等于22℃.并判断今年的“入夏日”.(3)某媒体报道:“夏天姗姗来迟,衢州2022年的春天比去年长.”你认为这样的说法正确吗?为什么?(我市2021年和2022年的入春时间分别是2月1日和2月27日)2. 2021年4月,教育部办公厅在《关于进一步加强中小学生体质健康管理工作的通知》中明确要求保障学生每天校内、校外各1小时体育活动时间.某校为了解本校学生校外体育活动情况,随机对本校100名学生某天的校外体育活动时间进行了调查,并按照体育活动时间分A ,B ,C ,D 四组整理如下:组别体育活动时间/分钟人数A 0≤x <3010B 30≤x <6020C 60≤x <9060Dx ≥9010根据以上信息解答下列问题:(1)制作一个适当的统计图,表示各组人数占所调查人数的百分比;(2)小明记录了自己一周内每天的校外体育活动时间,制作了如下折线统计图.请计算小明本周内平均每天的校外体育活动时间;(3)若该校共有1400名学生,请估计该校每天校外体育活动时间不少于1小时的学生人数.3. 某公司要在甲、乙两人中招聘一名职员,对两人的学历、能力、经验这三项进行了测试,各项满分均为10分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图.(1)分别求出甲、乙三项成绩之和,并指出会录用谁;(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.4. 合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:中国营养学会推荐的三大营养素供能比参考值蛋白质10%~15%脂肪20%~30%碳水化合物50%~65%注:供能比为某物质提供的能量占人体所需总能量的百分比.(1)本次调查采用___________的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.★【综合类型二】中位数与众数5. 如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“45.4*2.8mm,24.4g”是指该枚古钱币的直径为45.4mm,厚度为2.8mm,质量为24.4g.已知这些古钱币的材质相同.根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径的平均数是mm ,所标厚度的众数是mm ,所标质量的中位数是g ;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.6. 某校举办以2022年北京冬奥会为主题的知识竞赛,从七年级和八年级各随机抽取了50名学生的竞赛成绩进行整理、描述和分析,部分信息如下:a :七年级抽取成绩的频数分布直方图如图.(数据分成5组,5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤)b :七年级抽取成绩在7080x ≤<这一组的是:70,72,73,73,75,75,75,76,77,77,78,78,79,79,79,79.c :七、八年级抽取成绩的平均数、中位数如下:年级平均数中位数七年级76.5m 八年级78.279请结合以上信息完成下列问题:(1)七年级抽取成绩在6090x ≤<的人数是_______,并补全频数分布直方图;(2)表中m的值为______;(3)七年级学生甲和八年级学生乙的竞赛成绩都是78,则______(填“甲”或“乙”)的成绩在本年级抽取成绩中排名更靠前;(4)七年级的学生共有400人,请你估计七年级竞赛成绩90分及以上的学生人数.7. 每年的6月6日为“全国爱眼日”.某初中学校为了解本校学生视力健康状况,组织数学兴趣小组按下列步骤来开展统计活动.一、确定调查对象(1)有以下三种调查方案:方案一:从七年级抽取140名学生,进行视力状况调查;方案二:从七年级、八年级中各随机抽取140名生,进行视力状况调查;方案三:从全校1600名学生中随机抽取600名学生,进行视力状况调查.其中最具有代表性和广泛性的抽样调查方案是______;二、收集整理数据按照国家视力健康标准,学生视力状况分为A,B,C,D四个类别.数学兴趣小组随机抽取本校部分学生进行调查,绘制成如图一幅不完整的统计图.抽取的学生视力状况统计表类别A B C D视力视力≥5.0 4.9 4.6≤视力≤4.8视力≤4.5健康状况视力正常轻度视力不良中度视力不良重度视力不良人数160m n56三、分析数据,解答问题(2)调查视力数据的中位数所在类别为______类;(3)该校共有学生1600人,请估算该校学生中,中度视力不良和重度视力不良的总人数;(4)为更好保护视力,结合上述统计数据分析,请你提出一条合理化的建议.8. 为了了解八年级学生本学期参加社会实践活动的天数情况,A,B两个县区分别随机抽查了200名八年级学生.根据调查结果绘制了统计图表,部分图表如下:A,B两个县区的统计表平均数众数中位数A县3.8533区B县3.854 2.5区(1)若A县区八年级共有约5000名学生,估计该县区八年级学生参加社会实践活动不少于3天的学生约为___________名;(2)请对A,B两个县区八年级学生参加社会实践活动的天数情况进行比较,做出判断,并说明理由.9. 为了发展学生的健康情感,学校开展多项体育活动比赛,促进学生加强体育锻炼,注重增强体质,从全校2100名学生60秒跳绳比赛成绩中,随机抽取60名同学的成绩,通过分组整理数据得到下面的样本频数分布表.跳绳的次数频数≤<460x≤<6x≤<11x≤<22x≤<10x≤<4xx≤<(1)已知样本中最小的数是60,最大的数是198,组距是20,请你将该表左侧的每组数据补充完整;(2)估计全校学生60秒跳绳成绩能达到最好一组成绩的人数;(3)若以各组组中值代表各组的实际数据,求出样本平均数(结果保留整数)及众数;分别写出用样本平均数和众数估计全校学生60秒跳绳成绩得到的推断性结论.10. 每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共720人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少?11. 某校甲、乙两名运动员连续8次射击训练成绩的折线统计图及统计表如下(统计图中乙的第8次成绩缺失)甲、乙两人连续8次射击成绩统计表平均数中位数众数方差甲______7.5______1.25乙6______63.5(1)补全统计图和统计表;(2)若规定7环及以上为优秀,试比较甲、乙两人谁的优秀率高;(3)若甲再射击1次,命中7环,则甲的射击成绩的方差______(填“变大”“变小”或“不变”).★【综合类型三】方差、极差与标准差12. 某校为了解本校学生对“二十大”的关注程度,对八、九年级学生进行了“二十大”知识竞赛(百分制),从中分别随机抽取了10名学生的竞赛成绩,整理、分析如下,共分成四组:A (8085x ≤<),B (8590x ≤<),C (9095x ≤<),D (95100x ≤≤),其中八年级10名学生的成绩分别是96,80,96,90,100,86,96,82,90,84;九年级学生的成绩在C 组中的数据是90,91,92.八、九年级抽取的学生竞赛成绩统计表年级平均数中位数众数方差八年级9090b 42.4九年级90c10037.8根据以上信息,解答下列问题:(1)直接写出上述a ,b ,c 的值:=a ,b = ,c = ;(2)你认为这次竞赛中哪个年级成绩更好,为什么?(3)若该校九年级共500人参加了此次竞赛活动,估计竞赛成绩优秀(90x ≥)的九年级学生有多少人?13. 某学校为了解学生的身高情况,各年级分别抽样调查了部分同学的身高,并分年级对所得数据进行处理.下面的频数分布直方图(部分)和扇形统计图是根据七年级的调查数据制作而成.(每组含最低值不含最高值,身高单位:cm ,测量时精确到1cm ):(1)请根据以上信息,完成下列问题:①七年级身高在160cm ~165cm 的学生有__________人;②七年级样本的中位数所在范围是__________,请说明理由;(2)已知七年级共有1000名学生,若身高低于150cm ,则认定该学生身高偏矮.请估计该校七年级身高偏矮的共有多少人,并说明理由.(3)体育组对抽查的数据进行分析,计算出各年级的平均身高及方差如下表所示:年级七八九/cm x 1571601692s 0.80.60.9那么学生的身高比较整齐是哪个年级?为什么.14. 某学校调查九年级学生对“二十大”知识的了解情况,进行了“二十大”知识竞赛测试,从两班各随机抽取了10名学生的成绩,整理如下:(成绩得分用x 表示,共分成四组:A .8085x ≤<,B .8590x ≤<,C .9095x ≤<,D .95100x ≤≤)九年级(1)班10名学生的成绩是:96,80,96,86,99,98,92,100,89,82.九年级(2)班10名学生的成绩在C 组中的数据是:94,90,92通过数据分析,列表如下:九年级(1)班、(2)班抽取的学生竞赛成绩统计表年级平均数中位数众数方差九年级(1)班92b c 52九年级(2)班929410050.4根据以上信息,解答下列问题:(1)直接写出上述a 、b 、c 的值:=a ______,b =______,c =______;(2)学校欲选派成绩更稳定的班级参加下一阶段的活动,根据表格中的数据,学校会选派哪一个班级?说明理由.(3)九年级两个班共120人参加了此次调查活动,估计两班参加此次调查活动成绩优秀()90x ≥的学生总人数是多少?★【压轴类型一】平均数与加权平均数15. 某公司有500名职员,公司食堂供应午餐.受新冠肺炎疫情影响,公司停工了一段时间.