[初中数学]八年级数学下册全一册教案(36份) 人教版27
- 格式:doc
- 大小:138.50 KB
- 文档页数:7
人教版数学八年级下册教案全册完整版一、教学内容1. 第十一章:数据的收集与整理11.1 数据的收集11.2 数据的整理与表示2. 第十二章:概率初步12.1 概率的基本概念12.2 概率的计算3. 第十三章:图形的平移与旋转13.1 平移13.2 旋转4. 第十四章:相似图形14.1 位似图形14.2 相似图形的性质与判定二、教学目标1. 理解并掌握数据的收集与整理方法,能运用图表进行数据表示。
2. 了解概率的基本概念,学会计算简单事件发生的概率。
3. 掌握图形的平移与旋转,理解相似图形的性质与判定方法。
4. 培养学生的观察能力、逻辑思维能力和空间想象力。
三、教学难点与重点1. 教学难点:数据的整理与表示方法的选择与应用概率的计算方法相似图形的性质与判定2. 教学重点:数据收集与整理的实际应用概率的实际意义与计算图形的平移与旋转在实际问题中的运用四、教具与学具准备1. 教具:黑板、粉笔、尺子、圆规、三角板、教学课件2. 学具:直尺、圆规、三角板、计算器、练习本五、教学过程1. 导入:通过实际情景引入,激发学生的学习兴趣。
第十一章:以一次班级考试成绩的收集与整理为例,导入数据的收集与整理。
第十二章:以抛硬币、掷骰子等游戏为例,导入概率的基本概念。
第十三章:以生活中的平移与旋转现象为例,导入图形的平移与旋转。
第十四章:以相似图形在生活中的应用为例,导入相似图形的学习。
2. 新课讲解:详细讲解教材内容,结合实际例题,使学生对所学知识有深入理解。
第十一章:讲解数据的收集方法,如问卷调查、实验等;数据的整理与表示,如条形图、折线图、扇形图等。
第十二章:讲解概率的基本概念,如必然事件、不可能事件、随机事件等;概率的计算方法,如列表法、树状图法等。
第十三章:讲解图形的平移与旋转,以及在实际问题中的应用。
第十四章:讲解位似图形和相似图形的性质与判定方法。
3. 随堂练习:布置典型题目,巩固所学知识,并及时给予解答与指导。
第一章三角形的证明1、等腰三角形①定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)②全等三角形的对应边相等、对应角相等③定理:等腰三角形的两底角相等,即位等边对等角④推论:等腰三角形顶角的平分线、底边上的中线以及底边上的高线互相重合⑤定理:等边三角形的三个内角都想等,并且每个角都等于60°⑥定理:有两个角相等的是三角形是等腰三角形(等角对等边)⑦定理:三个角都相等的三角形是等边三角形⑧定理;有一个角等于60°的等腰三角形是等边三角形⑨定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半⑩反证法:在证明时,先假设命题的结论不成立,然后推导出与定义,基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
2、直角三角形①定理:直角三角形的两个锐角互余②定理有两个角互余的三角形是直角三角形③勾股定理:直角三角形两条直角边的平方和等于斜边的平方④如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形⑤在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题⑥一个命题是真命题,它的逆命题不一定是真命题。
如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理⑦定理:斜边和一条直角边分别相等的两个直角三角形全等3、线段的垂直平分线①定理:线段垂直平分线上的点到这条线段两个端点的距离相等②定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上4、角平分线①定理:角平分线上的点到这个角的两边的距离相等②定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上1.学会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。
2.掌握可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解。
人教版数学八年级下册教案全册最新版教案:人教版数学八年级下册一、教学内容1. 第一章:二次根式本章主要内容包括二次根式的概念、性质和运算。
通过学习,学生能够理解二次根式的意义,掌握二次根式的性质,学会二次根式的运算方法。
2. 第二章:锐角三角函数本章主要内容包括锐角三角函数的概念和性质。
通过学习,学生能够理解锐角三角函数的意义,掌握锐角三角函数的性质,学会运用锐角三角函数解决实际问题。
3. 第三章:平行四边形的判定与性质本章主要内容包括平行四边形的判定和性质。
通过学习,学生能够理解平行四边形的判定方法,掌握平行四边形的性质,学会运用平行四边形的性质解决实际问题。
