七年级数学培优试卷含答案第8讲一元一次方程
- 格式:pdf
- 大小:36.11 KB
- 文档页数:5
专题3.12一元一次方程的应用(8)比赛积分问题姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•新泰市期末)足球比赛的得分规则:胜一场得3分,平一场得1分,输一场不得分.在2019赛季山东鲁能足球队共比赛30场,输了9场,积分为51分,最终名列第五.则本赛季山东鲁能足球队胜了()A.14场B.15场C.16场D.17场2.(2019秋•三台县期末)绵阳市中学生足球联赛共8轮(即每队需要比赛8场),胜一场得3分,平一场得一分,负一场不得分,在2019足球联赛中,三台县中学生足球代表队踢平的场数是负场数的2倍,共得17分,三台足球队胜了()场.A.4B.5C.2D.不确定3.(2019秋•柳州期末)父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是()A.2B.3C.4D.54.(2019秋•福州期中)在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x场,则根据以上信息所列方程正确的是()大比分胜(积分)负(积分)3:0303:1303:221A.3x+2x=32B.3(11﹣x)+3(11﹣x)+2x=32C.3(11﹣x)+2x=32D.3x+2(11﹣x)=325.(2019•新华区校级模拟)足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场6.(2018春•岳麓区校级期末)同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了()A.10场B.11场C.12场D.13场7.(2019•大庆二模)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2B.3C.4D.58.(2018秋•江汉区期末)如图所示的表格是某次篮球联赛部分球队的积分表,则下列说法不正确的是()队名比赛场数胜场负场积分前进1410424光明149523远大147a21卫星14410b钢铁1401414……………A.负一场积1分,胜一场积2分B.卫星队总积分b=18C.远大队负场数a=7D.某队的胜场总积分可以等于它的负场总积分9.(2020•西湖区一模)今年父亲的年龄是儿子年龄的3倍,6年前父亲的年龄是儿子年龄的4倍.设今年儿子的年龄为x岁,则下列式子正确的是()A.4x﹣6=3(x﹣6)B.4x+6=3(x+6)C.3x+6=4(x+6)D.3x﹣6=4(x﹣6)10.(2017春•雨花区校级期中)长沙是中国男足的福地,3月23日中国队1:0胜韩国队,赢得12强赛的首场胜利!已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一对打了14场比赛,负了5场,共得23分,那么这个队胜了()A.5场B.6场C.7场D.8场二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2017春•浦东新区期末)已知今年小明爸爸的年龄是37岁,小明的年龄是12岁,那么再过年,小明爸爸的年龄是小明年龄的2倍.12.(2018秋•海安市期中)儿子今年12岁,父亲今年39岁,年后父亲的年龄是儿子的年龄的2倍.13.(2019秋•孝南区期末)今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄是儿子年龄的4倍,设今年儿子的年龄为x岁,则可列方程.14.(2019秋•霍林郭勒市期末)一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试卷,得了70分,他一共做对了 道题.15.(2020春•邹城市期末)一张试卷共25道题,做对一题得4分,做错或不做一题扣1分,小明做了全部试题,若要成绩优秀(注:80分及以上成绩为优秀),那么小明至少要做对 道题.16.(2019秋•渝中区校级期末)某电视台组织知识竞赛,共设有20道选择题,各题分值相同,每题必答.如表记录了3个参赛者的得分情况,如果参赛者F 得76分,则他答对的题数为 . 参赛者 答对题数 答错题数 得分 A 20 0 100 B 19 1 94 C1828817.(2019秋•沙坪坝区校级期末)在2019年全国信息学奥利匹克联赛中,重庆八中学子再创辉煌,竞赛成绩全市领先,共56人获得全国一等奖,同时摘下高一年级组冠军,高二年级组第二名,包揽初二年级组冠、亚、季军.在校内选拔赛时,某位同学连续答题40道,答对一题得5分,答错一题扣2分,最终该同学获得144分.请问这位同学答对多少道题?下面共列出4个方程,其中正确的是 .(多选) A .设答对了x 道题,则可列方程:5x ﹣2(40﹣x )=144 B .设答错了y 道题,则可列方程:5(40﹣y )﹣2y =144 C .设答对题目得a 分,则可列方程:a5+a−1442=40D .设答错题目扣b 分,则可列方程144−b 5−b 2=4018.(2019秋•焦作期末)程大位,明代珠算发明家,被称为珠算之父、卷尺之父.少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》).《算法统宗》中有这样一道题,其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:这一群人共有多少人?所分的银子共有多少两?若设共有x 人,则可列方程为 .三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2017•思茅区校级二模)在开展校园足球对抗赛中,规定每队胜一场得3分,平一场得1分,负一场得0分,我校女子足球队一共比赛了10场,且保持了不败战绩,一共得了22分,我校女子足球队胜了多少场?平了多少场?20.(2014秋•昆明期末)某学校举办一次数学知识竞赛活动,竞赛题共有25道题,规定做对一道题得4分,不做或做错一道题扣1分.李伟最后竞赛成绩是90分,那么李伟一共做对了几道题?21.甲、乙、丙、丁四支球队有资格参加亚洲冠军联赛八组足球比赛(主客场),结束后积分表如下:球队胜场平场负场总进球数总失球数积分甲42014314乙41112613丙2136107丁006x150(1)填空:表格中x的值是.