为了做好复工后职员取餐、用餐的防疫工作,食堂进行了准备,主要如下:①将过去的自主选餐改为提供统一的套餐;②调查了全体职员复工后的午餐意向,结果如图12所示;③设置不交叉的取餐区和用餐区,并将用餐区按一定的间距要求调整为可同时容纳160人用餐;④规定:排队取餐,要在食堂用餐的职员取餐后即进入用餐区用餐;⑤随机邀请了100名要在食堂取餐的职员进行了取餐、用餐的模拟演练,这100名职员取餐共用时10min ,用餐时间(含用餐与回收餐具)如表所示.为节约时间,食堂决定将第一排用餐职员160人的套餐先摆放在相应餐桌上,并在12:00开始用餐,其他职员则需自行取餐.x人数用餐时间/minx<≤201517<≤40x1719<≤18x1921<≤14x2123<≤82325x(1)食堂每天需要准备多少份午餐?(2)食堂打算以参加演练的100名职员用餐时间的平均数minx为依据进行规划:前一批职员用餐minx后,后一批在食堂用餐的职员开始取餐.为避免拥堵,需保证每位取餐后进入用餐区的职员都有座位用餐,则该规划是否可行?如果可行,请说明理由,并依此规划,根据调查统计的数据设计一个时间安排表,使得食堂不超过13:00就可结束取餐、用餐服务,开始消杀工作;如果不可行,也请说明理由.16. 某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,三人各项得分如表:笔试面试体能甲847890乙858075丙809073(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按50%30%20%,,的比例计入总分.根据规定,请你说明谁将被录用.17. 2014年郑州市城镇民营企业就业人数突破20万,为了解城镇民营企业员工每月的收入状况,统计局对全市城镇企业民营员工2014年月平均收入随机抽样调查,将抽样的数据按“2000元以内”、“2000元~4000元”、“4000元~6000元”和“6000元以上”分为四组,进行整理,分别用A,B,C,D表示,得到下列两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有_____人,在扇形统计图中x 的值为_____,表示“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是_____;(2)将不完整的条形图补充完整,并估计我市2013年城镇民营企业20万员工中,每月的收入在“2000元~4000元”的约多少人?(3)统计局根据抽样数据计算得到,2013年我市城镇民营企业员工月平均收入为4872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?★【压轴类型二】中位数与众数18. 某市民用水拟实行阶梯水价,每人每月用水量中不超过w 吨的部分按4元/吨收费,超出w 吨的部分按10元/吨收费,该市随机调查居民,获得了他们3月份的每人用水量数据,绘制出如图不完整的两张统计图表:请根据以下图表提供的信息,解答下列问题:表1组别月用水量x 吨/人频数频率第一组0.51x <≤1000.1第二组1 1.5x <≤n第三组 1.52x <≤2000.2第四组2 2.5x <≤m 0.25第五组 2.53x <≤1500.15第六组3 3.5x <≤500.05第七组 3.54x <≤500.05第八组4 4.5x <≤500.05合计1(1)观察表1可知这次抽样调查的中位数落在第_______组,表1中m 的值为_________,n 的值为_______;表2扇形统计图中“用水量2.5 3.5x <≤”部分的的圆心角为___________.(2)如果w 为整数,那么根据此次调查,为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为多少吨?(3)利用(2)的结论和表1中的数据,假设表1中同组中的每个数据用该组区间的右端点值代替,估计该市居民3月份的人均水费.19. 在平面内,对点组A 1,A 2,...,A n 和点P 给出如下定义:点P 与点A 1,A 2,...,A n 的距离分别记作d 1,d 2,...,d n ,数组d 1,d 2,...,d n 的中位数称为点P 对点组A 1,A 2,...,A n 的中位距离.例如,对点组A 1(0,0),A 2(0,3),A 3(4,1)和点P (4,3),有d 1=5,d 2=4,d 3=2,故点P 对点组A 1,A 2,A 3的中位距离为4.(1)设Z 1(0,0),Z 2(4,0),Z 3(0,4),Y (0,3),直接写出点Y 对点组Z 1,Z 2,Z 3的中位距离;(2)设C 1(0,0),C 2(8,0),C 3(6,6),则点Q 1(7,3),Q 2(3,3),Q 3(4,0),Q 4(4,2)中,对点组C 1,C 2,C 3的中位距离最小的点是 ,该点对点组C 1,C 2,C 3的中位距离为 ;(3)设M (1,0),N ,T 1(t ,0),T 2(t +2,0),T 3(t ,2),若线段MN上任意一点对点组T1,T2,T3的中位距离都不超过2,直接写出实数t的取值范围.20. 今年是五四运动100周年,也是中华人民共和国成立70周年,为缅怀五四先驱崇高的爱国情怀和革命精神,巴蜀中学开展了“青春心向党,建功新时代”为主题的系列纪念活动.历史教研组也组织了近代史知识竞赛,七、八年级各有300名学生参加竞赛.为了解这两个年级参加竞赛学生的成绩情况,从中各随机抽取20名学生的成绩,并对数据进行了整理和分析(成绩得分用x表示,数据分为6组≤<;:8590D x≤<;C xA x:7075<<;:8085≤<;:7589B x≤≤)F xE x≤<;:95100:9095绘制了如下统计图表:年级平均数中位数众数极差七年级85.8m n26八年级86.286.58718七年级测试成绩在C、D两组的是:81 83 83 83 83 86 87 88 88 89 89根据以上信息,解答下列问题(1)上表中m=_______,n=_______.(2)记成绩90分及90分以上为优秀,则估计七年级参加此次知识竞赛成绩为优秀的学生有多少名?(3)此次竞赛中,七、八两个年级学生近代史知识掌握更好的是________(填“七”或“八“)年级,并说明理由?21. “十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见表:序号123456笔试成绩669086646584专业技能测试成绩959293808892说课成绩857886889485(1)求出说课成绩的中位数、众数;(2)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?★【压轴类型三】中位数、众数、方差、极差与标准差综合22. 2月20日,北京冬奥会圆满落幕,在无与伦比的盛会背后,有着许多志愿者的辛勤付出.在志愿者招募之时,甲、乙两所大学积极开展了志愿者选拔活动,现从两所大学参加测试的志愿者中分别随机抽取了10名志愿者的测试成绩进行整理和分析(成绩得分用x表示,共分成四组:A.6070≤<,xx≤<,B.7080C.8090≤<),下面给出了部分信息:xx≤<,D.90100甲校10名志愿者的成绩(分)为:65,92,87,84,97,87,96,79,95,88.乙校10名志愿者的成绩分布如扇形图所示,其中在C组中的数据为:86,88,89.甲、乙校抽取的志愿者成绩统计表甲校乙校平均数8787中位数87.5b方差2S甲79.4众数c95(1)由上表填空:=a _______,b =_______,2S =甲_______c =_______;(2)你认为哪个学校的志愿者测试成绩的总体水平较好?请至少写出两条理由;(3)若甲校参加测试的志愿者有200名,请估计甲校成绩在90分及以上的约有多少人.23. 某校七年级甲班、乙班举行一分钟投篮比赛,每班派10名学生参赛,在规定时间内进球数不少于8个为优秀学生.比赛数据的统计图表如下(数据不完整):甲班乙班1分钟投篮测试成绩统计表甲班乙班平均数 6.5a 中位数b 6方差 3.45 4.65优秀率30%c根据以上信息,解答下列问题:(1)直接写出a,b,c的值.(2)你认为哪个班的比赛成绩要好一些?请简要说明理由.24. 某校八年级(1)班甲、乙两男生在5次引体向上测试中有效次数如下:甲:8,8,7,8,9;乙:5,9,7,10,9;甲乙两同学引体向上的平均数、众数、中位数、方差如下:平均数众数中位数方差甲8b80.4乙a9c 3.2根据以上信息,回答下列问题:(1)表格是a= ,b= ,c= .(填数值)(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是 .班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是 ;(3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数 ,中位数 ,方差 .(填“变大”、“变小”或“不变”)专题20.9 数据的分析(挑战综合(压轴)题分类专题)(专项练习)★【综合类型一】平均数与加权平均数【1题答案】【答案】(1)22C︒(2)5月27日;5月25日(3)不正确,理由见解析【解析】【分析】(1)根据所给计算公式计算即可;(2)根据图中信息以及(1)即可判断;(3)根据图表即可得到结论.【小问1详解】解:5272221232123225y++++==月日(C︒);【小问2详解】解:从5月27日开始,y连续五天都大于或等于22℃.我市2022年的“入夏日”为5月25日.【小问3详解】解:不正确.因为今年的入夏时间虽然比去年迟了18天,但是今年的入春时间比去年迟了26天,所以今年的春天应该比去年还短.【点睛】本题主要考查从图表中获取信息,平均数的运算,正确的理解题意是解题的关键.