第三章 运输问题、第四章目标规划练习题
- 格式:doc
- 大小:68.50 KB
- 文档页数:1
运筹学思考练习题答案第⼀章 L.P 及单纯形法练习题答案⼀、判断下列说法是否正确1. 线性规划模型中增加⼀个约束条件,可⾏域的范围⼀般将缩⼩,减少⼀个约束条件,可⾏域的范围⼀般将扩⼤。
(?)2. 线性规划问题的每⼀个基解对应可⾏域的⼀个顶点。
(?)3. 如线性规划问题存在某个最优解,则该最优解⼀定对应可⾏域边界上的⼀个点。
(?)4. 单纯形法计算中,如不按最⼩⽐值原则选取换出变量,则在下⼀个基可⾏解中⾄少有⼀个基变量的值为负。
(?)5. ⼀旦⼀个⼈⼯变量在迭代中变为⾮基变量后,该变量及相应列的数字可以从单纯形表中删除,⽽不影响计算结果。
(?)6. 若1X 、2X 分别是某⼀线性规划问题的最优解,则1212X X X λλ=+也是该线性规划问题的最优解,其中1λ、2λ为正的实数。
(?)7. 线性规划⽤两阶段法求解时,第⼀阶段的⽬标函数通常写为ai iMinZ x =∑(x ai 为⼈⼯变量),但也可写为i ai iMinZ k x =∑,只要所有k i 均为⼤于零的常数。
(?)8. 对⼀个有n 个变量、m 个约束的标准型的线性规划问题,其可⾏域的顶点恰好为m n C 个。
(?)9. 线性规划问题的可⾏解如为最优解,则该可⾏解⼀定是基可⾏解。
(?)10. 若线性规划问题具有可⾏解,且其可⾏域有界,则该线性规划问题最多具有有限个数的最优解。
(?)⼆、求得L.P 问题121231425j MaxZ 2x 3x x 2x x 84x x 164x x 12x 0;j 1,2,,5=+++=??+=??+=?≥=的解如下: X ⑴=(0,3,2,16,0)T ;X ⑵=(4,3,-2,0,0)T ;X ⑶=(3.5,2,0.5,2,4)T ;X ⑷=(8,0,0,-16,12)T ; =(4.5,2,-0.5,-2,4)T ; X ⑹=(3,2,1,4,4)T ;X ⑺=(4,2,0,0,4)T 。
要求:分别指出其中的基解、可⾏解、基可⾏解、⾮基可⾏解。
运筹学第四章习题答案4.1若用以下表达式作为目标规划的目标函数,其逻辑是否正确?为什么? (1)max {-d -+d } (2)max {-d ++d } (3)min {-d ++d } (4)min {-d -+d }(1)合理,令f (x )+-d -+d =b,当f (x )取最小值时,-d -+d 取最大值合理。
(2)不合理,+d 取最大值时,f (x )取最大值,-d 取最大值时,f (x )应取最小值 (3)合理,恰好达到目标值时,-d 和+d 都要尽可能的小。
(4)合理,令f (x )+-d -+d =b,当f (x )取最大值时,-d -+d 取最小值合理。
4.2用图解法和单纯形法解下列目标规划问题(1)min {P 13+d ,P 2-2d ,P 3(-1d ++1d )}24261121=-+++-d d x x 52221=-+++-d d x x155331=-++-d d x3,2,1,0,,,21=≥+-i d d x x i i(2)min{P 1(+++43d d ),P 2+1d ,P 3-2d ,P 4(--+435.1d d )} 401121=-+++-d d x x1002221=-++--d d x x30331=-++-d d x 15442=-++-d d x4,3,2,1,0,,,21=≥+-i d d x x i i(1)图解法0 A B C X 1由图可知,满足域为线段EG,这就是目标规划方程的解,可求得:E,G 的坐标分别为(0,12),(3,3) 故该问题的解为)312,3()3,3()12,0(21221a a a a a +=+ )1,0,(2121=+≥a a a a(2)图解法 21由图可知,满足域为线段AB A(25,15),B(30,10)故该问题的解可表示为)1015,3025()10,30()15,25(212121a a a a a a ++=+ )1,0(212,1=+≥a a a a(1)单纯形法0 