(2)比赛规定:胜一场积分,平一场积分.(3)若甲队在争取资格的预赛中进行了12场比赛,其中负5场,积分共得19分,那么这支球队胜了多少场才能进入决赛?(4)在这次亚洲冠军杯的其他小组比赛中,能否出现一支球队保持不败的战绩(6场比赛都不输),且胜场总积分恰好等于它的平场总积分?22.(2015秋•洛阳期末)某电视台组织知识竞赛,共设20道选择题,各题分值相同、每题必答,如表记录了五位参赛者的得分情况.参赛者A B C D E答对题数20191814m得分10094 88n40根据表格提供的信息.(1)每做对一题得分,每做错一题得分;(2)直接写出m=,n=;(3)参赛者G说他得了80分,你认为可能吗?为什么?23.(2004•陕西)足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,共得17分.请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目的.24.学校举行排球赛,积分榜部分情况如下.班级比赛场次胜场平场负场积分七(1)班632114七(2)班614112七(3)班650116七(4)班651017(1)分析积分榜,平一场比负一场多得分.(2)若胜一场得3分,七(6)班也比赛了6场,胜场是平场的一半且共积14分,那么七(6)班胜几场?。
第五章 一元一次方程(B 卷·培优卷 )(考试时间:120分钟 试卷满分:150分)A 卷(共100分)第Ⅰ卷(选择题,共32分)一、单项选择题:本题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若方程()2140m m x +++=是一元一次方程,则( )A .1m =-或3-B .1m =-C .3m =-D .0m =2.若不论k 取什么数,关于x 的方程2136kx a x bk +--=(a 、b 是常数)的解总是1x =,则a b -的值是( )A .12-B .12C .152D .152-3.嘉嘉同学在解关于x 的方程13362x a x +-+=时,由于粗心大意,误将等号左边的“16x -+”看作了“16x --”,其他解题过程均正确,从而解得方程的解为2x =,则原方程的解是( )A .43x =B .34x =C .45x =D .54x =4.已知m ,n 为有理数,且0m ¹,若关于x 的一元一次方程0mx n -=的解恰为2x m n =+,则此方程称为“合并式方程”.例如:390x +=,∵()2393x =´+-=-,且3x =-是方程390x +=的解,∴此方程390x +=为“合并式方程”.若关于x 的一元一次方程60x n -=是“合并式方程”,则n 的值为( )A .727-B .727C .725D .725-5.如图所示,长为4,宽为3的长方形ABCD 内有一正方形BEFG ,若直线AF 将长方形的面积分为1:3的两部分,则正方形的边长为( )A .1B .1.2C .1.4D .1.66.如图,长方形ABCD 中,84AD AB ==,.点Q 为AB 中点,点P 从点B 出发以每秒3个单位的速度沿B C D A ®®®的方向运动,当点P 运动到点A 时,点P 停止运动.设点P 运动的时间为t (秒),在整个运动过程中,当BPQ V 是面积为2的钝角三角形时,则此时t 的值是( )A .23或6B .23C .32D .67.若关于x 的方程532x kx -=+有整数解,那么满足条件的整数k 的取值个数是( )A .2B .3C .4D .58.如图,点O 为原点,A 、B 为数轴上两点,15AB =,且2OA OB =,点P 从点B 开始以每秒4个单位的速度向右运动,当点P 开始运动时,点A 、B 分别以每秒5个单位和每秒2个单位的速度同时向右运动,设运动时间为t 秒,若23AP OP mBP +-的值在某段时间内不随着t 的变化而变化,则m 的值为( )A .5B .5或7C .3或5D .3或7第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.已知有理数a 、b 在数轴上的位置如图,且||||a b =,则关于x 的方程22022()5a a b x b+-=的解为x = .10.智慧书店开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次去购书享受八折优惠,他查看了所买书的定价,发现两次共节约了42元,则该学生第二次购书实际付款 元.11.若关于x 的方程355mx x +=+的解为整数,则整数m = .12.在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满()2270a c ++-=,P 是数轴上一动点,P 点表示的数是x ,当10PA PB PC ++=时,x = .13.已知直线l 上线段6AB =,线段2CD =(点A 在点B 的左侧,点C 在点D 的左侧),若线段CD 的端点C 从点B 开始以1个单位/秒的速度向右运动,同时点M 从点A 开始以2个单位/秒的速度向右运动,点N 是线段BD 的中点,则线段CD 运动 秒时,2MN DN =.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.解方程(1)()()51251x x +=-(2)()()32121x x x -+=--(3)321123x x -+-=15.中国移动全球通有两种通话计费方法(接听全免,接听时间不计入通话时间):计费方法A 是每月收月租费48元,通话时间不超过50分钟的部分免费,超过50分钟的按每分钟0.25元加收通话费;计费方法B 是每月收取月租费88元,通话时间不超过200分钟的部分免费,超过200分钟的按每分钟0.19元加收通话费.(1)某使用计费方法A 的用户一个月通话时间为100分钟,应付费用多少元?(2)用计费方法B 的用户某个月累计费用107元,通话时间是多少分钟?(3)用计费方法B 的用户某个月累计费用126元,若改用计费方法A 的方式,费用是增加还是减少?相差多少?16.一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶.已知船在静水中的速度为8千米/时,平时逆行与顺行所用的时间之比为2:1,某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用了9小时.问:甲、乙两港相距多少千米?17.如图所示,数轴上点A ,B 表示的数分别为2,8-.(1)A ,B 两点之间的距离是 ;A ,B 两点的中点所表示的数是 ;(2)有一动点P 从点B 出发,以每秒2个单位长度的速度沿射线BA 运动,点M 为BP 中点,设点P 运动的时间为t ,则点P 表示的数为 ;点M 表示的数为 .①当t 为何值的时候,满足AP BM =?②若点N 是AP 的中点,在P 点运动的过程中,线段MN 的长度是否发生变化?若不变,请求出具体的数值;若变化,请说明理由.18.已知A ,B 两点在数轴上表示的数为a 和b ,M ,N 均为数轴上的点,且OA OB <.(1)若A ,B 的位置如图1所示,O 为坐标原点,试化简:a b a b a b -+-++.(2)如图2,若8.93a b MN +==,,求图中以A ,N ,O ,M ,B .这 5 个点为端点的所有线段长度的和;(3)如图3,M 为AB 中点,N 为OA 中点,且3193MN AB a =-=-,,若点P 为数轴上一点,且47PA AB =,试求点P 所对应的数为多少?B 卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)19.关于x 的方程2a (x +5)=3x +1无解,则a = .20.已知关于x 的方程31x b x c a -=++,该方程的解为2023x =,则关于y 的方程()3331y c y b a -+=--+的解为 .21.如图,某点从数轴上的A 点出发,第1次向右移动1个单位长度至B 点,第2次从B 点向左移动2个单位长度至C 点,第3次从C 点向右移动3个单位长度至 D 点,第4次从D 点向左移动4个单位长度至E 点,L ,依此类推,经过 次移动后该点到原点的距离为2018个单位长度.22.某摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭,但由于堵车,中午才赶到一个小镇,只行驶了上午原计划的三分之一,过了小镇,汽车行驶了500千米,傍晚才停下来休息,司机说,再走从C 市到这里的路程的二分之一就到达目的地了.A ,B 两市相距 千米.23.已知关于x 的方程100150x a --=有三个解,则a = .二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.某商场用4800元同时购进A B 、两种新型节能日光灯共120盏,A 型日光灯每盏进价为30元,B 型日光灯每盏进价为45元.(1)求A B 、两种新型节能日光灯各购进多少盏?(2)由于B 型日光灯的需求量增大,商场为了节省采购成本决定直接找厂家再购进一些B 型日光灯.已知B 型日光灯的出厂价为每盏36元,厂家给出了如下优惠措施:出厂总金额返现金不超过2160元0元超过2160元,但不超过3240元返现180元超过3240元返现400元已知该商场第一次在厂家加购B 型日光灯支付1836元,第二次在厂家加购B 型日光灯支付3024元,若将两次购买改由一次性购买,则一次性购买时支付的总金额比两次分开购买时支付的总金额少多少元?25.如图,直线AB ,CD 相交于点O ,且AOC AOD Ð=Ð,射线OM (与射线OB 重合)绕点O 按逆时针方向旋转,速度为15/s °,射线ON (与射线OD 重合)绕点O 按顺时针方向旋转,速度为12/s °.两射线OM ,ON 同时运动,运动时间为()s t .(1)当3t =时,MON Ð= ,BON Ð= .(2)当012t <<时,若360AOM AON Ð=Ð-°,试求出t 的值.26.已知两点A B 、在数轴上,a 与31-互为相反数,点A 表示的数是a ,且10AB =.(1)点B 表示的数为______;(2)如图1,当点A B 、位于原点O 的同侧时,动点P Q 、分别从点A B 、处在数轴上同时相向而行,动点P 的速度是动点Q 的速度的1.5倍,4秒后两动点相遇,当动点Q 到达点A 时,运动停止.在整个运动过程中,是否存在某个时刻t (秒),使得,P Q 两点的距离为5,若存在,请求出t 的值,若不存在,请说明理由;(3)如图2,当点A B 、位于原点O 的异侧时,动点P Q 、分别从点A B 、处在数轴上向右运动,动点Q 比动点P 晚出发1秒;当动点Q 运动2秒后,动点P 到达点C 处,此时动点P 立即掉头以原速向左运动3秒恰与动点Q 相遇;相遇后动点P 又立即掉头以原速的2倍向右运动6秒,此时动点P 到达点M 处,动点Q 到达点N 处,当2OM ON -=时,求动点P 的原速和Q 运动的速度.。
完整版)七年级上册数学一元一次方程测试题及答案1.在方程3x-y=2,x+2x=,x=,x2-2x-3=中一元一次方程的个数为(2)。
2.解方程x/(x-1)=2/3时,去分母正确的是(3x-3=2x-2)。
3.方程x-2=2-x的解是(x=2)。
4.下列两个方程的解相同的是(方程5x+3=6与方程2x=4)。
5.A厂库存钢材为100吨,每月用去15吨;B厂库存钢材82吨,每月用去9吨。
若经过x个月后,两厂库存钢材相等,则x是(3)。
6.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为(90元)。
7.下列等式变形正确的是(如果x-3=y-3,那么x-y=0)。
8.已知:1-(3m-5)有最大值,则方程5m-4=3x+2的解是(-7/3)。
9.小山向某商人贷款1万元月利率为6‰,1年后需还给商人多少钱(元)。
10.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为(2.4)小时。
11.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是(a+60)米。
12.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了(6)场。