【2题答案】【答案】(1)见解析(2)64分钟(3)980名【解析】【分析】(1)用扇形统计图表示各组人数占所调查人数的百分比;(2)根据平均数的计算方法进行计算即可;(3)样本估计总体,求出样本中每天校外体育活动时间不少于1小时的学生所占的百分比即可.【小问1详解】解:由于各组人数占所调查人数的百分比,因此可以采用扇形统计图;【小问2详解】解:556563577075637++++++=64(分),答:小明本周内平均每天的校外体育活动时间为64分钟;【小问3详解】1400×6010100+=980(名),答:该校1400名学生中,每天校外体育活动时间不少于1小时的大约有980名.【点睛】本题考查统计图的选择,频数分布表以及平均数,掌握各种统计图的特点以及加权平均数的计算方法是正确解答的前提.【3题答案】【答案】(1)甲(2)乙【解析】【分析】(1)根据条形统计图数据求解即可;(2)根据“能力”、“学历”、“经验”所占比进行加权再求总分即可.【小问1详解】解:甲三项成绩之和为:9+5+9=23;乙三项成绩之和为:8+9+5=22;∴23>22录取规则是分高者录取,所以会录用甲.【小问2详解】“能力”所占比例为:1801 3602︒=︒;“学历”所占比例为:1201 3603︒=︒;“经验”所占比例为:601 3606︒=︒;∴“能力”、“学历”、“经验”的比为3:2:1;甲三项成绩加权平均为:29351976⨯+⨯+⨯=;乙三项成绩加权平均为:28391586⨯+⨯+⨯=;∴8>7所以会录用乙.∴会改变录用结果【点睛】本题主要考查条形统计图和扇形统计图,根据图表信息进行求解是解题的关键.【4题答案】【答案】(1)抽样调查(2)样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825% (3)答案见解析【解析】【分析】(1)由全面调查与抽样调查的含义可得答案;(2)利用加权平均数公式可得:求解三个年级的人数分别乘以各自的平均供能比的和,再除以总人数即可得到整体的平均数;(3)结合中国营养学会推荐的三大营养素供能比参考值,把求解出来的平均值与标准值进行比较可得:蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,再提出合理建议即可.【小问1详解】解:由该校1380名学生中调查了100名学生的膳食情况,可得:本次调查采用抽样的调查方法;故答案为:抽样【小问2详解】样本中所有学生的脂肪平均供能比为3536.6%2540.4%4039.2%100%38.59%352540⨯+⨯+⨯⨯=++,样本中所有学生的碳水化合物平均供能比为3548.0%2544.1%4047.5%100%46.825%352540⨯+⨯+⨯⨯=++.答:样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%.【小问3详解】该校学生蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,膳食不合理,营养搭配不均衡,建议增加碳水化合物的摄入量,减少脂肪的摄人量.(答案不唯一,建议合理即可)【点睛】本题考查的是全面调查与抽样调查的含义,加权平均数的计算,利用平均数作决策,掌握“计算加权平均数的方法”是解本题的关键.★【综合类型二】中位数与众数【5题答案】【答案】(1)45.74,2.3,21.7;(2)“鹿鹤同春”的实际质量约为21.0克.【解析】【分析】(1)根据平均数、众数和中位数的定义求解即可;(2)根据题中所给数据求出每一枚古钱币的密封盒质量,即可判断出哪枚古钱币所标的质量与实际质量差异较大,计算其余四个密封盒的平均数,即可求得所标质量有错的古钱币的实际质量.【小问1详解】解:平均数:()145.448.145.144.645.545.74mm 5⨯++++=;这5枚古钱币的厚度分别为:2.8mm ,2.4mm ,2.3mm ,2.1mm ,2.3mm ,其中2.3mm 出现了2次,出现的次数最多,∴这5枚古钱币的厚度的众数为2.3mm ;将这5枚古钱币的重量按从小到大的顺序排列为:13.0g ,20.0g ,21.7g ,24.0g ,24.4g ,∴这5枚古钱币质量的中位数为21.7g;故答案为:45.74,2.3,21.7;【小问2详解】名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1∴“鹿鹤同春”密封盒的质量异常,故“鹿鹤同春”所标质量与实际质量差异较大.其余四个盒子质量的平均数为:34.334.134.334.134.2g4+++=,55.2-34.2=21.0g故“鹿鹤同春”的实际质量约为21.0克.【点睛】本题考查了平均数、中位数和众数的求解,平均数的应用,将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;众数就是一组数据中出现次数最多的那个数据.一组数据中,众数可能不止一个.【6题答案】【答案】(1)38,理由见解析(2)77 (3)甲(4)七年级竞赛成绩90分及以上人数约为64人【解析】【分析】(1)根据题意及频数分布直方图即可得出结果;(2)根据中位数的计算方法求解即可;(3)由七八年级中位数与甲乙学生成绩的比较即可得出结果;(4)用总人数乘以七年级竞赛成绩90分及以上的学生人数占总的人数的比例求解即可.。
数据分析考试题一、选择题1. 数据分析的目的是什么?A. 发现数据中的模式和趋势B. 验证假设和推断数据之间的关系C. 帮助管理决策和业务优化D. 所有选项都是正确的2. 哪种图表最适合用于展示时间序列数据?A. 饼图B. 条形图C. 散点图D. 折线图3. 以下哪个指标可以用于衡量数值型数据的集中趋势?A. 方差B. 标准差C. 中位数D. 相关系数4. 以下哪个指标可以用于衡量分类变量之间的关联性?A. 方差分析B. 卡方检验C. 盖尔回归D. 多元回归5. 如果数据集中有缺失值,下面哪个方法可以用来处理缺失值?A. 删除包含缺失值的观测B. 用平均值或中位数填充缺失值C. 使用回归模型预测缺失值D. 所有选项都是正确的二、简答题1. 请说明数据清洗的步骤或过程。
数据清洗的步骤包括以下几个方面:1) 检查数据的完整性,确保数据集没有缺失值或错误的数据项。
2) 处理数据中的异常值,通常采用删除或替换的方法对异常值进行处理。
3) 对缺失值进行处理,可以选择删除包含缺失值的观测,或者用平均值、中位数等填充缺失值。
4) 标准化数据,将数据统一按照一定规则进行转换,以提高数据的比较性和可解释性。
5) 去除重复值,确保数据集中不含有重复的数据项。
6) 对数据进行转换和处理,如对时间数据进行格式化、对分类数据进行编码等。
2. 请说明相关系数的作用和计算方法。
相关系数用于衡量两个数值型变量之间的线性关系强度,其取值范围为-1到1。
相关系数越接近于1或-1,表示两个变量之间的线性关系越强;相关系数接近于0则表示两个变量之间无线性关系。
计算相关系数的方法常用的有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于两个连续变量之间的关系,并假设数据呈正态分布;斯皮尔曼相关系数适用于两个有序变量或者两个非连续变量之间的关系。
3. 请简述回归分析的原理及其在数据分析中的应用。
回归分析用于研究一个或多个自变量对一个因变量的影响程度。
专题13 第20章《数据的分析》单元练习卷一.选择题(共10小题,共30分)1.(3分)国际数学奥林匹克竞赛旨在激发全球青年人的数学才能,中国代表队近六届竞赛的金牌数(单位:枚)分别为6,6,4,5,4,4,关于这组数据,下列说法正确的是()A.方差是0.5B.众数是6 C.中位数是4.5D.平均数是4.82.(3分)下列为某班级研究性学习小组学员出勤次数如表所示,则小组学员出勤次数的众数和中位数分别是()出勤次数45678学员人数26543A.5,6B.5,5C.6,5D.8,63.(3分)已知一组数据的方差为,则()A.这组数据有10个B.这组数据的平均数是5C.方差是一个非负数D.每个数据加3,方差的值增加34.(3分)思政课上,某小组的2023全国“两会”知识测试成绩统计如表(满分10分):成绩78910频数1342则该组测试成绩的平均数为()(单位:分)A.8.2B.8.3C.8.7D.8.95.(3分)温州银泰商场某店一天中卖出某种品牌的休闲鞋16双,它们的尺码与销售量如表所示:鞋的尺码/cm2525.52626.527销售量/双23443则这16双鞋的尺码组成的数据中,中位数()A.25.5B.26C.26.5D.276.(3分)一组数据5,8,8,10,1■中,最后一个两位数的个位数字被墨迹覆盖,则这组数据不受影响的统计量是()A.平均数B.中位数C.众数D.极差7.(3分)一位卖“运动鞋”的经销商到一所学校对200名学生的鞋号进行了抽样调查,经销商最感兴趣的是这组鞋号的()A.众数B.平均数C.中位数D.方差8.(3分)某班一合作学习小组有6人,初三上期数学期末考试成绩数据分别为114、86、95、77、110、93,则这组数据的中位数是()A.86B.95C.77D.949.(3分)为响应“双减”政策,进一步落实“立德树人、五育并举”的思想主张,深圳某学校积极推进学生综合素质评价改革,小芳在本学期德、智、体、美、劳的评价得分如图所示,其各项的得分分别为9,8,10,8,7,则该同学这五项评价得分的众数,中位数,平均数分别为()A.8,8,8B.7,8,7.8C.8,8,8.7D.8,8,8.410.(3分)某校举行“喜迎中国共产党建党100周年”党史知识竞赛,如图是10名决赛选手的成绩.对于这10名选手的成绩,下列说法中正确的是()A.众数是5B.中位数是90C.平均数是93D.方差是0二.