4. 第四章:矩形、菱形、正方形的性质本章主要内容包括矩形、菱形、正方形的性质。
通过学习,学生能够理解矩形、菱形、正方形的性质,学会运用矩形、菱形、正方形的性质解决实际问题。
5. 第五章:因式分解本章主要内容包括因式分解的概念和方法。
通过学习,学生能够理解因式分解的意义,掌握因式分解的方法,学会运用因式分解解决实际问题。
6. 第六章:分式本章主要内容包括分式的概念、性质和运算。
通过学习,学生能够理解分式的意义,掌握分式的性质,学会分式的运算方法。
7. 第七章:不等式本章主要内容包括不等式的概念、性质和运算。
通过学习,学生能够理解不等式的意义,掌握不等式的性质,学会不等式的运算方法。
8. 第八章:事件的概率本章主要内容包括事件的概率的概念和计算方法。
通过学习,学生能够理解事件概率的意义,掌握事件概率的计算方法,学会运用事件概率解决实际问题。
二、教学目标1. 学生能够掌握二次根式的概念、性质和运算方法。
2. 学生能够理解锐角三角函数的意义,掌握锐角三角函数的性质。
3. 学生能够理解平行四边形的判定方法,掌握平行四边形的性质。
4. 学生能够理解矩形、菱形、正方形的性质。
5. 学生能够掌握因式分解的概念和方法。
6. 学生能够理解分式的意义,掌握分式的性质,学会分式的运算方法。
八年级数学下学期教学工作计划一、指导思想在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。
我班优生稍少,学生非常活跃,有少数学生不求上进,思维不紧跟老师。
有的学生思想单纯爱玩,缺乏自主学习的习惯,有部分同学基础较差,厌学无目标。
要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教材分析本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:《义务教育教科书•数学》八年级下册包括二次根式,勾股定理,平行四边形,一次函数,数据的分析等五章内容,学习内容涉及到了《义务教育数学课程标准(2013年版)》(以下简称《课程标准》)中“数与代数”“图形与几何”“统计与概率”“综合与实践”全部四个领域。
其中对于“综合与实践”领域的内容,本册书在第十九章、第二十章分别安排了一个课题学习,并在每一章的最后安排了两个数学活动,通过这些课题学习和数学活动落实“综合与实践”的要求。
第16章“二次根式”主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。
通过本章学习,学生将建立起比较完善的代数式及其运算的知识结构,并为勾股定理、一元二次方程、二次函数等内容的学习做好准备。
第17章“勾股定理”主要研究勾股定理和勾股定理的逆定理,包括它们的发现、证明和应用。
第18章“平行四边形”主要研究一般平行四边形的概念、性质和判定,还研究了矩形、菱形和正方形等几种特殊的平行四边形。
第19章是“一次函数”,其主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系,以及以建立一次函数模型来选择最优方案为素材的课题学习。
新人教版八年级数学下册教案全册第一单元分式与有理数第一课有理数加减法本课程旨在教授学生有理数的加减法。
通过具体的生活实例和练题,让学生掌握有理数的加减法运算规则和方法。
研究目标- 理解有理数的概念和表示方法- 掌握有理数的加法和减法运算规则- 能够在实际生活中运用有理数进行加减法运算课程内容1. 有理数的概念和表示方法2. 有理数的加法运算规则3. 有理数的减法运算规则4. 实际生活中的加减法运算练授课步骤1. 引入:通过问题引发学生对有理数加减法的思考,激发学生的研究兴趣。
2. 理论讲解:介绍有理数的概念和表示方法,并讲解有理数的加法和减法运算规则。
3. 实例演示:通过具体的实例演示有理数的加减法运算过程,帮助学生理解运算规则。
4. 练训练:设计一系列的练题,让学生巩固和应用所学的加减法运算规则。
5. 总结提高:总结本课所学的内容,并提出下节课的预任务。
教学资源- 教材:新人教版八年级数学下册- 实例演示用的实物或图片- 练题和答案评估方式- 检查课堂讨论的参与度- 作业完成情况- 答题准确率第二课分式的概念与性质本课程旨在介绍分式的概念和性质。
通过生动的例子和实践操作,使学生理解分式的含义和相关性质。
研究目标- 了解分式的概念和表示方法- 掌握分式的化简和扩展方法- 能够应用分式解决实际问题课程内容1. 分式的概念和表示方法2. 分式的化简和扩展方法3. 分式的实际应用授课步骤1. 引入:通过生活中的实例引发学生对分式的思考,激发学生的研究兴趣。
2. 理论讲解:介绍分式的概念和表示方法,并讲解分式的化简和扩展方法。
3. 实例演示:通过具体的实例演示分式的化简和扩展过程,帮助学生掌握方法。
4. 实践操作:设计分组活动,让学生通过实际操作解决分式相关问题。
5. 总结提高:总结本课所学的内容,并提出下节课的预任务。