13.方程为:3a + 5 = 9.14.根据题意,应该是-3x^2a-1+6=0,解得a=1/3.15.将x=2代入方程得到2a-3=7,解得a=5.16.将5a^2b^(1/22)(2m+1)^(-3/2)(m+3)^(-1)与-ab合并,得到m=-11.17.设四天的日期分别为a。
b。
c。
d,根据题意有a+b+c+d=42.由于每个月最多31天,最后一天的日期不可能超过31,因此最后一天的日期必须是11.18.设十位数为x,个位数为y,则题意转化为x=y/2且x+y=9,解得x=3,y=6,因此这个两位数是36.19.下游速度为8+2=10km/h,上游速度为8-2=6km/h。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.一根长80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。
第三章一元一次方程(培优)-七年级数学上册单元培优达标强化卷(解析)一、选择题1.将3x−7=2x变形正确的是()A. 3x+2x=7B. 3x−2x=−7C. 3x+2x=−7D. 3x−2x=7【答案】D解:等式两边都加7得:3x=2x+7,等式两边都减2x得:3x−2x=7.2.已知关于x的方程(m−2)x|m−1|=0是一元一次方程,则m的值是()A. 2B. 0C. 1D. 0或2【答案】B【解析】解:根据题意得:|m−1|=1,整理得:m−1=1或m−1=−1,解得:m=2或0,把m=2代入m−2得:2−2=0(不合题意,舍去),把m=0代入m−2得:0−2=−2(符合题意),即m的值是0,3.方程2x+1=3与2−a−x3=0的解相同,则a的值为()A. 0B. 3C. 5D. 7【答案】D4.若多项式4x−5与2x−12的值相等,则x的值是()A. 1B. 32C. 23D. 2【答案】B解:由题意得,4x−5=2x−12,去分母,2(4x−5)=2x−1,去括号,8x−10=2x−1,最后移项,8x−2x=−1+10,合并同类项,6x=9,系数化为1,x=32.5.已知:|m−2|+(n−1)2=0,则方程2m+x=n的解为()A. x=−4B. x=−3C. x=−2D. x=−1【答案】B解:∵|m−2|=0,(n−1)2=0m=2,n=1,将m=2,n=1代入方程2m+x=n,得4+x=1移项,得x=−3.6.某种商品原先的利润率为20%,为了促销,现降价10元销售,此时利润率下降为10%,那么这种商品的进价是()A. 100元B. 110元C. 120元D. 130元【答案】A解:设这件产品的进价为x元,x(1+20%)−10=x[1+(20%−10%)],解得,x=100即这件商品的进价为100元,7.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A. 440+x40+60=1 B. 440+x40×60=1C. 440+x40+x60=1 D. 440+x60=1【答案】C【解析】解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:4 40+x40+x60=1.8.下列说法中,正确的是()A. 若ac =bc ,则a =bB. 若a c =bc ,则a =b C. 若a 2=b 2,则a =bD. 若|a|=|b|,则a =b【答案】B【解析】解:A.若ac =bc ,当c ≠0,则a =b ,故此选项错误; B .若ac =bc ,则a =b ,正确;C .若a 2=b 2,则|a|=|b|,故此选项错误;D .若|a|=|b|,则a =±b ,故此选项错误;9. 某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利20%(相对于进价),另一台空调调价后售出则亏本20%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )A. 要亏本4%B. 可获利2%C. 要亏本2%D. 既不获利也不亏本【答案】A【解析】解:设这两台空调调价后的售价为x ,两台空调进价分别为a 、b . 调价后两台空调价格为:x =a(1+20%);x =b(1−20%). 解得:a =56x ,b =54x , 调价后售出利润为:2x−(a+b)a+b=2x−(56x+54x)56x+54x =−0.04=−4%,10. 小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A.B.C.D.【答案】B 【解析】解:A 、设最小的数是x . x +x +7+x +7+1=19, x =43,故本选项不符合题意; B 、设最小的数是x . x +x +6+x +7=19, x =2.故本选项符合题意.C 、设最小的数是x . x +x +1+x +7=19, x =113,故本选项不符合题意.D 、设最小的数是x . x +x +1+x +7+1=19, x =103,故本选项不符合题意.故选:B .二、填空题 11. 若代数式(1−a−14)x 2−5y +4−12(ax 2+2by +16)(a 、b 为常数)的值与字母x 、y的取值无关,则方程3ax +b =0的解为________ 【答案】1 解:(1−a−14)x 2−5y +4−12(ax 2+2by +16)=(1−a −14)x 2−5y +4−12ax 2−by −8 =(1−a −14−12a)x 2−(5+b)y −4 =(54−34a)x 2−(5+b )y −4 ∵代数式(1−a−14)x 2−5y +4−12(ax 2+2by +16)(a 、b 为常数)的值与字母x 、y 的取值无关,∴54−34a =0,5+b =0,∴a =53,b =−5,∴3ax +b =0为53·3x −5=0, ∴5x −5=0, 解得:x =1. 故答案为1.12. 如果a ,b 为定值,关于x 的一次方程2kx+a 3−x−bk 6=2,无论k 为何值时,它的解总是1,则a +2b = . 【答案】−32【解析】解:将x =1代入方程2kx+a 3−x−bk 6=2,∴2k+a 3−1−bk 6=2,∴4k +2a −1+bk =12, ∴4k +bk =13−2a ,∴k(4+b)=13−2a,由题意可知:b+4=0,13−2a=0,∴a=132,b=−4,∴a+2b=132−8=−32.