填空题(共6小题,共30分)11.(5分)已知一组数据﹣1,﹣3,5,7,这组数据的极差是.12.(5分)在对某样本进行方差计算时,计算的公式是:,该样本的样本容量是.13.(5分)如图是甲、乙两人5次投篮成绩统计图(每人每次投球10个),则s甲2s乙2(填“>”,“=”或“<”).14.(5分)小丽计算数据方差时,使用公式S2=,则公式中=.15.(5分)我市某电视台招募主持人,甲侯选人的综合专业索质、普通话、才艺展示成绩如表所示.测试项目综合专业索质普通话才艺展示测试成绩908692根据实际需求,该电视台规定综合专业素质、普通话和才艺展示三项测试得分按5:3:2 的比例确定最终成绩,则甲候选人的最终成绩为分.16.(5分)现有1,2,3,…,9九个数字,甲、乙两位同学轮流从中选出一个数字,从左至右依次填入下面所示的表格中(表中已出现的数字不再重复使用),每次填数时,甲会选择填入后使表中现有数据平均数最小的数字,乙会选择填入后使表中现有数据中位数最大的数字.如图,若表中第一个数字是6,甲先填,(1)请你在表中空白处填出一种符合要求的填数结果;(2)满足条件的填法有种.6三.解答题(共7小题,共50分)17.(6分)学校组织“中国传统文化”知识竞赛,每班都有20名同学参加,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分(90分及以上属于优秀),学校将七年一班和二班的成绩整理如下:(1)填写以下表格;班级平均数众数中位数优秀率七年一班分90分分七年二班92分分90分80%(2)结合以上统计量,你认为哪个班级的竞赛成绩更加优秀?请简述理由.18.(8分)为了解决杨树花絮污染环境的难题,某公司引进优秀专利品种,建立新树种实验基地,研究组在甲、乙两个实验基地同时播下新树种,同时随机各抽取20株树苗,记录下每株树苗的长度(单位:cm),进行整理、描述和分析(用x表示树苗长度,数据分成5组:A.20≤x<30;B.30≤x<40;C.40≤x <50;D.50≤x<60;E.x≥60,50cm及以上为优等),下面给出了部分信息:【数据收集】甲实验基地抽取的20株树苗的长度:28,29,32,34,38,40,42,45,46,51,51,52,54,55,55,55,55,57,60,61.乙实验基地抽取的20株树苗中,A、B、E三个等级的数据个数相同,C组的所有数据是:42,43,46,49,49.【数据整理】甲实验基地抽取的树苗长度统计表x频数频率A20.1B a0.15C40.2D90.45E20.1【数据分析】基地平均数众数中位数E组所占百分比甲47b5110%乙4756c m%根据以上信息,解答下列问题:(1)填空:a=,b=,c=,m=;(2)根据上述数据分析,你认为甲、乙两基地哪个基地的树苗好?请说明理由(写出一条理由即可);(3)请估计2000棵乙基地的树苗为优等的树苗有多少棵?19.(8分)争创全国文明城市,从我做起.某中学开设了文明礼仪校本课程,为了解学生的学习情况,学校组织七八年级学生进行文明礼仪知识测试,两个年级均有300名学生,从七八年级各随机抽取了10名学生的测试成绩,满分100分,整理分析如下:七年级:99 98 98 98 95 93 91 90 89 79八年级:99 99 99 91 96 90 93 87 91 85整理分析上面的数据,得到如下表格:平均数中位数众数方差统计量年级七年级9394a33.7八年级93b9923.4根据以上信息,解答下列问题.(1)填空:a=,b=;(2)根据统计结果,年级的成绩更整齐;(3)七年级甲同学和八年级乙同学成绩均为93分,根据上面统计情况估计同学的成绩在本年级的排名更靠前;(4)如果在收集七年级数据的过程中将抽取的“89”误写成了“79”,七年级数据的平均数、中位数、众数中发生变化的是;(5)若成绩不低于95分的可以获奖,估计两个年级获奖的共有人.20.(8分)中国共产主义青年团是中国共产党用来团结教育青年一代的群众组织,也是党联系青年的桥梁和纽带,2022年是共青团成立100周年,某校为了解学生对共青团的认识,组织七、八年资全体团员学生进行了“团史知识竞赛”,为了解竞赛成绩,抽样调查了七、八年级部分学生的分数,过程如下:【收集数据】从该校七、八年级学生中各随机抽取20名学生的分数,其中八年级学生的分数如下:75,90,55,60,85,85,95,100,80,85,80,85,90,75,65,60,80,95,70,75,【整理、过述数据】按如下表分数段整理、描述这两组样本数据:分数(分)x<6060≤x<7070≤x<8080≤x<9090≤x≤100七年级(人)23654八年级(人)1m475【分析数据】两组样本数据的平均数、中位数、众数如表所示:年级平均数中位数众数七年级77.57585八年级79.25b c根据以上提供的信息,回答下列问题:(1)填空:m=,b=,c=;(2)该校八年级学生有560人,假设全部参加此次竞赛,请估计八年级成绩超过平均数79.25分的人数;(3)在这次竞赛中,七八年级参加人数相同,七年级学生小明与八年级学生小亮的成绩都是75分,于是小明说:“我在年级的名次有可能高于小亮在年级里的名次”,你同意小明的说法吗?并说明理由.21.(10分)某学校从九年级学生中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表成绩/分78910人数/人1955(1)m=,甲组成绩的众数乙组成绩的众数(填“>”“<”或“=”);(2)求甲组的平均成绩;(3)这40个学生成绩的中位数是;(4)计算出甲组成绩的方差为0.81,乙组成绩的方差为0.75,则成绩更加稳定的是组(填“甲”或“乙”).22.(10分)为了解某校八年级男生在体能测试中引体向上项目的情况,随机抽查了部分男生引体向上项目的测试成绩,绘制如图统计图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的男生人数为,图①中m的值为;本次调查获取的样本数据的平均数为,中位数为.(2)若规定引体向上6次及以上为该项目良好,根据样本数据,估计该校320名男生中该项目良好的人数.(3)根据良好人数,为了中招体育测试能有更多人得到高分,请你给该校男生提出一些相关建议(最少两条).23.(10分)为了解学生每天的睡眠情况,某初中学校从全校2400名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:7,9,9,8,10.5,8,10,9.5,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,8,9,7,9.5,8.5,9,7,9,9,8.5,7.5,8.5,9,8,7.5,9.5,10,9,8,9,9.5,8.5.记者:胡浩教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确了中小学生必要睡眠时间,小学生每天睡眠时间应达到10h,初中生应达到9h,高中生应达到8h.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表组别睡眠时间分组人数(频数)一7≤t<87二8≤t<9a三9≤t<1018四10≤t<11b请根据以上信息,解答下列问题:(1)a=,b=,m=,n=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组;(填组别)(3)如果按照要求,学生平均每天的睡眼时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数;(4)请对该校学生“睡眠时间”的情况作出合理的评价.。
数据的统计和分析练习题数据统计和分析是现代社会中非常重要的一项技能,它可以帮助我们更好地理解和解释各种现象和问题。
通过统计和分析数据,我们可以从中发现规律,做出准确的预测,以及支持科学研究和决策制定。
本文将为大家提供一些数据统计和分析的练习题,以帮助大家熟悉和掌握这一技能。
1. 题目:某餐厅的销售额统计某餐厅进行了一周的销售额统计,结果如下:周一:500元周二:800元周三:600元周四:700元周五:1000元周六:900元周日:1200元请回答以下问题:a) 这周餐厅的总销售额是多少?b) 这周餐厅的平均每天销售额是多少?c) 这周餐厅的销售额中位数是多少?d) 这周餐厅的销售额众数是多少?2. 题目:某公司员工的年龄统计某公司进行了员工年龄的统计调查,结果如下:25, 26, 28, 30, 32, 35, 36, 38, 40, 42请回答以下问题:a) 这些员工的平均年龄是多少?b) 这些员工的年龄中位数是多少?c) 这些员工的年龄众数是多少?3. 题目:某地区某年的降雨量统计某地区统计了某年的每个月的降雨量,结果如下:1月:30毫米2月:20毫米3月:40毫米4月:60毫米5月:80毫米6月:70毫米7月:90毫米8月:100毫米9月:80毫米10月:60毫米11月:40毫米12月:30毫米请回答以下问题:a) 这年的总降雨量是多少?b) 降雨量最大的月份是哪个月?c) 降雨量最小的月份是哪个月?4. 题目:某班级学生的考试成绩统计某班级进行了一次考试,并统计了学生的成绩,结果如下:95, 88, 92, 78, 85, 90, 68, 73, 80, 82请回答以下问题:a) 这次考试的平均成绩是多少?b) 这些学生的成绩中位数是多少?c) 这些学生中成绩最高的是多少?d) 这些学生中成绩最低的是多少?通过以上这些练习题,我们可以锻炼自己的数据统计和分析能力。
掌握这一技能将对我们在各个领域中的工作和研究都大有裨益。
