2.1数列的概念与简单表示(2课时)
- 格式:ppt
- 大小:244.50 KB
- 文档页数:41
§2.1数列的概念与简单表示法(二)学习目标 1.理解数列的几种表示方法,能从函数的观点研究数列;2.理解递推公式的含义,能根据递推公式求出数列的前几项(重、难点).预习教材P30-31完成下列问题:知识点一数列的函数性质1.数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.2.在数列{a n}中,若a n+1>a n,则{a n}是递增数列;若a n+1<a n,则{a n}为递减数列;=a n,则{a n}为常数列.若a n+1【预习评价】1.从定义上看,数列是特殊的函数,因此,表示数列除可以用通项公式外,还可以有哪些方法?提示还可以用列表法,图象法.2.数列单调性与函数单调性的区别和联系是什么?提示联系:若函数f(x)在[1,+∞)上单调,则数列f(n)也单调.反之不正确,例如f(x)=(x-52,数列f(n)单调递增,但函数f(x)在(1,+∞)上不是单调递增.4)区别:二者定义不同,函数单调性的定义:函数f(x)的定义域为D,设D⊇I,对任意x1,x2∈I,当x1<x2时,若f(x1)>f(x2),则f(x)在I上单调递减,若f(x1)<f(x2),则f(x)在I上单调递增,定义中的x1,x2不能用有限个数值来代替.数列单调性的定义:只需比较相邻的a n与a n+1的大小来确定单调性.知识点二数列的表示方法1.数列的递推公式:如果数列{a n}的第1项或前几项已知,并且数列{a n}的任一项a n与它的前一项a n-1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的递推公式.2.数列的表示方法:数列的表示方法有通项公式法、图象法、列表法、递推公式法.【预习评价】1.已知数列{a n }满足a 1=3,a n +1=2a n +1,则数列的第5项a 5=________,由此归纳出{a n }的一个通项公式为________,可以求得a 8=________.解析 ∵a 1=3,∴a 2=2a 1+1=7,a 3=2a 2+1=15,a 4=2a 3+1=31,a 5=2a 4+1=63,∴a 5=63.可以看出a n =2n +1-1, ∴a 8=29-1=511.答案 63 a n =2n +1-1 5112.数列的通项公式与递推公式有什么区别? 提示 不同点相同点通项公式 要根据某项的序号,直接用代入法求出该项都可确定一个数列,都可求出数列的任何一项递推公式可根据第1项或前几项的值,通过一次或多次赋值逐项求出数列的项,直至求出所需的项都可确定一个数列,都可求出数列的任何一项题型一 数列的函数特性【例1】 已知数列{a n }的通项公式是a n =(n +1)⎝ ⎛⎭⎪⎫1011n,试问该数列有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解 法一 a n +1-a n =(n +2)⎝ ⎛⎭⎪⎫1011n +1-(n +1)⎝ ⎛⎭⎪⎫1011n=(9-n )⎝ ⎛⎭⎪⎫1011n11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n . 则a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…,故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝ ⎛⎭⎪⎫10119.法二 根据题意,令⎩⎪⎨⎪⎧a n -1≤a na n ≥a n +1,即⎩⎨⎧n ×⎝ ⎛⎭⎪⎫1011n -1≤(n +1)⎝ ⎛⎭⎪⎫1011n (n +1)⎝ ⎛⎭⎪⎫1011n ≥(n +2)⎝ ⎛⎭⎪⎫1011n +1,解得9≤n ≤10.又n ∈N *,则n =9或n =10.故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝ ⎛⎭⎪⎫10119.规律方法 1.由于数列是特殊的函数,所以可以用研究函数的思想方法来研究数列的相关性质,如单调性、最大值、最小值等,此时要注意数列的定义域为正整数集或其有限子集{1,2,…,n }这一条件.2.可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.【训练】 已知数列{a n }的通项公式为a n =nn 2+9(n ∈N *),写出其前5项,并判断数列{a n }的单调性.