最新对称式多谐振荡器学习资料
- 格式:ppt
- 大小:494.00 KB
- 文档页数:20
多谐振荡器:摘要:分析了各种多谐振荡器的电路结构及工作原理,并利用Multisiml0.0对部分电路进行了仿真,重点介绍了单稳型多谐振荡器,讨论集成单稳态触发器74121定时元件RC对暂稳态的影响以及单稳型多谐振荡器的应用。
Multisim软件是一种形象化的虚拟仪器电路仿真软件,它能比较快速地模拟、分析、验证所设计电路的性能,在课堂教学中引入EDA技术,使传统教学环节与先进的仿真技术相结合,实现授课的生动性和灵活性,增强学生对基本概念的理解,激发学生的学习兴趣,培养并有效提高学生综合分析、应用及创新能力。
关键字:Multisiml0.O;多谐振荡器;555定时器;施密特触发器;环形振荡器O 引言在数字系统电路中经常用到多谐振荡器。
多谐振荡器是一种自激振荡器,在接通电源以后,不需要外加触发信号便能自行产生一定频率和一定宽度的矩形波,这一输出波形用于电路中的时钟信号源。
由于矩形波中含有丰富的高次谐波分量,所以习惯上又将矩形波振荡器称为多谐振荡器。
按照电路的工作原理,多谐振荡器大致分为无稳态多谐振荡器和单稳态多谐振荡器。
1 无稳态多谐振荡器1.1 采用TTL门电路构成的对称式无稳态多谐振荡器对称式多谐振荡器的典型电路如图1所示,它是由两个反相器Gl、G2经耦合电容C1、C2连接起来的正反馈振荡电路。
电路中G1和G2采用SN74LS04N反相器,RFl=RF2=RF,C1=C2=C,振荡周期T≈1.3RFC,输出波形的占空比约为50%。
RF1、RF2的阻值对于LSTTL为470 Ω~3.9kΩ,对于标准TTL为0.5~1.9kΩ之间。
1.2 采用CMOS门电路构成的非对称式无稳态多谐振荡器如果把对称式多谐振荡器电路进一步简化,去掉C1和R2,在反馈环路中保留电容C2,电路仍然没有稳定状态,只能在两个暂稳态之问往复振荡,电路如图2所示。
假定G2输出为1,电容C充电,在充电开始VI1也为1。
因此,该电压经Rp力口到G1输入端,Gl输出为O,电路稳定工作,C继续充电。
基于对称式多谐振荡器的矩形波发生器的设计一多谐振荡器1.多谐振荡器没有稳定状态,只有两个暂稳态。
2.通过电容的充电和放电,使两个暂稳态相互交替,从而产生自激振荡,无需外触发。
3.输出周期性的矩形脉冲信号,由于含有丰富的谐波分量,故称作多谐振荡器。
二对称式多谐振荡器1. 电路组成由两个TTL反相器经电容交叉耦合而成。
通常令C1=C2=C,R1=R2=RF。
为了使静态时反相器工作在转折区,具有较强的放大能力,应满足ROFF<RF<RON的条件。
图1对称式多谐振荡器2.工作原理假定接通电源后,由于某种原因使uI1有微小正跳变,则必然会引起如下的正反馈过程:原理示意图2图3使uO1迅速跳变为低电平、uO2迅速跳变为高电平,电路进入第一暂稳态。
此后,uO2的高电平对C1电容充电使uI2升高,电容C2放电使uI1降低。
由于充电时间常数小于放电时间常数,所以充电速度较快,uI2首先上升到G2的阈值电压UTH,并引起如下的正反馈过程:图4图5使u O2迅速跳变为低电平、u O1迅速跳变为高电平,电路进入第二暂稳态。
使uO2迅速跳变为低电平、uO1迅速跳变为高电平,电路进入第二暂稳态。
此后,C1放电、C2充电,C2充电使uI1上升,会引起又一次正反馈过程,电路又回到第一暂稳态。
这样,周而复始,电路不停地在两个暂稳态之间振荡,输出端产生了矩形脉冲。
3 实验波形图图6对称式多谐振荡器的工作波形图74 主要参数矩形脉冲的振荡周期为T ≈1.4RFC当取RF =1k Ω、C =I00 pF ~100 μF 时,则该电路的振荡频率可在几赫到几兆赫的范围内变化 例如:Hz f 145= R=2K Ω时 则C=1000μF五 组长评语在本次的课程设计过程中,我们六个人分工明确合理,每个人都提前完成了自己所分得任务,才能使这次课程设计提前完成!回顾起此次课程设计,至今我仍感慨颇多,的确,从选题到定稿,从理论到实践。
可以说得是苦多于甜,但是可以学到很多很多的的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。
多谐振荡器:摘要:分析了各种多谐振荡器的电路结构及工作原理,并利用Multisiml0.0对部分电路进行了仿真,重点介绍了单稳型多谐振荡器,讨论集成单稳态触发器74121定时元件RC对暂稳态的影响以及单稳型多谐振荡器的应用。
Multisim软件是一种形象化的虚拟仪器电路仿真软件,它能比较快速地模拟、分析、验证所设计电路的性能,在课堂教学中引入EDA技术,使传统教学环节与先进的仿真技术相结合,实现授课的生动性和灵活性,增强学生对基本概念的理解,激发学生的学习兴趣,培养并有效提高学生综合分析、应用及创新能力。
关键字:Multisiml0.O;多谐振荡器;555定时器;施密特触发器;环形振荡器O 引言在数字系统电路中经常用到多谐振荡器。
多谐振荡器是一种自激振荡器,在接通电源以后,不需要外加触发信号便能自行产生一定频率和一定宽度的矩形波,这一输出波形用于电路中的时钟信号源。
由于矩形波中含有丰富的高次谐波分量,所以习惯上又将矩形波振荡器称为多谐振荡器。
按照电路的工作原理,多谐振荡器大致分为无稳态多谐振荡器和单稳态多谐振荡器。
1 无稳态多谐振荡器1.1 采用TTL门电路构成的对称式无稳态多谐振荡器对称式多谐振荡器的典型电路如图1所示,它是由两个反相器Gl、G2经耦合电容C1、C2连接起来的正反馈振荡电路。
电路中G1和G2采用SN74LS04N反相器,RFl=RF2=RF,C1=C2=C,振荡周期T≈1.3RFC,输出波形的占空比约为50%。
RF1、RF2的阻值对于LSTTL为470 Ω~3.9kΩ,对于标准TTL为0.5~1.9kΩ之间。
1.2 采用CMOS门电路构成的非对称式无稳态多谐振荡器如果把对称式多谐振荡器电路进一步简化,去掉C1和R2,在反馈环路中保留电容C2,电路仍然没有稳定状态,只能在两个暂稳态之问往复振荡,电路如图2所示。
假定G2输出为1,电容C充电,在充电开始VI1也为1。
因此,该电压经Rp力口到G1输入端,Gl输出为O,电路稳定工作,C继续充电。