第六章检测卷时间:120分钟满分:120分一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确的选项)1.某市七天的空气质量指数分别是28,45,28,45,28,30,53,这组数据的众数是()A.28 B.30 C.45 D.532.面试时,某人的基本知识、表达能力、工作态度的得分分别是90分,80分,85分,若依次按20%,40%,40%的比例确定成绩,则这个人的面试成绩是() A.82分B.84分C.85分D.86分3.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2s,方差如下表:选手,甲,乙,丙,丁方差(s2),0.020,0.019,0.021,0.022则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁4.已知a,b,c三个数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()A.4 B.8 C.12 D.205.2017年7月份,某市一周空气质量报告中某项污染指数的数据是31,35,31,33,30,33,31.则下列关于这组数据表述正确的是()A.众数是30 B.中位数是31 C.平均数是33 D.极差是356.下列说法:①一组数据中的平均数能够大于所有的数据;②一组数据的方差可以为0;③一组数据的中位数一定等于平均数.其中,正确的有()A.0个B.1个C.2个D.3个二、填空题(本大题共6小题,每小题3分,共18分)7.数据1,2,3,5,5的众数是________,平均数是________.8.某校女子排球队队员的年龄分布如下表:年龄,13,14,15人数,4,7,4则该校女子排球队队员的平均年龄是________岁.9.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是________.10.“植树节”时,九年级(1)班6个小组的植树棵数分别是5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是________.11.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种,人数,每人每月工资/元电工,5,7000木工,4,6000瓦工,5,5000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差将________(填“变小”“不变”或“变大”).12.六个正整数,中位数是4.5,众数是7,极差是6,这六个正整数的和为____________.三、(本大题共4小题,每小题9分,共36分)13.某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示:应聘者,面试,笔试甲,87,90乙,91,82若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?14.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到如图所示的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为________人,抽样中考生分数的中位数所在等级是________;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?15.在“爱满九江”慈善一日捐活动中,学校团支书为了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成如图所示的统计图.(1)这50名同学捐款的众数为______元,中位数为______元;(2)求这50名同学捐款的平均数.16.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理如下统计表:男生序号,①,②,③,④,⑤,⑥,⑦,⑧,⑨,⑩身高,163,171,173,159,161,174,164,166,169,164根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择一个统计量作为选定标准,找出这10名具有“普通身高”的是哪几位男生?并说明理由.四、(本大题共10分)17.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:序号项目,1,2,3,4,5,6笔试成绩/分,85,92,84,90,84,80面试成绩/分,90,88,86,90,80,85根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).(1)这6名选手笔试成绩的中位数是________分,众数是________分;(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;(3)在(2)的条件下,求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.五、(本大题共2小题,每小题12分,共24分)18.甲、乙两名同学参加学校组织的100米短跑集训,教练把10天的训练结果用如图所示的折线图进行了记录.(1)请你用已知的折线图所提供的信息完成下表:,平均数,方差,10天中成绩在15秒以下的次数甲,15,2.6,5乙,(2)学校欲从两人中选出一人参加市中学生运动会100米比赛,请你帮助学校作出选择,并简述你的理由.19.我校准备挑选一名跳高运动员参加江东区中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛,他们的成绩(单位:cm)如下:甲:170165168169172173168167乙:160173172161162171170175(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪名运动员的成绩更为稳定?为什么?(3)若预测,跳过165cm(包括165cm)就很可能获得冠军.该校为了获得冠军,可能选哪位运动员参赛?若预测跳过170cm(包括170cm)才能获得冠军呢?六、(本大题共14分)20.6月5日是世界环境日,某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成如下统计图:根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整;(2)写出下表中a,b,c的值:,平均数(分),中位数(分),众数(分)一班,a,b,90二班,87.6,80,c(3)请从以下给出的三个方面对这次竞赛成绩的结果进行分析:①从平均数和中位数方面比较一班和二班的成绩;②从平均数和众数方面比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.参考答案与解析1.A 2.B 3.B 4.B 5.B 6.B7.5 1658.14 9.乙 10.5 11.变大 12.25或26或27 解析:∵六个正整数,中位数是4.5,∴从小到大排列,第三个数与第四个数的和为9,且2≤第三个数≤4.又∵众数是7,极差是6,∴这六个正整数有如下五种情况:1,1,2,7,7,7;1,2,2,7,7,7;1,2,3,6,7,7;1,2,4,5,7,7;1,3,4,5,7,7,∴这六个正整数的和有以下可能:1+1+2+7+7+7=25,1+2+2+7+7+7=26,1+2+3+6+7+7=26,1+2+4+5+7+7=26,1+3+4+5+7+7=27.故答案为25或26或27.13.解:甲的平均成绩为(87×6+90×4)÷10=88.2(分),(3分)乙的平均成绩为(91×6+82×4)÷10=87.4(分),(6分)因为甲的平均分数较高,所以甲将被录取.(9分)14.解:(1)50 良好(4分)(2)8人,850×100%=16%,抽样中不及格的人数是8人,占被调查人数的百分比是16%.(9分)15.解:(1)15 15(4分)(2)这50名同学捐款的平均数为(5×8+10×14+15×20+20×6+25×2)÷50=13(元).(9分)16.解:(1)平均数为163+171+173+159+161+174+164+166+169+16410=166.4(cm), 中位数为166+1642=165(cm),众数为164cm.(4分) (2)选平均数作为标准:身高x 满足166.4×(1-2%)≤x ≤166.4×(1+2%),即163.072≤x ≤169.728时为“普通身高”,此时⑦⑧⑨⑩男生的身高具有“普通身高”;或选中位数作为标准:身高x 满足165×(1-2%)≤x ≤165×(1+2%),即161.7≤x ≤168.3时为“普通身高”,从而得出①⑦⑧⑩男生的身高具有“普通身高”;或选众数作为标准:身高x 满足164×(1-2%)≤x ≤164×(1+2%),即160.72≤x ≤167.28为“普通身高”,此时得出①⑤⑦⑧⑩男生的身高具有“普通身高”.(9分)17.解:(1)84.5 84(2分)(2)设笔试成绩和面试成绩各占的百分比分别是x ,y ,根据题意,得⎩⎪⎨⎪⎧x +y =1,85x +90y =88,解得⎩⎪⎨⎪⎧x =40%,y =60%.即笔试成绩和面试成绩各占的百分比分别是40%,60%.(4分)(3)2号选手的综合成绩是92×40%+88×60%=89.6(分),3号选手的综合成绩是84×40%+86×60%=85.2(分),4号选手的综合成绩是90×40%+90×60%=90(分),5号选手的综合成绩是84×40%+80×60%=81.6(分),6号选手的综合成绩是80×40%+85×60%=83(分),(9分)则综合成绩排序前两名人选是4号选手和2号选手.