0 P1 0 0 P2 P3 P3CB XB x1 x2 bP3 P2 06 2 0 0 0 0 -1 1 245152 1 0 0 -1 1 0 05 0 -1 1 0 0 0 0P1P2P30 0 1 0 0 0 0 0-1 -1 0 0 1 0 0 0-6 -2 0 0 0 0 2 0P3P20 x1 0 2 1.2 -1.2 0 0 -1 1 6230 1 0.2 0.2 -1 1 0 01 0 -0.2 0.2 0 0 0 0P1 P2 P3 0 0 1 0 0 0 0 0 0 -1 -0.2 0.2 1 0 0 0 0 -2 -1.2 1.2 0 0 2 0P30 0x2x10 0 0.8 -0.8 2 -2 -1 1 2230 1 0.2 -0.2 -1 1 0 01 0 -0.2 0.2 0 0 0 0P1P2P30 0 1 0 0 0 0 00 0 0 0 0 1 0 00 0 -0.8 0.8 -2 2 2 00 0x2x10 0 0.4 -0.4 1 -1 -0.5 -0.5 1330 1 0.6 -0.6 0 0 0.5 0.51 0 -0.2 0.2 0 0 0 0P1P2P30 0 1 0 0 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 10 0 x22 0 0 0 1 -1 -0.5 -0.5 71253 1 0 0 0 0 0.5 0.55 0 -1 1 0 0 0 0P1P2P30 0 1 0 0 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 1故该问题的解为)312,3()3,3()12,0(21221a a a a a +=+ )1,0,(2121=+≥a a a a(2)P2P3P1P4P11.5P4CB XB x1 x2b 0 1 1 -1 1 00 0 0 0 0 401 1 0 0 -1 1 0 0 0 0 100 1 0 0 0 0 0 -1 1 00 301-1115P1 0 0 0 0 0 0 1 0 1 0P21P3 -1 -11 00 0 P4-11.5 0 0 1 0 -1 1 0 0 0 0 1 -1 251 0 0 0 -1 1 0 0 1 -1 85 1 0 0 0 0 0 -1 1 0 0 30 0x2 0 115P1 0 0 00 0 0 1 0 1 0P20 0-1 0P3 -1 01-1 1 P4 -1 00 51 0 x110 -1 1 0 0 0 0 1 -11-1-110 0 1 -1 0 0 -1 1 -1 1 30 0 x2 0 1 0 0 0 0 0 0 0 0 P1 0 0 0 0 0 0 1 0 1 0 P2 0 0 1 0 0 0 0 0 0 0 P3 0 0 -1 1 1 0 0 0 0 0P4-1111.54.3某商标的酒是用三种等级的酒兑制而成。
第四章运输问题4.1 运输问题的数学模型4.1.1 运输问题的模型本章研究物资的运输调度问题,其典型情况是:设某种物品有m个产地,A1,A2,…,A m;各产地的产量分别是a1,a2,…,a m;有n个销地B1,B2,…,B n;各销地的销量分别是b1,b2,…,b n;假定从产地向销地运输单位物品的运价是c ij;问:怎样调运这些物品才能使总运费最小?设变量ij x为第i个产地运往第j个销地的产品数量。
为直观起见,可将产品产地、销地的产销量以及运输物品的单价为一个汇总表,如表4-1所示。
表4-11A2A1B2BmAnB"#11c12c1n c2ncmnc2mc1mc21c22c11x12x1n x21x22x2n x1mx2m x mn x1a2ama1b2b n b"#如果运输问题的总产量等于其总销量,即有∑∑===njjmiiba11(4-1)则称该运输问题为产销平衡运输问题;反之,称为产销不平衡运输问题。
产销平衡运输问题的数学模型可表示如下:m nij iji1i1nij ij1mij ji1ijmin z c xx a,i1,2,,mx b,j1,2,,nx0,i1,2,,m,j1,2,,n=====⎧==⎪⎪⎨⎪==⎪⎩≥==∑∑∑∑""""目标函数约束条件决策变量(4-2)其中,约束条件右侧常数a i,和b j,满足总量平衡条件。