故答案为:−3213.若(a−2)x|a|−1−2=0是关于x的一元一次方程,则a=______.【答案】−2【解析】解:(a−2)x|a|−1−2=0是关于x的一元一次方程,∴a−2≠0,|a|−1=1,解得a=−2.14.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是__________元.【答案】140解:设这件衣服的成本是x元,根据题意得:x(1+50%)×80%−x=28,解得:x=140.答:这件衣服的成本是140元;故答案为140.15.小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为______元.【答案】200【解析】解:设这双鞋的实际售价为x元,根据题意,得0.8x=x−40x=200.16.已知关于x的方程x−m2=x+m3与方程x−12=3x−2的解互为倒数,则m2−2m−3的值为_________.【答案】0解:x−12=3x−2,解得:x=35,∴方程x−m2=x+m3的解为x=53,代入可得:56−m2=53+m3,解得:m=−1,∴m2−2m−3=1+2−3=0.17.用“∗”表示一种运算,其意义是a∗b=a−2b,如果x∗(3∗2)=3,则x=______.【答案】1【解析】解:3∗2=3−2×2=−1,∵x∗(3∗2)=3,∴x∗(−1)=3,x−2×(−1)=3,x+2=3,x=1,18.有两根同样长度但粗细不同的蜡烛,粗蜡烛可以燃烧6小时,细蜡烛可以燃烧4小时,一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现剩下的粗蜡烛长度是细蜡烛长度的两倍,则停电时间是______小时.【答案】3解:设停电时间为x小时,根据题意得:1−x6=2(1−x4),解得:x=3.19.如果x=1是方程2−13(m−x)=2x的解,那么关于y的方程m(y−3)−2= m(2y−5)的解是______ .【答案】y=0解:∵x=1是方程2−13(m−x)=2x的解,∴2−13(m−1)=2×1,解得m=1,∴关于y的方程为y−3−2=2y−5,移项得,y−2y=−5+2+3,合并同类项得,−y=0,系数化为1得,y=0.20.如图,已知点A、B是直线上两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过___________秒时线段PQ的长为5厘米.【答案】13或1或3或9解:设运动时间为t秒.①如果点P向左、点Q向右运动,由题意,得:t+2t=5−4,解得t=13;②点P、Q都向右运动,由题意,得:2t−t=5−4,解得t=1;③点P、Q都向左运动,由题意,得:2t−t=5+4,解得t=9.④点P向右、点Q向左运动,由题意,得:2t−4+t=5,解得t=3.综上所述,经过13或1或3秒或9秒时线段PQ的长为5厘米.故答案为13或1或3或9.三、解答题21.已知关于x的方程3[x−2(x−a3)]=4x和3x+a12−1−5x8=1有相同的解,那么这个解是多少?【答案】解:由方程(1)得x=27a,由方程(2)得x=27−2a21,由题意得27a=27−2a21,解得a=2714,代入解得x=2728.∴可得这个解为2728.22.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同⋅为什么⋅(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些⋅为什么⋅【答案】解:(1)设甲、乙合作需要x天完成,由题意,得x30+x20=1,解得:x=12,∵12<15,∴甲、乙两人能履行该合同;(2)34÷(130+120)=9(天)设剩下的工程甲用y天完成,由题意,得y30=14,解得:y=152,9+152=16.5(天)>15(天),不合适;设剩下的工程乙用z天完成,由题意,得y20=14,解得y=5,9+5=14<15,合适,答:调走甲比较合适.23.甲、乙两站相距360千米,一列快车从甲站开出,每小时行160千米,一列慢车从乙站开出,每小时行80千米.(1)若两车同时开出,相向而行多少小时后两车相遇?(2)若两车同向而行,快车在慢车的后面,且慢车提前半小时出发,经过多少小时后快车追上慢车?【答案】解:(1)设两车相向而行x小时后两车相遇,根据题意得:160x+80x=360,解得:x=1.5.答:两车相向而行1.5小时后两车相遇;(2)设经过x小时后快车追上慢车,根据题意得:360+80×0.5+80×x=160x,解得:x=5.答:经过5小时后快车追上慢车.24.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价−进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?x+15)件,【答案】解:(1)设第一次购进甲种商品x件,则购进乙种商品(12x+15)=6000,根据题意得:22x+30(12解得:x=150,x+15=90.∴12答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29−22)×150+(40−30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,−30)×90×3=1950+180,根据题意得:(29−22)×150+(40×y10解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.25.已知|a+4|+(b−2)2=0,数轴上A、B两点所对应的数分别是a和b.(1)填空:a=___________,b=____________;(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由;(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O点出发向左运动.若N为PQ的中点,当PQ=16时,求MN的长.【答案】解:(1)−4 2 ;(2)设C点表示的数为x,根据题意得,①当点C在A、B之间时,有c+4=2(2−c),解得,c=0;②当点C在B的右侧时,有c+4=2(c−2),解得,c=8.故点C表示的数为0或8;(3)设运动的时间为t秒,根据题意得,2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:=0,P:−4−2×2=−8,Q:2+3×2=8,M:0−4×2=−8,N:−8+82∴MN=0−(−8)=8.11。