(10分)18.解:(1)表中从左到右依次应填15,0.8,3(6分) 解析:x 乙=110(17+16+15+15+14+15+14+14+15+15)=15(秒),s 2乙=110[(17-15)2+(16-15)2+…+(15-15)2]=0.8.所以乙的平均数为15秒,方差为0.8,10天中成绩在15秒以下的有3次.(2)如果学校要求成绩稳定,应选乙.因为在平均成绩相同的情况下乙的成绩比甲的稳定;如果学校想夺冠,应选甲,因为甲在15秒内的次数比乙的多,有可能夺冠.(12分)19.解:(1)甲的平均成绩为18(170+165+168+169+172+173+168+167)=169(cm),(2分)乙的平均成绩为18(160+173+172+161+162+171+170+175)=168(cm).(4分) (2)s 2甲=18×[(170-169)2+(165-169)2+…+(168-169)2+(167-169)2]=6(cm 2),s 2乙=18×[(160-168)2+(173-168)2+…+(170-168)2+(175-168)2]=31.5(cm 2).∵s 2甲<s 2乙,∴甲运动员的成绩更稳定.(8分)(3)若跳过165cm(包括165cm)就很可能获得冠军,则在8次成绩中,甲8次都跳过了165cm ,而乙只有5次,所以应选甲运动员参赛;(10分)若跳过170cm(包括170cm)才能获得冠军,则在8次成绩中,甲只有3次都跳过了170cm ,而乙有5次,所以应选乙运动员参赛.(12分)20.解:(1)一班中C 级的人数有25-6-12-5=2(人),补图略.(2分)(2)a =(100×6+90×12+80×2+70×5)÷25=87.6,b =90,c =100.(5分)(3)①从平均数和中位数的角度,一班和二班平均数相等,一班的中位数大于二班的中位数,故一班成绩好于二班;(8分)②从平均数和众数的角度,一班和二班平均数相等,一班的众数小于二班的众数,故二班成绩好于一班;(11分)③从B 级以上(包括B 级)的人数的角度,一班有18人,二班有25×(44%+4%)=12(人),故一班成绩好于二班.(14分) 。
北师大版五年级数学下册第八单元数据的表示和分析一、认真审题,填一填。
(第1、2、3小题每小题4分,其余每空1分,共25分)1.1分钟跳绳比赛,天天前三次的成绩都在100~120下之间,第四次的成绩是80下,这四次的平均成绩与前三次的平均成绩相比,( )了。
(填“增加”或“减少”)2.在武术大会上,评委给某选手打出的分数(单位:分)分别是8、9、8、8、9、10、10,按去掉一个最高分和一个最低分的方法来计算平均分,该选手的最后得分是( )分。
3.小马过河去大象家。
已知平均水深是1.2 m,小马的身高是1.5 m,小马一定能从这条河走到对岸吗?我的结论是( ),我的理由是( )。
4.下面是深圳某公司生产车间三个小组男、女工人数统计图。
(1)男工人数最多的是第( )小组,女工人数最少的是第( )小组,第( )小组的人数最多,第( )小组的人数最少。
(2)第二小组一共有( )人,第三小组一共有( )人。
(3)第一小组男工人数是女工人数的( )倍,第二小组男工人数占第二小组总人数的( )。
5.下面是航模小组制作的甲、乙两架飞机模型在一次飞行中飞行的时间和高度的统计图。
(1)甲飞机模型飞行了( )秒,乙飞机模型飞行了( )秒。
(2)从图上看,起飞后25秒时,甲飞机模型的飞行高度是( )m;起飞后第( )秒两架飞机模型处于同一高度;起飞后第( )秒两架飞机模型的飞行高度相差最大。
二、仔细推敲,选一选。
(将正确答案的序号填在括号里)(每小题4分,共16分)1.要统计第26~31届奥运会我国运动员获得的金牌数量和美国运动员获得的金牌数量的变化情况,应选择( )比较合适。
A.单式折线统计图B.复式条形统计图C.复式折线统计图2.某学校创客社团成员的平均年龄是10.6岁,新增一名10岁和一名11岁的成员后,现在创客社团成员的平均年龄( )。
A.变小B.变大C.不变D.以上三种情况都有可能3.下面说法错误的是( )。
数据分析技巧及练习题含答案一、选择题1.下列说法正确的是()A.要调查人们对"低碳生活"的了解程度,宜采用普查方式B.一组数据:3, 4, 4, 6, 8, 5的众数和中位数都是3C.必然事件的概率是100%,随机事件的概率是50%D.若甲组数据的方差S甲2=0.12&乙组数据的方差是S乙2=0.036,则乙组数据比甲组数据稳定【答案】D【解析】A、由于涉及范围太广,故不宜采取普查方式,故A选项错误;B、数据3, 4, 4, 6, 8, 5的众数是4,中位数是4.5,故B选项错误;C、必然事件的概率是100%,随机事件的概率是50%,故C选项错误;D、方差反映了一组数据的波动情况,方差越小数据越稳定,故D选项正确.故选D.2.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为( )A.7, 6B. 7, 4C. 5, 4D.以上都不对【答案】B【解析】【分析】根据数据a, b, c的平均数为5可知a+b+c=5x3,据此可得出£ (-2+b-2+c-2)的值;再由方差为4可得出数据a・2, b-2, c-2的方差.【详解】解:•・•数据a, b, c的平均数为5, .\a+b+c=5x3=15,— (a-2+b-2+c-2) =3,3・•・数据a・2, b-2, c-2的平均数是3;•・•数据a, b, c的方差为4,:.-[ (a-5) 2+ (b-5) 2+ (c-5) 2]=4,3a-2, b-2, c-2 的方差=—[(a-2-3 ) 2+ (b-2-3) 2+ (c—2-3) 2] =—[(a-5) 2+ (b-5) 2+ (c-5) 2]=4,3故选B.【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.3.某校四个绿化小组一天植树的棵数如卞:10, X, 10, &已知这组数据的众数与平均数相等,则这组数据的中位数是()A.8B. 9C. 10D. 12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10:再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+20+X+8) 4-4=10,解得x=12,将这组数据按从小到人的顺序排列为& 10, 10, 12,处于中间位置的是10, 10,所以这组数据的中位数是(10+10) 4-2=10.故选C.【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.4.卞列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路1丨,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越人越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60。
人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共9小题,满分36分)1.某商店5天的营业额如下(单位:元):14845,25706,18957,11672,16330,利用计算器求得这5天的平均营业额是()A.18116元B.17805元C.17502元D.16678元2.某工厂为了选拔1名车工参加加工直径为10mm的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S2甲、S2乙的大小()甲10.0510.029.979.9610乙1010.0110.029.9710A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.S2甲≤S23.一组数据5,3,3,2,5,7的中位数是()A.2B.2.5C.3D.44.2022年杭州亚运会以“中国新时代•杭州新亚运”为定位.“中国风范、浙江特色、杭州韵味、共建共享”为目标,秉持“绿色、智能、节俭、文明”的办会理念,坚持“以杭州为主,全省共享”的办赛原则,高质量推进亚运会筹办工作,某校对亚运知识进行了相关普及,学生会为了了解学生掌握情况,从中抽取50名学生成绩,列表如下:分数(分)9092949698100人数(人)241081511根据表格提供的信息可知,这组数据的众数与中位数分别是()A.100分,95分B.98分.95分C.98分,98分D.97分,98分5.在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9.对这组数据,下列说法正确的是()A.平均数是7B.众数是7C.极差是5D.中位数8.5 6.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩波动情况是()A.甲波动大B.乙波动大C.甲、乙波动一样D.无法比较7.一组数据x、0、1、﹣2、3的平均数是1,则x的值是()A.3B.1C.2.5D.08.某校评价项目化成果展示,对甲、乙、丙、丁展示成果进行量化评分,具体成绩(百分制)如表,如果按照创新性占55%,实用性占45%计算总成绩,并根据总成绩择优推广,那么应推广的作品是()项目作品甲乙丙丁创新性87939091实用性90919093A.甲B.乙C.丙D.丁9.某校九年级有9名同学参加“建党一百周年”知识竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.方差二、填空题(共9小题,满分36分)10.一组数据1,6,3,﹣4,5的极差是.11.