教学资源- 教材:新人教版八年级数学下册- 实际生活中的分数例子- 分组活动所需的材料评估方式- 检查课堂讨论的参与度- 实践操作的表现和成果- 练题和作业的完成情况及准确率...(继续编写其他单元的教案)。
人教版八年级数学下册全册教案(优秀9篇)7年级下册数学课件篇一3年级数学课件下册1.位置:所在或所占的地方。
2.方向:指东,西,南,北等方位。
3.除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c/b,读作c 除以b(或b除c)。
其中,c叫做被除数,b叫做除数,运算的结果a叫做商。
4.除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。
余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
5.商不变性质:被除数和除数同时乘或除以一个非零自然数,商不变。
6.除法的性质:一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。
有时可以根据除法的性质来进行简便运算。
如:300÷25÷4=300÷(25×4)。
7.被除数、除数、商的关系:被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍。
除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。
8.笔算除法:先按照整数除法的法则去除,商的小数点要和被除数的'小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
9.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
10.没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。
11.第一级运算:加法和减法叫做第一级运算。
12.第二级运算:乘法和除法叫做第二级运算。
一三.数据:数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。
14.数据分析:数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。
人教版八年级数学下册全册教案(9篇)人教版八年级数学下册教案篇一1、掌握一次函数解析式的特点及意义2、知道一次函数与正比例函数的关系3、理解一次函数图象特点与解析式的联系规律1、一次函数解析式特点2、一次函数图象特征与解析式的联系规律1、一次函数与正比例函数关系2、根据已知信息写出一次函数的表达式。
ⅰ.提出问题,创设情境问题1 小明暑假第一次去北京.汽车驶上a地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知a地直达北京的高速公路全程为570千米,小明想知道汽车从a地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.分析我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是s=570-95t.说明找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的'存款与从现在开始的月份之间的函数关系式.分析我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.问题3 以上问题1和问题2表示的这两个函数有什么共同点?ⅰ.导入新课上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。
并且自变量和因变量的指数都是一次。
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当b=0时,称y是x的正比例函数。
例1:下列函数中,y是x的一次函数的是()①y=x-6;②y=2x;③y=;④y=7-x x8a、①②③b、①③④c、①②③④d、②③④例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);(2)长为8(cm)的平行四边形的周长l(cm)与宽b(cm);(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;(7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)分析确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答.解(1)a?20,不是一次函数.h(2)l=2b+16,l是b的一次函数.(3)y=壹五0-5x,y是x的一次函数.(4)s=40t,s既是t的一次函数又是正比例函数.