七年级上册数学《一元一次方程》培优试题一.选择题(共12小题)1.商场以八折的优惠价格每让利出售一件商品,就少赚15元,那么顾客买一件这种商品就只需付()A.35元B.60元C.75元D.150元2.设a,b,c均为实数,且满足(a﹣1)b=(a﹣1)c,下列说法正确的是()A.若a≠1,则b﹣c=0B.若a≠1,则=1C.若b≠c,则a+b≠c D.若a=1,则ab=c3.若x=y,则下列式子:①y﹣3=x﹣2;②2x=﹣2y;③1﹣x=1﹣y;④3x+2=2y+3,其中正确的个数是()A.1B.2C.3D.44.如图,甲、乙两人沿着边长为90m的正方形,按A→B→C→D→A的方向行走,甲从点A出发,以50m/min的速度行走;同时,乙从点B出发,以65m/min的速度行走.当乙第一次追上甲时,在正方形的()A.BC边上B.CD边上C.点C处D.点D处5.文化商场同时卖出两台电子琴,每台均卖1200元,以成本计算,其中一台盈利20%,另一台亏本20%,则这次出售中商场()A.赚100元B.赔了100元C.不赚不赔D.无法确定6.如图,方格中的任一行、任一列及对角线上的数的和都相等,则m等于()A.14B.10C.13D.97.文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在节日举行优惠售卖活动,铅笔按原价8折出售,圆珠笔按原价9折出售,已知两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×8x+2×9(60﹣x)=87B.1.2×0.8x+2×0.9(60﹣x)=87C.1.2×8(60﹣x)+2×9x=87D.1.2×0.8(60﹣x)+2×0.9x=878.已知方程,则式子11+2()的值为()A.B.C.D.9.七年级学生在参加校外实践活动中,有m位师生乘坐n辆客车.若每辆客车乘42人,则还有8人不能上车,若每辆客车乘45人,则最后一辆车空了16个座位.在下列四个方程:①42n﹣8=45n+16;②=;③=;④42n+8=45n﹣16中,其中正确的有()A.①③B.②④C.①④D.③④10.王涵同学在解关于x的方程7a+x=18时,误将+x看作﹣x,得方程的解为x=﹣4,那么原方程的解为()A.x=4B.x=2C.x=0D.x=﹣211.一个密封的瓶子里装着一些水(如图所示),已知瓶子的底面积为10cm2,请你根据图中标明的数据,计算瓶子的容积是()cm3.A.80B.70C.60D.5012.如图①,OP为一条拉直的细线,A、B在OP上,且OA:AP=1:3,OB:BP=3:5.若先固定B点,将OB折向BP,使得OB重叠在BP上,如图②,再从图②的A点及与A 点重叠处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为()A.1:1:1B.1:1:2C.1:2:2D.1:2:5二.填空题(共6小题)13.若关于x的方程的解是正整数,则正整数m的值为.14.已知(m﹣2)x|m﹣1|﹣6=0是关于x的一元一次方程,则它的解是.15.某人沿电车路线骑车,每隔12分钟有一辆车从后面超过,每4分钟有车迎面驶来,若人、车的速度不变,则每隔分钟有车从车站开出.16.已知关于x的一元一次方程+3=2021x+m的解为x=3,那么关于y的一元一次方程+3=2021(1﹣y)+m的解为y=.17.某超市在元旦期间推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元打九折;(3)一次性购物超过300元一律打八五折.元旦这天,小明和妈妈在该超市购物后分别自行付款80元和252元,如果小明和妈妈合作一次性付款,则应付款元.18.重庆双福育才中学农场的工人们要把两片草地的草除掉,大的一片是小的一片的3倍,前两天工人们都在大的一片草地上除草,第三天工人们对半分开除草,一半留在大的一片草地上,另一半人到小的一片草地去除草,第三天结束后,大的一片草地恰好除草完毕,小的一片草地还剩下一小块正好是2个人工人2天的工作量.如果工人们每天每人的除草量是相等的,且每天的工作时间相等,则农场有名工人.三.解答题(共6小题)19.解方程:(1)2(x+1)=1﹣(x+3).(2)+1=.20.已知数轴上两点A、B对应的数分别为﹣24,12.(1)A、B两点间的距离为.(2)如图①,如果点P沿线段AB自点A向点B以每秒2个单位长度的速度运动,同时点Q沿线段BA自点B向点A以每秒4个单位长度的速度运动,运动时间为t秒.①运动t秒时,点P对应的数为,点Q对应的数为.(用含t的代数式表示)②当P、Q两点相遇时,点P在数轴上对应的数是.③求P、Q相距6个单位长度时的t值.(3)如图②,若点D在数轴上,点M在数轴上方,且AD=MD=DC=5,∠MDC=60°,现点M绕着点D以每秒转20°的速度顺时针旋转(一周后停止),同时点N沿射线BA 自点B向点A运动.当M、N两点相遇时,直接写出点N的运动速度.21.新冠病毒爆发期间,武汉某医院住院部有27个重症病房和若干个普通病房,其中一个重症病房需要1名医生,1名护士,5个普通病房需要1名医生,2名护士,某省第三批援鄂医疗队126名医护人员刚好接管该医院住院部所有病房.(1)该批援鄂医疗队中医生、护士各有多少人?(2)该医院住院部普通病房有多少个?22.4月30日,某水果店购进了100千克水蜜桃和50千克苹果,苹果的进价是水蜜桃进价的1.2倍,水蜜桃以每千克16元的价格出售,苹果以每千克20元的价格出售,当天两种水果均全部售出,水果店获利1800元.(1)求水蜜桃的进价是每千克多少元?(2)5月1日,该水果店又以相同的进价购进了300千克水蜜桃,第一天仍以每千克16元的价格出售,售出了8a千克,且售出量已超过进货量的一半.由于水蜜桃不易保存,第二天,水果店将水蜜桃的价格降低了a%,到了晚上关店时,还剩20千克没有售出,店主便将剩余水蜜桃分发给了水果店员工们,结果这批水蜜桃的利润为2660元,求a的值.23.2020年5月,重庆市多位区领导变身主播,直播带货,为本区产品代言,兴起了一股区长带货热潮.