一鞋店试销一种新款式鞋,试销期间卖出情况如表:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是.(填“平均数”、“众数”或“中位数”)12.有甲、乙两组数据,如表所示:甲1012131416乙1212131414甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2s乙2(填“>”、“<”或“=”).13.某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是.14.在某学校开展的艺术作品征集活动中,五个班上交的作品数量(单位:件)分别为:46,45,49,42,50,则这组数据的中位数是.15.某同学用计算器求20个数据的平均数时,错将一个数据75输入为15,那么由此求出的平均数与实际平均数的差是.16.某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为分.17.已知数据a,b,c的平均数为8,那么数据a+1,b+1,c+1的平均数是.18.利用计算器求数据2,1,3,4,3,5的平均数是;方差;中位数.三、解答题(共6小题,满分78分)19.河南省对居民生活用电采用阶梯电价,鼓励居民节约用电,其中年用电量为2160千瓦时及以下执行基础电价0.56元/千瓦时;2160~3120千瓦时的部分按0.61元/千瓦时收费;超过3120千瓦时的部分按0.86元/千瓦时收费.为了解某小区居民生活用电情况.调查小组从该小区随机调查了200户居民的月平均用电量x(千瓦时),并将全部调查数据分组统计如下:组别60<x≤100100<x≤140140<x≤180180<x≤220220<x≤260260<x≤300频数(户数)2842a302010把这200个数据从小到大排列后,其中第96到第105(包含第96和第105这两个数据)个数据依次为:148148150152152154160161161162根据以上信息,回答下列问题:(1)本次调查中,该小区居民月平均用电量的中位数为,表中a=;(2)估计该小区能享受基础电价的居民占全小区的百分比;(3)国家在制订收费标准时,为了减轻居民用电负担,制订的收费标准能让85%的用户享受基础电价.请你根据以上信息对该小区居民的用电情况进行评价,并写出一条建议.20.2021年12月4日是我国第二十一个法制宣传日,也是第八个国家宪法日.为大力弘扬宪法精神,维护宪法权威,普及宪法知识,进一步增强学生的法制观念,某学校在全校七、八年级共2000名学生中开展“国家宪法日”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:七年级抽取的学生的竞赛成绩:2,4,5,6,7,7,7,7,7,7,8,8,9,9,9,9,9,10,10,10.八年级抽取的学生的竞赛成绩:4,5,5,5,6,6,7,7,7,8,8,8,8,8,9,9,10,10,10,10.七、八年级抽取的学生的竞赛成绩的统计表年级七年级八年级平均数7.57.5中位数7.5m众数n8根据以上信息,解答下列问题:(1)填空:m=,n=;(2)你觉得哪个年级学生的知识竞赛成绩更好?请说明理由(一条理由即可);(3)若该校七、八年级学生人数均为1000人,估计本次竞赛中成绩合格的人数.21.至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?22.21世纪已经进入了中国太空时代,2021年到2022年,我国会通过11次航天发射完成空间站建设,空间站由“天和”核心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛演讲比赛版面创作甲859188乙90848723.某校为了了解九年级学生在寒假期间的数学学习情况,开学之际进行了一次数学小测验(满分100分),并从甲、乙两个班各抽取10名学生的测验成绩进行统计分析.收集数据:甲班:90,90,70,90,100,80,80,90,95,65乙班:95,70,80,90,70,80,95,80,100,90整理数据成绩x (分)60≤x≤7070<x≤8080<x≤9090<x≤100甲班2242乙班23a3分析数据数据平均数中位数众数甲班8590d乙班b c80解答下列问题:(1)直接写出a、b、c、d的值;(2)小明同学说:“这次测验我得了90分,在我们小组中属于中游偏上!”观察上面的表格判断,小明可能是班的学生;(3)若乙班共有50人参加测验,请估计乙班测验成绩超过90分的人数.24.2022年北京冬奥会的成功举办,掀起了广大群众的冰雪热情.某学校社团发起了对同学们的冰雪运动知识了解程度的调查,现从初中、高中各随机抽取了15名同学进行知识问答测试,测试成绩用x表示,共分成4组:A:70以下.B:70≤x<80.C;80≤x<90,D:90≤x<100,对成绩进行整理分析,给出了下面部分信息:初中同学的测试成绩在C组中的数据为:81,85,88.高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如表:校部平均数中位数最高分众数极差初中88a989832高中8888100b c (1)a=,b=,c=;(2)通过以上数据分析,你认为(填“初中”或“高中”)的学生对冰雪项目的知识掌握更好?请写出理由(给出一条理由即可);(3)若初中、高中共有2400名学生,请估计此次测试成绩达到90分及以上的学生共有多少人?参考答案一、选择题(共9小题,满分36分)1.C2.A3.D4.C5.D6.A7.A8.B9.A二、填空题(共9小题,满分36分)10.10.11.众数.12.>.13.5,6.14.46.15.﹣3.16.86.17.9.18.3,,3.三、解答题(共6小题,满分78分)19.解:(1)根据中位数的定义,中位数为按照从小到大排好顺序的数据的第100个和第101个数的平均值,∴中位数为:=153,∵28+42+a+30+20+10=200,∴a=70,故答案为:153,70;(2)年用电量为2160千瓦时及以下执行基础电价,∴每月平均电量为2160÷12=180(千瓦时),从表中可知,200户中,能享受基础电价的户数为:28+42+70=140,∴该小区能享受基础电价的居民占全小区的百分比为:×100%=70%;(3)∵70%<85%,∴不能达到让85%的用户享受基础电价的目标,故该小区用电量较多,应该节约用电,例如离开天气不是太热或太冷时少开空调.20.解:(1)由图表可得:m==8,n=8.故答案为:8,7;(2)八年级学生的知识竞赛成绩更好,理由:八年级的中位数和众数高于七年级的中位数和众数,∴八年级学生的知识竞赛成绩更好;(3)1000×2×=1650(人),答:本次竞赛中成绩合格的人数为1650人.21.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.22.解:(1)甲班的平均分为:(85+91+88)÷3=88(分),乙班的平均分为:(90+84+87)÷3=87(分),∵88>87,∴甲班将获胜;(2)由题意可得,甲班的平均分为:=87.4(分),乙班的平均分为:=87.6(分),∵87.4<87.6,∴乙班将获胜.23.解:(1)a=10﹣2﹣3﹣3=2,乙班的平均数b=(95+70+80+90+70+80+95+80+100+90)=85(分),乙班成绩按顺序排列后第5个数是80,第6个数是90,所以中位数c=(80+90)=85(分),甲班的众数d=90(分),答:a=2,b=85,c=85,d=90;(2)小明可能是乙班的学生,理由如下:因为甲班的中位数是90分,乙班的中位数是85分,所以小明可能在乙班,故答案为:乙;(3)50×=15(人),答:估计乙班测验成绩超过90分的有15人.24.解:(1)由直方图可知,初中同学的测试成绩15个数据按从小到大的顺序排列,第8个数落在C组的第二个,∵初中同学的测试成绩在C组中的数据为:81,85,88,∴中位数a=85,∵高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.∴按从小到大排列是:71,76,81,82,83,86,86,88,89,90,93,95,100,100,100,∴众数b=100,极差c=100﹣71=29,故答案为:85,100,29;(2)根据以上数据,我认为高中的同学对冰雪项目的知识掌握更好.理由:两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好.故答案为:高中,两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好(答案不唯一);(3)2400×=960(人).答:此次测试成绩达到90分及以上的学生共有960人.。
八年级下数学 数据的分析一、选择或填空题: 1、8个数的平均数12,4个数的平均为18,则这12个数的平均数为( ). 2、衡量样本和总体的波动大小的特征数是( ) A .平均数 B .方差 C .众数 D .中位数 3、一组数据按从小到大排列为1,2,4,x ,6,9这组数据的中位数为5,•那么这组数据的众数为( ) 4、某服装销售商在进行市场占有率的调查时,他最应该关注的是( )A .服装型号的平均数;B .服装型号的众数;C .服装型号的中位数;D .最小的服装型号 5、人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:80==乙甲x x ,2402=甲s ,1802=乙s ,则成绩较为稳定的班级是( ) 6、某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是( ) 数据10,10,x, 8的中位数和平均数都相等,则中位数为 7、某班20名学生身高测量的结果如下,该班学生身高的中位数是_________抽取的样本容量是_________,8、如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是( ) 9,平均数均是7,甲的方差是1.2,乙的方差是5.8,下列说法中不正确的是( )A 、甲、乙射中的总环数相同。