(5)y=60x,y是x的一次函数,也是x的正比例函数;(6)y=πx2,y不是x的正比例函数,也不是x的一次函数;(7)y=50+2x,y是x的一次函数,但不是x的正比例函数例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.分析根据一次函数和正比例函数的定义,易求得k的值.解若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.例4 已知y与x-3成正比例,当x=4时,y=3.(1)写出y与x之间的函数关系式;(2)y与x之间是什么函数关系;(3)求x=2.5时,y的值.解(1)因为y与x-3成正比例,所以y=k(x-3).又因为x=4时,y=3,所以3=k(4-3),解得k=3,所以y=3(x-3)=3x-9.(2) y是x的一次函数.(3)当x=2.5时,y=3×2.5=7.5.1.2例5 已知a、b两地相距30千米,b、c两地相距48千米.某人骑自行车以每小时12千米的速度从a地出发,经过b地到达c地.设此人骑行时间为x(时),离b地距离为y (千米).(1)当此人在a、b两地之间时,求y与x的函数关系及自变量x取值范围.(2)当此人在b、c两地之间时,求y与x的函数关系及自变量x的取值范围.分析(1)当此人在a、b两地之间时,离b地距离y为a、b两地的距离与某人所走的路程的差.(2)当此人在b、c两地之间时,离b地距离y为某人所走的路程与a、b两地的距离的差.解(1) y=30-12x.(0≤x≤2.5)(2) y=12x-30.(2.5≤x≤6.5)例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.分析因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.解在第一阶段:y=3x(0≤x≤8);在第二阶段:y=16+x(8≤x≤16);在第三阶段:y=-2x+88(24≤x≤44).ⅰ.随堂练习根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y 是否为x有正比例函数?2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。
新人教版八年级下册数学全册教案第一单元有理数课时1 约定正数和负数- 教学目标:让学生理解正数和负数的概念,学会用数轴表示正数和负数。
- 教学内容:- 正数和负数的概念- 数轴的表示方法- 教学步骤:1. 引入正数和负数的概念,以生活中的例子说明。
2. 介绍数轴的概念,让学生理解数轴表示数值的原理。
3. 练使用数轴表示各种数值,如6、-3、0等。
- 教学重点:正数和负数的定义和数轴的表示方法。
- 教学扩展:让学生思考生活中的其他例子,如温度的正负值等。
课时2 有理数的加法- 教学目标:让学生掌握有理数的加法运算方法,能够灵活运用到实际问题中。
- 教学内容:- 有理数的加法规则- 有理数的加法运算练- 教学步骤:1. 复正数和负数的概念,以及数轴的表示方法。
2. 介绍有理数的加法规则,如同号相加、异号相减。
3. 给学生一些加法运算的练题,让他们灵活运用加法规则解决问题。
- 教学重点:掌握有理数的加法规则并能运用到实际问题中。
- 教学扩展:让学生自行思考一些实际问题,如两个温度的相加等。
课时3 有理数的减法- 教学目标:让学生掌握有理数的减法运算方法,能够灵活运用到实际问题中。
- 教学内容:- 有理数的减法规则- 有理数的减法运算练- 教学步骤:1. 复有理数的加法规则。
2. 介绍有理数的减法规则,如同号相减、异号相加。
3. 给学生一些减法运算的练题,让他们灵活运用减法规则解决问题。
- 教学重点:掌握有理数的减法规则并能运用到实际问题中。
- 教学扩展:让学生自行思考一些实际问题,如两个温度的相减等。
课时4 有理数的乘法- 教学目标:让学生掌握有理数的乘法运算方法,能够灵活运用到实际问题中。
- 教学内容:- 有理数的乘法规则- 有理数的乘法运算练- 教学步骤:1. 复有理数的加法和减法规则。
2. 介绍有理数的乘法规则,如同号相乘为正,异号相乘为负。
3. 给学生一些乘法运算的练题,让他们灵活运用乘法规则解决问题。
人教版数学八年级下册教案全册完整版一、教学内容1. 第十三章:平面几何1.1 线段和直线1.2 角1.3 多边形1.4 平行四边形1.5 矩形、菱形、正方形2. 第十四章:函数2.1 函数的定义2.2 一次函数2.3 二次函数2.4 反比例函数2.5 函数的应用二、教学目标1. 理解并掌握平面几何的基本概念和性质,能够运用几何知识解决实际问题。
2. 掌握函数的定义、图像和性质,能够运用函数知识解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 教学难点:几何图形的性质和判定函数图像的绘制和性质分析2. 教学重点:几何图形的分类和性质函数的定义和性质四、教具与学具准备1. 教具:黑板橡皮、直尺、圆规等绘图工具多媒体设备2. 学具:笔记本铅笔、橡皮、直尺、圆规等绘图工具五、教学过程1. 导入:利用生活实例引入平面几何和函数的概念,激发学生学习兴趣。