在模型(4-2)中,目标函数表示运输总费用极小化;约束条件前m个约束条件的意义是:由某一产地运往各个销地的物品数量之和等于该产地的产量;中间n个约束条件是指由各产地运往某一销地的物品数量之和等于该销地的销量;后m×n个约束条件为变量非负条件。
运输问题模型是线性规划问题特例。
因而可用单纯形法求解,但是,需要引进很多个人工变量,计算量大而复杂。
应该寻求更简便的、更好的解法。
例4.1某公司经销甲产品。
整数、运输、目标三、整数规划(每小题20分,共100分)1.对应线性规划的最优解是(3.25,2.5),它的整数规划的最优解是A. (4,1)B.(4,3)C.(3,2)D.(2,4)2.下列说法正确的是A.整数规划问题最优值优于其相应的线性规划问题的最优值B.用割平面法求解整数规划问题,构造的割平面有可能切去一些不属于最优解的整数解C.用分枝定界法求解一个极大化的整数规划时,当得到多于一个可行解时,通常可任取其中一个作为下界,再进行比较剪枝D.分枝定界法在处理整数规划问题时,借用线性规划单纯形法的基本思想,在求相应的线性模型解的同时,逐步加入对各变量的整数要求限制,从而把原整数规划问题通过分枝迭代求出最优解。
3. x 1要求是非负整数,它的来源行是A. B. C. D. 4.,最优解是A.(0, 0)B.(0,1)C.(1,0)D.(1,1)5 分枝定界法中a .最大值问题的目标值是各分枝的下界b .最大值问题的目标值是各分枝的上界c .最小值问题的目标值是各分枝的上界d .最小值问题的目标值是各分枝的下界 12121212max 32,2314,0.5 4.5,,0Z x x x x x x x x =++≤+≤≥且为整数145578333x x x -+=32313154-≤-x x -254-≤-x x -254=+S x x +254=-+s x x 12121212max 3,437,24,,01Z x x x x x x x x =++≤+≤=或e .以上结论都不对A. a,bB. b,dC. c,dD. e四、目标规划(每小题20分,共100分)1.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.B.C.D.2.下列正确的目标规划的目标函数是 "A. max Z =d -+d +B. max Z =d --d +C. min Z =d -+d +D. min Z =d --d +3. 目标函数的含义是A. 首先第一和第二目标同时不低于目标值,然后第三目标不低于目标值B.第一、第二和第三目标同时不超过目标值C.第一和第二目标恰好达到目标值,第三目标不超过目标值D.首先第一和第二目标同时不超过目标值,然后第三目标不超过目标值4.目标规划)(m in 22211+--++=d d p d p Z )(m in 22211+-+++=d d p d p Z 11222min ()Z p d p d d +-+=+-11222min ()Z p d p d d --+=+-11223min ()Z p d d p d ---=++⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=-+=-+=-++=-+++++=+-+-+-+-+---+)4,,1(0,,,20506040)(min 21442331222111214332211 i d d x x d d x d d x d d x x d d x x d P d P d d p z i i -的满意解是A.(50,20)B.(40,0)C.(0,60)D.(50,10)5 下列线性规划与目标规划之间错误的关系是A.线性规划的目标函数由决策变量构成,目标规划的目标函数由偏差变量构成B.线性规划模型不包含目标约束,目标规划模型不包含系统约束C.线性规划求最优解,目标规划求满意解D.线性规划模型只有系统约束,目标规划模型可以有系统约束和目标约束E.