B 、甲的成绩稳定。
C 、乙的成绩波动较大D 、甲、乙的众数相同。
10、样本方差的计算式S 2=120[(x 1-30)2+(x 2-30)2 +。
+(x 20-30)2]中,数字20和30分别表示样本中的( )和( )11、某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么所求出平均数与实际平均数的差是( )12.某超市购进了一批不同价格的皮鞋,下表是该超市在近几年统计的平均数据.要使该超市销售皮鞋收入最大,该超市应多购( )元的皮鞋13.为了了解参加某运动会的200名运动员的年龄情况,从中抽查了20名运动员的年龄,就这个问题来说,下面说法正确的是( )A .200名运动员是总体B .每个运动员是总体C .20名运动员是一个样本D .样本容量是20 14.一城市准备选购一千株高度大约为2m 的树来进行绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下,应选购( )15.将一组数据中的每一个数减去50后,所得一组新数据的平均数是2,•则原数据的平均数是( ) 16.甲、乙两班举行电脑汉字输入速度比赛,•参赛学生每分钟输入汉字的个数经统计计算后结果如下表,上述结论中正确的番号是( )某同学得出如下结论:(1)甲、乙两班学生成绩的平均水平相同; (2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀) (3)甲班成绩的波动情况比乙班成绩的波动小 17.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成 绩如下(单位:分),学期总评成绩优秀的是( )18.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )个19. 某同学随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9利用上述数据估计该小区2000户家庭一周内需要环保方便袋 只。
20.某鞋柜售货员为了了解市场的需求,需要知道所销售的鞋子码数的( )21.某班英语成绩的平均分是75分,方差为225分2,如果每个学生都多考5分,下列说法正确的是:( )A 方差不变平均分不变B 平均分变大方差不变化C 平均分不变方差变大D 平均分变大方差变大 22.一组数据的方差为2s ,将每个数据都扩大三倍再加2,所得到的一组新的数据的方差为( ) 23,一个样本的方差是22221261[(5)(5)(5)]6sx x x =-+-++- ,则平均数为( ) 24.某班七个小组人数为:5,5,6,x ,7,7,8.已知这组数据的平均数是6,则这组数据的中位数是( ). 28、数据“1,2,1,3,1”的众数是_______的方差是_____极差是_____.中位数是_____标准差是_______ 25、为了引导学生树立正确的消费观,某班随机调查了10名同学某日的零花钱情况,其统计图表如下:零花钱在4元以上(含4元)的学生所占比例为 ,该班学生每日零花钱的平均数大约是 元。
26、一组数据中若最小数与平均数相等,那么这组数据的方差为________。
27、一组数据中游a 个x 1,b 个x 2,c 个x 3, 数组成一个样本,则一样本的平均数为 28.在数据-1,0,4,5,8中插入一个x ,使这组数据的中位数为3,则x =29、某地区100个家庭的收入从低到高是4 800元,…,10 000元各不相同,在输入计算机时,把最大的数据错误地输成100 000元,则依据错误的数字算出的平均值与实际数字的平均值的差是 元 30.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若用去尾平均数计算这名歌手最后得分约为________.31.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,•则估计湖里约有鱼_______条.32.某人开车100km ,在前60km 内,时速为90km ,在后40km 内,时速为120km ,则平均速度为_________. 33.将5个整数排列后,中位数是4;如果惟一众数的是6,•则这5个整数可能的最大的和是_____.34.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,•则这位候选人的招聘得分为________. 35.对一组数据进行整理,结果如上表(25题下面):这组数据的平均数是36.一组:数据的平均数为10,方差为2.5,极差为3,①:这组:数据中每个数都减去5后的平均数,方差,极差分别为 ②; 这组:数据中每个数都乘以3再加5后的平均数,方差,极差分别为 ③这组:数据中每个数都除以2后的平均数,方差,极差分别为 ④一组:数据的每个数都扩大2倍后的平均数为10,方差为2.5,极差为3,则将这组数据每个数据除以3后的新数据平均数,方差,极差分别为二、解答题 1.当今,青少年视力水平下降已引起全社会的关注,为了了解某市30000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据绘制的频数分布直方图如下:①本次抽样调查共抽测了 名学生;②参 加抽测的学生的视力的众数在 范围内;中位数在 范围内;③若视力为4.9及以上为正常,试估计该市学生的视力正常的人数约为多少? 2、 甲、乙两台机床生产同种零件,10天出的次品个数分别是: 甲:0,1,0,2,1,0,1,1,2,2 乙:1,3,0,1,0,2,1,1,0,1请你运用学的知识作出判断,估计哪台机床性能较好。
为什么?(注意:要列出式子) 3. 2000年~2005年某市城市居民人均可支配收入情况(如图5所示).根据图示信息:(1)求该市城市居民人均可支配收入的中位数;(2)哪些年份该市城市居民人均可支配收入比上一年增加了1 000元以上? 说明理由。
4:某养鱼户养鱼三年,第一年放养了2万尾,成活率为7成,在秋季随意捞出10尾,称重为(单位:千克);0.8, 0.9, 1.2, 1.3, 0.8, 0.9, 1.1, 1.0, 1.2, 0.8 (1)估计池塘中鱼的总重量。
(2)若将鱼全部卖掉,市场售价为4元每千克,成本投入1600元,求纯收入,(3)若第三年纯收入为132400 元,求第一,二年每年平均增长率。
5、一养鱼专业户为了估计池塘里有多少条鱼,先捕上100条做上标记,然后放回池塘里,过了一段时间,待带标记的一混合于鱼群后,再捕捞3次,记录如下:第一次共捕捞95条,平均重量是2.1千克,有标记的有6条;第二次捕捞107条,平均重量是2.3千克,,带有标记的有7条;第三次捕捞98条,平均重量是1.9千克,带有标记的有7条;(1)问他鱼塘内大约有多少条鱼?(2)问他鱼塘内大约有多少千克的鱼?6、某球队对对两人进行3分球投篮测试,每人每天投10次,五天中进球的个数统计结果如下:经过计算,甲进球的平均数为x 甲=8,方差为23.2s 甲.(1)求乙进球的平均数x 乙和方差2s 乙; (2)现从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么? 7.(8分)某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如把每位工人的月加工零件数定为260(件),•你认为这个定额是否合理,为什么? 8.下表是某校初三(1)班20名学生某次数学测验的成绩统计表. (1)若这20名学生成绩的平均分数为80分,求x 、y 的值. (2)在(1)的条件下,设这20名学生本次测验成绩 的众数为a ,中位数为b ,求a 、•b 的值.9. 为了了解全校400名学生参加课外锻炼的情况,随机对40•名学生一周内平均每天锻炼的时间进行了调查如下:(单位:分)40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36 34 53 38 40 39 32 45 40 42 45 50 45 40 50 26 45 40 45 35 40 (1):补全频率分布表和频率分布直方图.(2)填空:在这个问题中,总体是_________,样本是________.由统计分析得,•这组数据的平均数是39.35(分),众数是__________,中位数是________.(3)。
如果描述该校400名学生一周内平均每天参加锻炼的总体情况,•你认为用平均数、众数、中位数中的哪一个比较合适? (4)。
估计这所学校有多少名学生,平均每天参加锻炼的时间多于30分? 10. 小李通过对某地区1998年至2000年快餐公司发展情况的调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售的平均数的条形图,利用两图共同提供的信息,解答下列问题快餐公司个数情况 快餐公司盒饭年销售平均数情况图 (1)1999年该地区销售盒饭共 万盒;(2)该地区盒饭销售两最大的年份是 年,这一年的年销售量是 万盒;(3)这三年中该地区每年平均销售盒饭多少万盒?11.有14个数据,由小到大排列,其平均数为34,现在有一位同学求得这组数据前8个数的平均数为32,后8个数的平均数为36,求这组数据的中位数。