解 当n =1,2,3,4,5时,a n 依次为110,213,16,425,534,a n +1-a n =n +1(n +1)2+9-nn 2+9=-n 2-n +9[(n +1)2+9][n 2+9]. ∵函数f (x )=-x 2-x +9=-⎝ ⎛⎭⎪⎫x +122+374在[1,+∞)上单调递减,又f (1)=7>0,f (2)=3>0,f (3)<0,∴当n =1,2时,a n +1>a n ,当n ≥3,n ∈N *时,a n +1<a n , 即a 1<a 2<a 3>a 4>a 5>….∴数列{a n }的前3项是递增的,从第3项往后是递减的.方向1 由递推公式写出数列的项【例2-1】 已知数列{a n }的第一项a 1=1,以后的各项由递推公式a n +1=2a na n +2给出,试写出这个数列的前5项. 解 ∵a 1=1,a n +1=2a na n +2,∴a 2=2a 1a 1+2=23, a 3=2a 2a 2+2=2×2323+2=12,a 4=2a 3a 3+2=2×1212+2=25,a 5=2a 4a 4+2=2×2525+2=13.故该数列的前5项为1,23,12,25,13. 方向2 由数列的递推公式求通项公式【例2-2】 已知数列{a n }满足a 1=1,a n =a n -1+1n (n -1)(n ≥2),写出该数列前5项,并归纳出它的一个通项公式. 解 ∵a 1=1,a n =a n -1+1n (n -1)(n ≥2),∴a 2=a 1+12×1=1+12=32,a 3=a 2+13×2=32+16=53,a 4=a 3+14×3=53+112=74,a 5=a 4+15×4=74+120=95.故数列的前5项分别为1,32,53,74,95.由于1=2×1-11,32=2×2-12,53=2×3-13,74=2×4-14,95=2×5-15,故数列{a n }的一个通项公式为a n =2n -1n =2-1n . 方向3 构造数列法求通项公式【例2-3】 设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________.解析 法一 (累乘法):把(n +1)a 2n +1-na 2n +a n +1a n =0分解因式,得[(n +1)a n +1-na n ](a n +1+a n )=0. ∵a n >0,∴a n +1+a n >0, ∴(n +1)a n +1-na n =0, ∴a n +1a n =n n +1,∴a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n ,∴a n a 1=1n .又∵a 1=1,∴a n =1n a 1=1n . 法二 (迭代法):同法一,得a n +1a n =nn +1,∴a n +1=nn +1a n ,∴a n =n -1n ·a n -1=n -1n ·n -2n -1·a n -2=n -1n ·n -2n -1·n -3n -2·a n -3…=n -1n ·n -2n -1·n -3n -2·…·12a 1=1n a 1.又∵a 1=1,∴a n =1n .法三 (构造特殊数列法):同法一,得a n +1a n =nn +1,∴(n +1)a n +1=na n , ∴数列{na n }是常数列, ∴na n =1·a 1=1, ∴a n =1n . 答案 1n规律方法 1.由递推公式写出通项公式的步骤 (1)先根据递推公式写出数列的前几项(至少是前3项).(2)根据写出的前几项,观察归纳其特点,并把每一项统一形式. (3)写出一个通项公式并证明.2.递推公式的常见类型及通项公式的求法(1)求形如a n +1=a n +f (n )的通项公式.将原来的递推公式转化为a n +1-a n =f (n ),再用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1). (2)求形如a n +1=f (n )a n 的通项公式.将原递推公式转化为a n +1a n =f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a 2=f (2),…,a na n -1= f (n -1),累乘可得a na 1=f (1)f (2)…f (n -1).课堂达标1.下列四个命题:①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项; ②数列23,34,45,56,…的通项公式是a n =n n +1;③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列. 