线性规划求最大值或最小值,目标规划只求最小值五、运输问题(每小题10分,共100分)1.有6个产地7个销地的平衡运输问题模型的对偶模型具有特征A 有12个变量B 有42个约束 C. 有13个约束D.有13个基变量2.有5个产地4个销地的平衡运输问题A.有9个变量B.有9个基变量C. 有20个约束D.有8个基变量3.下列变量组是一个闭回路A.{x11,x12,x23,x34,x41,x13}B.{x21,x13,x34,x41,x12}C.{x12,x32,x33,x23,x21,x11}D.{x12,x22,x32,x33,x23,x21}4. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关5.运输问题A.是线性规划问题B.不是线性规划问题C.可能存在无可行解D.可能无最优解6.下列结论正确的有A 运输问题的运价表第r行的每个c ij同时加上一个非零常数k,其最优调运方案不变B 运输问题的运价表第p列的每个c ij同时乘以一个非零常数k,其最优调运方案不变C.运输问题的运价表的所有c ij同时乘以一个非零常数k, 其最优调运方案变化D.不平衡运输问题不一定存在最优解7.下列说法正确的是A.若变量组B包含有闭回路,则B中的变量对应的列向量线性无关B.运输问题的对偶问题不一定存在最优解C. 平衡运输问题的对偶问题的变量非负D.第i行的位势u i是第i个对偶变量8. 运输问题的数学模型属于A.0-1规划模型B.整数规划模型C. 网络模型D.以上模型都是9.不满足匈牙利法的条件是A.问题求最小值B.效率矩阵的元素非负C.人数与工作数相等D.问题求最大值10.下列错误的结论是A.将指派(分配)问题的效率矩阵每行分别乘以一个非零数后最优解不变B.将指派问题的效率矩阵每行分别加上一个数后最优解不变C.将指派问题的效率矩阵每个元素同时乘以一个非零数后最优解不变D.指派问题的数学模型是整数规划模型PPT习题。
《第三方物流(第4版)》习题集第一章物流与第三方物流概述客观题:1、一般来说,英文中的physical distribution指的是传统意义上的物流,而常说的“现代物流”对应的英文概念是logistics 和Supply Chain Management。
2、物流主要包括运输、储存、装卸搬运、包装、流通加工、配送、信息处理等职能。
3、物流一体化是指不同职能部门之间或不同企业之间通过物流活动的合作,达到提高物流效率、降低物流成本的效果。
4、物流一体化主要包括分销一体化、职能一体化、内部一体化和外部一体化四个阶段。
5、企业业务外包最早出现在计算机及其设备领域。
6、第三方物流企业按其业务范围主要分为功能型和综合型两类。
主观题:1、物流概念的演化体现了物流管理什么样的发展规律?2、物流一体化不同阶段的成因是什么?3、为什么要进行物流一体化?分项物流管理有什么弊端?4、企业为什么要采用物流业务外包模式?对应用企业来说将物流业务进行外包有何利弊?5、第三方物流概念中,狭义和广义的区别主要在哪里?第二章第三方物流的理论基础客观题:1、按照社会分工理论,市场的扩大必然造成社会化的分工加剧,而第三方物流产生正是分工细化的结果。
2、从马克思经济学视角来解释第三方物流,其出现的最根本原因是资本为了获得更多的剩余价值。
3、企业为了降低搜寻成本,必然会选择与其它企业建立长期合作关系4、核心竞争力必须具备的三个特征是:为市场所认可;给客户带来特别利益;竞争对手难以模仿。
5、企业业务外包最早出现在计算机及其设备领域。
6、第三方物流企业按其业务范围主要分为功能型和综合型两类。
主观题:1、从委托代理理论角度应如何看待的第三方物流服务中的违约现象。
2、核心竞争理论产生的背景是什么?3、应如何判断企业的核心业务到底是什么?4、核心竞争力理论与第三方物流有什么关系?5、供应链与传统的产业链,销售链有何不同?6、请阐述供应链管理与物流管理的关系。