2. 新课内容:详细讲解教材中的知识点,通过例题和随堂练习巩固所学内容。
3. 课堂讲解:对重点、难点知识进行详细讲解,结合实际应用进行分析。
4. 课堂练习:设计不同难度的练习题,让学生独立完成,并及时给予指导和反馈。
六、板书设计1. 人教版数学八年级下册教案2. 内容:章节和知识点例题和解答过程重点、难点提示七、作业设计1. 作业题目:第十三章:1.1 画出线段和直线1.2 判断角的类型1.3 绘制多边形1.4 判断平行四边形1.5 分析矩形、菱形、正方形的性质第十四章:2.1 解释函数的定义2.2 绘制一次函数图像2.3 分析二次函数性质2.4 解释反比例函数2.5 解决函数应用问题2. 答案:八、课后反思及拓展延伸1. 反思:2. 拓展延伸:设计相关竞赛题目,提高学生运用几何和函数知识解决问题的能力。
鼓励学生进行课后自主学习,拓展知识面。
重点和难点解析一、教学内容1. 几何图形的性质和判定重点和难点解析:这部分内容涉及到的几何图形种类繁多,性质和判定方法各异。
19.3 课题学习选择方案一、教学目标1.能够正确列出方案问题中相关的一次函数的表达式,写出自变量的取值范围。
2.理解方案选择问题的一般解题方法和步骤。
3.将所学的知识应用到解决实际问题中去选择合适的方案,体会数学的实用价值,帮助学生获得生活经验,并树立正确的人生观和价值观。
二、课时安排1课时三、教学重点函数解析式的书写。
四、教学难点正确利用函数解决问题。
五、教学过程(一)新课导入【过渡】在上节课的学习中,我们主要学习了一次函数的相关性质,以及如何从函数图象中得到我们所需要的信息。
在日常生活中,我们通常会遇到这样的问题,该选择哪个旅行团更划算,该选择哪个银行收益更好,等等。
之前的学习中,我们学习过用数学知识去解决实际问题,那么我们能否用我们这章中学习的函数知识去解决上述提出的问题呢?我们先来看几个问题,看大家对之前的知识熟悉不熟悉,看谁回答的快。
如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.判断下列说法正误:①售2件时甲、乙两家售价一样;②买1件时买甲家的合算;③买3件时买乙家的合算;【过渡】这个问题是简单的函数问题,反映了我们可以借助函数解决实际问题,也可以通过函数的图象解决问题,那么如果问题稍微复杂一点,又该如何解决呢?今天我们就来学习一下,如何正确的选择方案。
(二)讲授新课【过渡】在正式上课之前,我们先通过几个简单的问题,来检测一下大家预习的情况。
课件展示问题。
1、为了改善生态环境,政府决心绿化荒地,计划第一年先植树2万亩,以后每年都种2.5万亩,结果植树的总面积y(万亩)与时间x(年)的函数关系式是()A.y=2.5x+2 B.y=2x+2.5C.y=2.5x-0.5 D.y=2x-0.52、如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元B.0.45 元C.约0.47元D.0.5元3、弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系是一次函数关系,图象如图所示,则弹簧本身的长度是()A.20cm B.12.5cmC.10cm D.9cm【过渡】刚刚的这几个问题,主要是考查了大家对如何书写函数解析式,以及对函数图象的理解,现在,我们一起来看一下今天要学习的内容。
1、怎样选取上网收费方式【过渡】我们一起来思考一下课本的问题1。
在这几种选择方案中,我们该如何选择呢?【过渡】结合实际,我们知道,选择的依据一般都是划算,也就是说便宜的更应该选择,这就把问题转化为求三种方案下,哪一个更便宜。
【过渡】我们先对问题进行分析,这三种方案中哪种方式上网费是会变化的?哪种不变?(学生回答)【过渡】从表中,我们知道,A、B方案会变化,C不变。
而在这其中,影响超时费的变量是什么?(学生回答)【过渡】变量是上网时间,那么谁能告诉我,上网费用是如何计算的呢?上网费用=月使用费+超时费,超时费=超时使用价格×超时时间。
如果上网时间不定,哪种方案更优惠能确定吗?(学生回答)【过渡】这时候我们就需要从三个方面考虑问题,当上网时间变化时,何时能够满足A方案等于、大于、小于B方案,关于这个问题,结合一次函数,我们就能够写出两种方案的解析式,利用方程、不等式或函数图象进行比较。
【过渡】根据这个等量关系,大家能写出这几个方案的解析式吗?分别写出A方案与B方案的解析式。
(学生回答)【过渡】对于方案A来说,这个解析式的含义:当上网时间不超过25h时,上网费=30元;当上网时间超过25h时,上网费=30+超时费,即上网费=30+0.05×60×(上网时间-25)。
【过渡】对于方案B来说,大家能说出它的意义吗?(学生回答)【过渡】当上网时间不超过50h时,上网费=50元;当上网时间超过50h时,上网费=50+超时费,即上网费=50+0.05×60×(上网时间-50)。