其中真命题的个数是( ) A.1 B.2 C.3D.4解析 只有③正确.①中,如已知a n +2=a n +1+a n , a 1=1,无法写出除首项外的其他项.②中a n =n +1n +2,④中-1和1排列的顺序不同,即二者不是同一数列. 答案 A2.数列2,4,6,8,10,…的递推公式是( ) A.a n =a n -1+2(n ≥2)B.a n =2a n -1(n ≥2)C.a 1=2,a n =a n -1+2(n ≥2)D.a 1=2,a n =2a n -1(n ≥2)解析 A ,B 中没有说明某一项,无法递推,D 中a 1=2,a 2=4,a 3=8,不合题意. 答案 C3.数列{x n }中,若x 1=1,x n +1=1x n +1-1,则x 2 017等于( )A.-1B.-12 C.12 D.1解析 ∵x 1=1,∴x 2=-12,∴x 3=1, ∴数列{x n }的周期为2,∴x 2 017=x 1=1. 答案 D4.已知数列{a n },对于任意的p ,q ∈N *,都有a p +a q =a p +q ,若a 1=19,则a 36=________.解析 由已知得a 1+a 1=a 1+1=a 2,∴a 2=29, 同理a 4=49,a 8=89,∴a 9=a 8+1=a 8+a 1=89+19=1, ∴a 36=2a 18=4a 9=4. 答案 45.求数列{-2n 2+29n +3}中的最大项. 解 由已知,得a n =-2n 2+29n +3=-2⎝ ⎛⎭⎪⎫n -2942+10818.由于n ∈N *,故当n 取距离294最近的正整数7时,a n 取得最大值108, ∴数列{-2n 2+29n +3}中的最大项为a 7=108.课堂小结1.{a n }与a n 是不同的两种表示,{a n }表示数列a 1,a 2,…,a n ,…,是数列的一种简记形式.而a n 只表示数列{a n }的第n 项,a n 与{a n }是“个体”与“整体”的从属关系.2.数列的表示方法:①图象法;②列表法;③通项公式法; ④递推公式法.3.通项公式和递推公式的区别:通项公式直接反映a n 和n 之间的关系,即a n 是n 的函数,知道任意一个具体的n 值,就可以求出该项的值a n ;而递推公式则是间接反映数列的式子,它是数列任意两个(或多个)相邻项之间的推导关系,不能由n 直接得出a n .基础过关1.已知数列{a n }满足a 1=2,a n +1-a n +1=0(n ∈N *),则此数列的通项a n 等于( ) A.n 2+1 B.n +1 C.1-nD.3-n解析 a n +1-a n =-1,利用累加法可以求得a n =3-n .选D. 答案 D2.已知数列{a n }中的首项a 1=1,且满足a n +1=12a n +12n ,此数列的第3项是( ) A.1 B.12 C.34D.58解析 a 1=1,a 2=12a 1+12=1,a 3=12a 2+12×2=34.答案 C3.数列{a n }中,a n =n - 2 011n - 2 012,则该数列前100项中的最大项与最小项分别是( ) A.a 1,a 50 B.a 1,a 44 C.a 45,a 44D.a 45,a 50解析 a n =n - 2 011n - 2 012=1+2 012- 2 011n - 2 012.∴当n ∈[1,44]且n ∈N *时,{a n }单调递减, 当n ∈[45,+∞)且n ∈N *时,{a n }单调递减, 结合函数f (x )=2 012- 2 011x - 2 012的图象,可知(a n )max =a 45,(a n )min =a 44. 答案 C4.数列{a n }中,a 1=2,a n =a n +1-3,则14是{a n }的第________项.解析 a 1=2,a 2=a 1+3=5,a 3=a 2+3=8,a 4=a 3+3=11,a 5=a 4+3=14. 答案 55.数列{a n }中,a 1=2,a n =2a n -1(n ∈N *,2≤n ≤10),则数列{a n }的最大项为________.解析 ∵a 1=2,a n =2a n -1, ∴a n ≠0,∴a na n -1=2>1,∴a n >a n -1,即{a n }单调递增,∴{a n }的最大项为a 10=2a 9=4a 8=…=29·a 1=29·2=210=1 024. 答案 1 0246.已知数列{a n }中,a 1=1,a 2=23,1a n -2+1a n =2a n -1(n ∈N *,n ≥3),求a 3,a 4.解 由a 1=1,a 2=23且1a n -2+1a n =2a n -1,知当n =3时,1a 1+1a 3=2a 2,∴1a 3=2a 2-1a 1=3-1=2,∴a 3=12.