第三章运输问题一、选择1.运输问题在用表上作业法计算的时候,用闭回路法进行调整检验时,通过任一空格可以找到( )闭回路A、惟一B、多个C、零个 D 不能确定2.在产销不平衡的运输问题中,如果产大于销,我们(B )把他变成一个产销平衡的运输问题A 假想一个产地B 假想一个销地C 去掉一个产地D 没有办法3。
最小元素法的基本思想就是( D)。
A依次供应B全面供应 C 选择供应 D就近供应4。
运输问题中在闭回路调整中,使方案中有数字的格为( C )。
A mB nC m+nD m+n-15。
在表上作业法中,调运方案中有数字的格为( C )A m+nB m-nC m+n—1D m*n6。
运输问题的数学模型中,包含有(D)变量.A m+nB m—nC m+n—1D m*n7. 运输问题的数学模型中,包含有(A)个约束条件。
A m+nB m-nC m+n—1D m*n8. 运输问题的数学模型中,系数矩阵中线性独立的列向量的最大个数为(C )A m+nB m-nC m+n-1D m*n9. 运输问题的解中的基变量数一般为(C )A m+nB m-nC m+n—1D m*n10。
运输问题中,在检验数表上所有检验数都(C ),此时运输表中给出的方案就是最优方案。
A大于零B等于零C大于等于零D小于零11.在产销不平衡的运输问题中,如果销大于产时,可以在产销平衡表上( A),把他变成一个产销平衡的运输问题A 假想一个产地B 假想一个销地C 去掉一个产地D 没有办法12。
运输问题数学模型的特点之一是( )A 一定有最优解B 不一定有最优解C 一定有基可行解D 不一定有基可行解13。
运输问题的数学模型的约束条件的系数矩阵的元素由()组成。
A 0B1C0,1D 不确定14.二、填空1. 求解不平衡的运输问题的基本思想是(设立虚供地或虚需求点,化为供求平衡的标准形式) 。
2。
运输问题中求初始基本可行解的方法通常有 (最小元素法 )、 (伏格尔法 ) 两种方法。
第三章 运输问题、第四章目标规划练习题
一、判断下列说法是否正确
1.表上作业法实质上就是求运输问题的单纯形法。
( )
2.在运输问题中,只要任意给出一组含(m+n-1)个非零的{x ij },且满足∑==n
1
j i ij a x ,∑==m
1
i j ij b x ,
就可以作为一个初始可行解。
( )
3.建立目标规划模型时,正偏差变量应取正值,负偏差变量应取负值。
( ) 4.线性规划问题是目标规划问题的一种特殊形式。
( ) 二、用表上作业法求解下表最小运费方案
三、针对目标规划模型:
1123321211122212331
212i i M inZ P d P d P d x 2x d d 4x 2x d d 4x 2x d d 83x 2x 12x ,x 0;d ,d 0,i 1,2,3
+
+
+
-+-+
-+
-+
=++⎧-++-=⎪-+-=⎪⎪++-=⎨⎪+≥⎪⎪≥≥=
⎩ ①②③④
(1)用图解法求出问题的满意解。
(2)若将目标函数改为:
()1122333
M inZ P d P d P d d +
+
-
+
=+++
满意解会如何变化。
第三章 运输问题、第四章目标规划练习题
一、判断下列说法是否正确
1.表上作业法实质上就是求运输问题的单纯形法。
( )
2.在运输问题中,只要任意给出一组含(m+n-1)个非零的{x ij },且满足∑==n
1
j i ij a x ,∑==m
1
i j ij b x ,
就可以作为一个初始可行解。
( )
3.建立目标规划模型时,正偏差变量应取正值,负偏差变量应取负值。
( ) 4.线性规划问题是目标规划问题的一种特殊形式。
( ) 二、用表上作业法求解下表最小运费方案
三、针对目标规划模型:
1123321211122212331
212i i M inZ P d P d P d x 2x d d 4x 2x d d 4x 2x d d 83x 2x 12x ,x 0;d ,d 0,i 1,2,3
+
+
+
-+-+
-+
-+
=++⎧-++-=⎪-+-=⎪⎪++-=⎨⎪+≥⎪⎪≥≥=
⎩ ①②③④
(1)用图解法求出问题的满意解。
(2)若将目标函数改为:
()1122333
M inZ P d P d P d d +
+
-
+
=+++
满意解会如何变化。