【过渡】对于方案C来说,无论上网时间为多少h,上网费都为120元,与上网时间无关。
【过渡】我们知道,函数的图象能够直观的表示出函数的关系,因此,我们将三个函数解析式的图象画出,如图所示,大家能够将课本P103的问题写上答案吗?课件展示问题及答案。
【过渡】选择上网收费方式的问题,实际上就是比较如何使费用最小的问题,通过刚刚的分析,我们知道,解决问题的重点在于正确理解变量之间的关系。
2、怎样租车【过渡】从刚刚的问题中,我们了解了函数解决实际问题的优势,现在,我们来看另外一种情况。
问题2.【过渡】根据问题,我们来填一下空吧。
【过渡】题意中要求每辆车都至少要有一名教师,结合表格中的内容,我们分析最少需要多少辆车。
如果租5辆车,那么平均下来每辆车需坐48个人,而两种车均不能满足这个要求,因此,汽车综述不能小于6,但同时,每辆车上都至少有1名老师,这样的话,又不能大于6辆车,因此综合起来,汽车总数为定值6。
【过渡】从表中,我们可以看出,租车的费用与种类有关,两辆车总共有6辆,我们设租x辆甲车,那么乙车的辆数则为(6-x)辆。
列出解析式。
同时我们还要考虑最红的费用在2300以内,由此,我们可以解得x的值。
【过渡】通过对限定条件的分析,我们最终得到了x的取值范围,并得出了两种方案,结合一次函数的性质,我们能够确定最终的方案选择。
【归纳】解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为自变量。
然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型。
(三)重难点精讲根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定。
①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是一次函数还是其他函数,再利用待定系数法求解相关的问题。
②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式。
(四)归纳小结正确分析变量之间的关系。
正确写出函数解析式。
正确利用函数解决问题。
(五)随堂检测1、甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( A )A.①②③B.仅有①②C.仅有①③ D.仅有②③52、某校准备在甲、乙两家公司中选择一家为毕业班学生制作一批纪念册,甲公司提出:每册收材料费5元,另收设计费1500元,乙公司提出:每册收材料费8元,不收设计费.(1)若制作纪念册的册数为x,请分别写出甲公司的收费y1、乙公司的收费y2与x之间的函数关系式;(2)如果说学校派你去甲、乙两家公司订做纪念册,你会选择哪家公司?解:(1)甲公司的收费:y1=5x+1500乙公司的收费:y2=8x(2)当y1=y2,即5x+1500=8x时,x=500当y1>y2,即5x+1500>8x时,x<500当y1<y2,即5x+1500<8x时,x>500所以当制作纪念册的册数为500册时,两家公司任选一家即可当制作纪念册的册数少于500册时,应选择乙公司。
当制作纪念册的册数多于500册时,应选择甲公司。
3、某市出租车起步价是8元(起步价是指不超过3km行程的出租车价格).超过3km行程后,其中除3千米的行程按起步价计费外,超过部分按每千米1.6元计费(不足一千米按一千米计算),如果仅去程乘出租车而回程时不坐此车,那么顾客还要付回程的空驶费,按每千米0.8元计算(即实际按每千米2.4元计算),如果往返都乘同一辆出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元的等候费.现设小文等4人从市中心A处到相距x(km)(x<12)的B处办事,在B处停留的时间在3分钟以内,然后返回A处,现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回乘公交车(公交每人2元);方案二:4人乘同一辆出租车往返;请解决下列问题:在这两种方案中,哪种更经济?请问选择哪种计费方式更省钱?解:方案一的费用:8+(x-3)×1.6+0.8x+4×2=8+1.6x-4.8+8=11.2+1.6x方案二的费用:8+(x-3)×1.6+1.6x+1.6=8+1.6x-4.8+1.6x+1.6=4.8+3.2x①费用相同时x的值11.2+1.6x=4.8+3.2x,解得x=4所以当x=4km时费用相同;②方案一费用高时x的值11.2+1.6x>4.8+3.2x,且x-3>0,解得3<x<4所以当3km<x<4km方案一费用高;③方案二费用高时x的值11.2+1.6x<4.8+3.2x,解得x>4所以当x>4km方案二费用高。
六、板书设计19.3 课题学习选择方案概念例题练习七、作业布置1.家庭作业:完成本节课的同步练习;2.预习作业:预习20.1.1《平均数》导学案中的“探究案”八、教学反思。