当n =4时,1a 2+1a 4=2a 3,∴1a 4=2a 3-1a 2=4-32=52,∴a 4=25.7.根据下列条件,写出数列的前四项,并归纳猜想它的通项公式.(1)a 1=0,a n +1=a n +2n -1(n ∈N *);(2)a 1=1,a n +1=a n +a n n +1(n ∈N *); (3)a 1=-1,a n +1=a n +1n (n +1)(n ∈N *). 解 (1)a 1=0,a 2=1,a 3=4,a 4=9.猜想a n =(n -1)2(n ∈N *).(2)a 1=1,a 2=32,a 3=42=2,a 4=52.猜想a n =n +12(n ∈N *).(3)a 1=-1,a 2=-12,a 3=-13,a 4=-14.猜想a n =-1n (n ∈N *).能力提升8.已知数列{x n }满足x 1=a ,x 2=b ,x n +1=x n -x n -1(n ≥2),设S n =x 1+x 2+…+x n ,则下列结论正确的是( )A.x 100=-a ,S 100=2b -aB.x 100=-b ,S 100=2b -aC.x 100=-b ,S 100=b -aD.x 100=-a ,S 100=b -a解析 x 1=a ,x 2=b ,x 3=x 2-x 1=b -a ,x 4=x 3-x 2=-a ,x 5=x 4-x 3=-b ,x 6=x 5-x 4=a -b ,x 7=x 6-x 5=a =x 1,x 8=x 7-x 6=b =x 2,∴{x n }是周期数列,周期为6,∴x 100=x 4=-a ,∵x 1+x 2+…+x 6=0,∴S 100=x 1+x 2+x 3+x 4=2b -a .答案 A9.已知数列{a n }满足a 1=1,a n +1=⎩⎨⎧2a n ,n 为正奇数,a n +1,n 为正偶数,则其前6项之和是( ) A.16B.20C.33D.120解析 a 1=1,a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,∴前6项之和为33.答案 C10.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 010=________,a 2 015=________.解析 依题意,得a 2 010=a 2×1 005=a 1 005=a 4×252-3=1,a 2 015=a 4×504-1=0.答案 1 011.在数列{a n }中,a 1=1,a n +1=a n 1+a n (n ∈N *),试归纳出这个数列的通项公式a n =________.解析 由a 1=1,a n +1=a n 1+a n得a 2=12,a 3=13,a 4=14,…,所以可归纳出a n =1n . 答案 1n12.已知数列{a n }满足a 1=12,a n a n -1=a n -1-a n ,求数列{a n }的通项公式.解 ∵a n a n -1=a n -1-a n ,∴1a n -1a n -1=1. ∴故n ≥2时,1a n =1a 1+⎝ ⎛⎭⎪⎫1a 2-1a 1+⎝ ⎛⎭⎪⎫1a 3-1a 2+…+⎝ ⎛⎭⎪⎫1a n -1a n -1=2+=n +1.∴1a n =n +1,∴当n ≥2时,a n =1n +1.a 1=12也适合上式,∴a n =1n +1(n ∈N *). 13.(选做题)设f (x )是定义在实数集R 上的函数,且满足f (x +2)=f (x +1)-f (x ),对数列f (n )(n ∈N *),若f (1)=lg 32,f (2)=lg 15,求f (2 016).解 f (3)=f (2)-f (1)=lg 15-lg 32=lg 10=1,f (4)=f (3)-f (2)=1-lg 15=lg 23,f (5)=f (4)-f (3)=lg 23-1=lg 115,f (6)=f (5)-f (4)=lg 115-lg 23=lg 110=-1,f (7)=f (6)-f (5)=-1-lg 115=-1+lg 15=lg 32=f (1),f (8)=f (7)-f (6)=lg 32+1=lg 15=f (2).∴f (n )是周期为6的周期数列.∴f (2 016)=f (336×6)=f (6)=-1.。
第二章 数列2.1 数列的概念与简单表示法一、 知识点 (一)数列的定义1、按一定次序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项)排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项。