某区特色农产品推出了甲和乙两种礼盒,5月份甲和乙两种礼盒每盒的价格分别为80元和200元,其中甲种礼盒卖出的盒数比乙种礼盒卖出的盒数的2倍多300盒,总收入是24万元.(1)求5月份卖出甲和乙两种礼盒的盒数;(2)为了取得脱贫攻坚战全面胜利,让农民增产增收,6月份甲种礼盒的价格比5月份下降了2a%(a>0),6月份乙种礼盒的价格比5月份下降了a%.已知6月份两种礼盒卖出的总盒数达到4000盒,其中乙种礼盒卖出的盒数占两种礼盒卖出的总盒数的,且6月份总收入达到了45.76万元,求a的值.24.某市自2020年1月起,对餐饮用水开始实行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):月用水量(立方米)水价(元/立方米)第一级50立方米以下(含50立方米)4.6的部分6.5第二级50立方米﹣150立方米(含150立方米)的部分第三级150立方米以上的部分8(1)受疫情影响,某饭店4月份用水量为15立方米,则该饭店4月份需交的水费为元.(2)某饭店9月份用水量为a(50<a≤150)立方米,则该饭店9月份应交的水费为元.(用含a的代数式表示)(3)某饭店11月份交水费1080元,求该饭店11月份的用水量.。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。
(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。
2.(公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元1)班人数较少,不足50人,(2)班超过50人,但不足100人。
经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【答案】(1)解:设七(1)班有x人,由题意可知:七(2)班的人数应不足64人,且多于54人则根据题意,列方程得:13x+11(104-x)=1240解得:x=48.即七(1)班48人,七(2)班56人;(2)解:1240-104×9=304,所以可省304元钱(3)解:要想省钱,由(1)可知七(1)班48人,只需多买3张票,51×11=561,48×13=624>561,∴ 48人买51人的票可以更省钱【解析】【分析】(1)设七(1)班有x人,根据条件:某校七(1)、(2)两个班共104人去游览该公园,其中七(1)班人数较少,不足50人,但超过40人,可得七(2)班的人数应不足64人,且多于54人,再根据1240元的门票钱可列方程解得答案;(2)如果两班联合起来作为一个团体购票,则每张票9元,可省1240-104×9元;(3)由(1)可得七(1)班48人,所以多买3张票,按照第二种售票方案买票.3.对于任意有理数,我们规定 =ad-bc.例如 =1×4-2×3=-2(1)按照这个规定,当a=3时,请你计算(2)按照这个规定,若 =1,求x的值。
一元(yī yuán)一次方程解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.例1解方程例2解方程练习例3.假设关于x的一元一次方程=1的解是x=-1,那么k的值是〔〕A. B.1 C.- D.0例4.假设方程3x-5=4和方程的解一样,那么a的值是多少?当x = ________时,代数式与的值相等.例5.〔方程与代数式联络〕a、b、c、d为实数,现规定一种新的运算.〔1〕那么的值是;〔2〕当时,= .例6.〔方程(fāngchéng)的思想〕如图,一个瓶身为圆柱体的玻璃瓶内装有高厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,那么瓶内的墨水的体积约占玻璃瓶容积的〔〕不考虑瓶子的厚A .B .C .D .例7.解方程〔分类讨论〕例8.问当a、b满足什么条件时,方程2x+5-a=1-bx:〔1〕有唯一解;〔2〕有无数解;〔3〕无解。
例 9.解方程例10.解以下方程练习解方程解方程例11.+ m = my - m. (1)当 m = 4时,求y的值.(2)当y = 4时,求m的值.例12.小张在解方程〔x为未知数〕时,误将 - 2x 看成 2x 得到的解为,请你求出原来方程的解例13.关于x 的方程无解,求 a关于x 的方程无解,求 k例14.关于x 的方程有唯一的解,求这个方程的解例15.关于x 的方程无穷多解,求 a 、b.关于x 的方程无穷多解,求m 、n例16.不管k 为何值时,总是关于x 的方程的解,求a 、b不管 k为何值时,总是关于x 的方程的解,求a 、b例17.假设(jiǎshè)(3x+1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,那么a5-a4+a3-a2+a1-a0和a4+a2+a0的值分别为多少?应用题一、数字问题例1.一个两位数十位上的数字与个位上的数字之和是6,把这个两位数加上18后,正好等于这个两位数的十位数字与个位数字对调后的两位数,请问这个两位数是多少?例2.有一个三位数,其各位数字之和为16.,十位数字是个位数字与百位数字的和,假设把百位与个位数字对调,那么新数比原数大594,求原数。
2022-2023学年七年级上数学:一元一次方程
一.选择题(共5小题)
1.下列等式的变形中,错误的是()
A.如果a=2,那么a+2=4B.如果a=﹣3,那么﹣2a=6
C.如果3a=5,那么a =D.如果a=﹣2,那么a2=4
2.如果关于x的方程(a+1)x=a2+1无解,那么a的取值范围是()A.a=−1B.a>−1C.a≠−1D.任意实数
3.整式mx﹣n的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:x﹣10123 mx﹣n﹣8﹣4048则关于x的方程﹣mx+n=8的解为()
A.x=﹣1B.x=0C.x=1D.x=3
4.如果单项式﹣xy b 与是同类项,那么关于x的方程ax+b=0的解为()A.x=1B.x=﹣1C.x=3D.x=﹣3
5.如果3(x﹣2)与2(3﹣x)互为相反数,那么x的值是()
A.0B.1C.2D.3
二.填空题(共5小题)
6.已知x=﹣1是方程2ax﹣5=a﹣2的解,则a=.