2、数列中的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列,例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4,3,是不同的数列。
3、在数列的定义中,并没有规定数列中的数必须不同,因此 ,同一个数在数列中可以重复出现4、数列的一般形式可以写成12,,...,,...n a a a 此数列可简记为{}n a 例如;把数列1111,,,...,,...23n 简记作1n ⎧⎫⎨⎬⎩⎭5、数列的项通常用字母加右下角标表示,其中右下角标表示项的位置序号、我们还应注意到这里{}n a 与n a 是不同的:{}n a 表示数列12,,...,n a a a ;而n a 只表示这个数列的第n 项,这里{}n a 是数列的简记符号,并不表示一个集合。
(二)数列的分类根据数列的项数可以对数列进行分类 1、 项数有限的数列叫有穷数列 2、 项数无限的数列叫无穷数列补充说明:按照项与项之间的大小关系、数列的增减性,可以分为以下几类1、 递增数列:一个数列,如果从第2项起,每一项都大于它前面的一项(即1n n a a +>),这样的数列叫做递增数列。
2、 递减数列:一个数列,如果从第2项起,每一项都小于它前面的一项(即1n n a a +<), 这样的数列叫做递减数列。
3、 摆动数列:一个数列,如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,这样的数列叫做摆动数列。
4、 常数列:一个数列,如果它的每一项都相等,这个数列叫做常数列。
第2课时 数列的性质和递推公式1.已知a n +1-a n -3=0,则数列{a n }是 A.递增数列 B.递减数列 C.常数列D.不能确定解析a n +1-a n =3>0,故数列{a n }为递增数列. 答案A2.数列{a n }满足:a 1=a 2=1,a n +2=a n +1+a n ,则a 6= A.3B.5C.8D.13解析 由条件知a 3=2,a 4=3,a 5=5,a 6=8. 答案C3.已知数列{a n }中,a 1=1,a n +1a n =12,则数列{a n }的通项公式是 A.a n =2n B.a n =12nC.a n =12n -1D.a n =1n2解析a 1=1,a 2=12,a 3=14,a 4=18,观察得a n =12n -1.答案C4.若数列{a n }满足a n +1=2a n -1,且a 8=16,则a 6=________. 解析 由a n +1=2a n -1,得a n =12(a n +1+1),∴a 7=12(a 8+1)=172,a 6=12(a 7+1)=194.答案1945.已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),则a 2 018=________.解析a 1=2,由a n +1=1+a n1-a n,得a 2=-3,a 3=-12,a 4=13,a 5=2,∴数列{a n }的周期为4, ∴a 2 018=a 4×504+2=a 2=-3. 答案 -3[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是A.1B.12C.34D.58解析 由a 1=1,∴a 2=12a 1+12=1,依此类推a 4=12.答案B2.在递减数列{a n }中,a n =kn (k 为常数),则实数k 的取值X 围是 A.RB.(0,+∞)C.(-∞,0)D.(-∞,0]解析 ∵{a n }是递减数列, ∴a n +1-a n =k (n +1)-kn =k <0. 答案C3.数列{a n }的通项公式为a n =3n 2-28n ,则数列{a n }各项中最小项是 A.第4项B.第5项C.第6项D.第7项解析a n =3n 2-28n =3⎝⎛⎭⎪⎫n -1432-1963,故当n =5时,a n 的最小值为a 5=-65. 答案B4.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于 A.259B.2516C.6116D.3115解析 由a 1·a 2·a 3·…·a n =n 2,(n ≥2)得a 1·a 2·a 3·…·a n -1=(n -1)2,(n ≥3),∴a n =n 2(n -1)2,(n ≥3),∴a 3=94,a 5=2516,∴a 3+a 5=6116.答案C5.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于 A.