7.关于x的方程(a﹣2)x=a2﹣4(a≠2)的解是.
8.某商人把标价为110元的商品打九折出售,这样他从中获利10%,则进货价为元.9.如果关于x的方程(a﹣4)x=2022有解,那么实数a的取值范围是.
10.某校食堂有甲、乙、丙三种套餐,为了解哪种套餐更受欢迎,学校调查了该校的全体学生,其中喜欢甲、乙、丙三种套餐的人数比为2:5:3,若选择甲套餐的有180名学生,则这个学校有名学生.
三.解答题(共5小题)
11.某单位计划“双12期间”购进一批手写板,网上某店铺的标价为900元/台,优惠活动如下:
销售量单价
第1页(共10页)。
第8讲
一元一次方程(2)一、基础知识
1、若3x 是方程52k x 的解,求k 的值.
2、讨论12x 是不是方程147
32
x x 的解.
3、已知3x 是1312m x 的解,求代数式132m m 的值.
4、已知1y 是关于y 的方程08432m y y 的解,求式子m m m 1
22的值.
5、已知方程0243a x a 是关于x 的一元一次方程,求a 的值.
6、如果关于x 的方程06365k x 是一元一次方程,求k 的值.
7、关于x 的方程0241122a x a x a 是一元一次方程求a 的值.
8、方程432x m x
与方程626
x 的解相同,求m 的值.
9、已知:关于x 的方程1232x a x a x
与方程5423x x 同解,求a 的值.
10、若关于x 的方程①a x 2和②a a x 32,若①的解比②的解大1,求a 的值.
11、设关于x 的方程55m x ,m x 244,当m 为何值时,这两个方程的解互为相反数?
12、方程0132x 的解与关于x 的方程x k x k
2232的解互为倒数,求k 的值.
13、当4x 时,式子a x ax A 642的值是- 1,那么当5x 时,A 的值是多少?
14、小明在解关于x 的方程1123x a 是,误将x 2看成了x 2,得到的解为2x ,请你帮小明算一算,方程正确的解为多少?
二、列方程解应用题(行程问题和工程问题)
15、小红和小明绕周长为
1200米的湖晨练,小红的速度为85米/分,小明比她快10米/分,(1)如果两人同时同向同一地点开跑,多少分钟两人相遇?
(2)如果两人同时相向开跑,多少分钟两人相遇?
(3)如果小红在小明前面200米两人同时反向开跑,多少分钟两人相遇?
16、甲乙骑自行车,从相距60千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如果走15分钟后乙出发,问甲出发后几小时与乙相遇?
17、某项工程,甲单独完成要12天,乙单独完成要
18天,如果甲先做了7天,乙来支援,由甲、乙合
做完成余下的工程,求乙做多少天?18、整理一批或污物,由甲一人做需
80小时完成,现由一部分人先做2小时后,在增加5人做8小时,恰好完成这项工作的4
3,怎样安排参与整理货物的具体人数?19、北京市为了能够成功举办
2008年奥运会,市政府要求各项工程在确保质量的前提下完成任务,其中一项工程,请甲工程队独做要3个月完成,每月耗资12万元,若请乙工程队独做要6个月完成,每月耗资5万元,那么请甲、乙两工程队合做要几个月完成?耗资多少万元?
三、方案选择
20、一件工程,甲工程队独做10天完成,每天需费用160元;乙工程队独做15天完成,每天需费用100元.
(1)若由甲、乙两个工程队合做3天后,剩余工程有乙工程队独做完成,求工程所需的总费用是多少
元?
(2)由于场地限制,两队不能同时施工.若先安排甲工程队单独施工做一部分工程再由乙工程队单独施
工完成剩余工程,预计公付工程总费用1500元,你知道甲、乙两个工程队各做了工程的几分之几吗?
(3)为了保证工程质量,工程指挥部决定安排一名质检员全程进行质量监督,每天需付给质检员工作、
生活补助30元,请你安排甲、乙两个工程队进行施工,使工程所需的总费用最少?
21、一件工作,甲独做20天可以完成,乙独做30天可以完成.若由甲、乙共同完成这项工作,且两人工
作平均按整数日安排,且甲每天需要工作费用80元,乙每天需要工作费用50元.
(1)问共有多少种安排方案?
(2)问完成这项工作的最低费用是多少?应该如何安排两队工作?
(3)要使工程的总费用不超过1540元,问甲最多工作多少天?
22、某工厂生产某种产品,每件产品的出产价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为了达到国家环保要求,需要对废渣进行处理,现有两种
方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费.
(1)设工厂每月生产x件产品,用方案一处理废渣时,每月利润为__________________元;用方案二处理废渣时,每月利润为_________________元(利润=总收入-总支出).
(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元?
(3)如何根据月生产量选择处理方案,既可达到环保要求又最很划算?
23、某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车则多出一辆,且其余客车恰好坐满,已知45座客车日租金为每辆220元,60座客车每日租金为每辆300元.
(1)学生人数是多少?原计划租用45座客车多少量?
(2)要使每名同学都有座位,怎样租用车辆更合算?。