-165B.-33C.-30D.-21解析 由已知得a 2=a 1+a 1=2a 1=-6,∴a 1=-3.∴a 10=2a 5=2(a 2+a 3)=2a 2+2(a 1+a 2)=4a 2+2a 1=4×(-6)+2×(-3)=-30. 答案C6.(能力提升)在数列{a n }中,a 1=2,a n +1=a n +lg ⎝⎛⎭⎪⎫1+1n ,则a n =A.2+lg nB.2+(n -1)lg nC.2+n lg nD.1+n +lg n解析 由a n +1=a n +lg ⎝⎛⎭⎪⎫1+1n ⇒a n +1-a n =lg ⎝ ⎛⎭⎪⎫1+1n ,那么a n =a 1+(a 2-a 1)+…+(a n -a n -1)=2+lg 2+lg 32+lg 43+…+lg n n -1=2+lg ⎝ ⎛⎭⎪⎫2×32×43×…×n n -1=2+lg n .答案A二、填空题(每小题5分,共15分)7.若a 1=1,a n +1=a n3a n +1,则给出的数列{a n }的第7项的值为________.解析由数列{a n }的首项和递推公式可以求出a 2=14,a 3=17,…,观察得到通项公式a n =13n -2,所以a 7=119.答案1198.已知函数f (x )的部分对应值如表所示.数列{a n }满足a 1=1,且对任意n ∈N *,点(a n ,a n +1)都在函数f (x )的图象上,则a 2 017的值为________.解析 由题知,a n +1=f (a n ),a 1=1.∴a 2=f (1)=3,a 3=f (a 2)=f (3)=2,a 4=f (a 3)=f (2)=1,…,依次类推,可得{a n }是周期为3的周期数列,∴a 2 017=a 672×3+1=a 1=1.答案 19.(能力提升)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0,则a n =________.解析 (n +1)a 2n +1-na 2n +a n +1·a n =[(n +1)a n +1-na n ](a n +1+a n )=0, ∵a n >0,∴(n +1)a n +1-na n =0,即a n +1a n =n n +1. 所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ·n -2n -1·n -3n -2·…·12·1=1n. 答案1n三、解答题(本大题共3小题,共35分)10.(11分)已知数列{a n }中,a 1=1,a 2=2,以后各项由a n =a n -1+a n -2(n ≥3)给出. (1)写出此数列的前5项; (2)通过公式b n =a na n +1构造一个新的数列{b n },写出数列{b n }的前4项. 解析 (1)因为a n =a n -1+a n -2(n ≥3), 且a 1=1,a 2=2,所以a 3=a 2+a 1=3,a 4=a 3+a 2=3+2=5,a 5=a 4+a 3=5+3=8. 故数列{a n }的前5项依次为a 1=1,a 2=2,a 3=3,a 4=5,a 5=8.(2)因为b n =a na n +1, 且a 1=1,a 2=2,a 3=3,a 4=5,a 5=8,所以b 1=a 1a 2=12,b 2=a 2a 3=23,b 3=a 3a 4=35,b 4=a 4a 5=58.11.(12分)已知数列{a n }中,a 1=1,a n +1=nn +1a n . (1)写出数列{a n }的前5项; (2)猜想数列{a n }的通项公式; (3)画出数列{a n }的图象.解析 (1)a 1=1,a 2=11+1×1=12,a 3=21+2×12=13,a 4=31+3×13=14,a 5=41+4×14=15.(2)猜想:a n =1n.(3)图象如图所示:12.(12分)已知函数f (x )=1-2x x +1(x ≥1),构造数列a n =f (n )(n ∈N *). (1)求证:a n >-2;(2)数列{a n }是递增数列还是递减数列?为什么?解析 (1)证明 因为f (x )=1-2x x +1=3-2(x +1)x +1=-2+3x +1,所以a n =-2+3n +1.因为n ∈N *,所以a n >-2. (2)数列{a n }为递减数列.因为a n =-2+3n +1, 所以a n +1-a n =⎝⎛⎭⎪⎫-2+3n +2-⎝ ⎛⎭⎪⎫-2+3n +1=3n +2-3n +1=-3(n +2)(n +1)<0, 即a n +1<a n ,所以数列{a n }为递减数列.。