常用应用电路完整版
- 格式:docx
- 大小:16.65 KB
- 文档页数:5
LM324Im124、Im224和lm324引脚功能及内部电路完全一致。
324电压范系列运算放大器是价格便宜的带差动输入功能的四运算放大器。
可工作在单电源下,围是 3.0V-32V 或+16V.LM324 的特点:1. 短跑保护输出2. 真差动输入级3. 可单电源工作:3V-32V4•低偏置电流:最大100nA (LM324A )5. 每封装含四个运算放大器。
6. 具有内部补偿的功能。
7. 共模范围扩展到负电源8. 行业标准的引脚排列9. 输入端具有静电保护功能LM324 引脚图(管脚图)14 13 12 11 10 3 8—t <5—Fp丄U-LM324*[[4h1 2 3 4 5 G 7LM324 应用电路图:1.LM324 电压参考电路图K7.电瓯步考2.LM324 多路反馈带通滤波器电路图3.LM324 高阻抗差动放大器电路图益芯牯二屮心顾率A if°)=4M>IB 率堆益 选择怙2刑值Q R3对卡来口疋算岐大器的小干10%酣決墓=■ -<0JB\¥直中怙和EW 巾齿为Hz若源阳茫改变,滤波器的加电压舉随器缓2 民检宦谑汕黠耘的■廿危I=1R2=R\R34Q 2R1-Ri图9.高IB抗差动放大器e0 = C (l4a + b)4. LM324 函数发生器电路图图12価数发生器R1 + RQ 址“ R2R1TT R3 二—4CR(R1 R2 + R15. LM324 双四级滤波器3.LM324 高阻抗差动放大器电路图RR =160岳C=O.W1pFRl d.EMil6. LM324 维思电桥振荡器电路图图氐维思电桥振蕩器弭1(A/W5.0k 丄*|—因此他被非常广泛的应用在各种电路中。
《Im324引脚图》7. LM324 滞后比较器电路图图滞后比较器WnH = pn +R2(^0H _V TE I)+ ^refpiH= R1;R2 WOH-VOL)LM324引脚图资料与电路应用LM324引脚图资料与电路应用LM324资料:LM324为四运放集成电路,采用14脚双列直插塑料封装。
运放基本应用电路运放基本应用电路运算放大器是具有两个输入端,一个输出端的高增益、高输入阻抗的电压放大器。
若在它的输出端和输入端之间加上反馈网络就可以组成具有各种功能的电路。
当反馈网络为线性电路时可实现乘、除等模拟运算等功能。
运算放大器可进行直流放大,也可进行交流放大。
R f使用运算放大器时,调零和相位补偿是必须注意的两个问题,此外应注意同相端和反相端到地的直流电阻等,以减少输入端直流偏流 U I 引起的误差。
U O 1.反相比例放大器 电路如图1所示。
当开环增益为 ∞(大于104以上)时,反相放大器的闭环增益为: 1R R U U A f I O uf -== (1) 图1 反相比例放大器 由上式可知,选用不同的电阻比值R f / R 1,A uf 可以大于1,也可以小于1。
若R 1 = R f , 则放大器的输出电压等于输入电压的负值,因此也称为反相器。
放大器的输入电阻为:R i ≈R 1直流平衡电阻为:R P = R f // R 1 。
其中,反馈电阻R f 不能取得太大,否则会 产生较大的噪声及漂移,其值一般取几十千欧 到几百千欧之间。
R 1的值应远大于信号源的 O 内阻。
2.同相比例放大器、同相跟随器 同相放大器具有输入电阻很高,输出电阻很低的特点,广泛用于前置放大器。
电路原理图如图2所示。
当开环增益为 ∞(大于104以上 图2 同相比例放大器 )时,同相放大器的闭环增益为:1111R R R R R U U A f f I O uf +=+== (2) 由上式可知,R 1为有限值,A uf 恒大于1。
同相放大器的输入电阻为:R i = r ic其中: r ic 是运放同相端对地的共模输入电阻,一般为108Ω;放大器同相端的直流平衡电阻为:R P = R f // R 1。
若R 1 ∞(开路),或R f = 0,则A u f 为1,于是同相放大器变为同相跟随器。
此时由于放大器几乎不从信号源吸取电流,因此 U可视作电压源,是比较理想的阻抗变换器。
三极管常用应用电路及分析三极管是一种常见的电子器件,具有放大和开关功能。
在电子领域中,三极管有着广泛的应用,例如放大电路、开关电路和振荡电路等。
下面我将详细介绍三极管的常用应用电路及其分析。
首先,我们来介绍三极管的放大电路应用。
放大电路可以放大输入信号的幅值,并输出一个放大后的信号。
三极管可以作为放大器的关键部件,用于放大音频信号和射频信号等。
常见的三极管放大电路有共射放大电路、共基放大电路和共集放大电路。
共射放大电路是最常见的三极管放大电路之一。
在共射放大电路中,三极管的发射极作为输入端,基极作为控制端,集电极作为输出端。
输入信号被施加在发射极上,通过基极到地的电阻进行偏置。
当输入信号引发了一定的输入电流时,三极管将放大这个电流,并通过负载电阻输出放大后的信号。
共射放大电路具有较大的增益、较低的输出阻抗和较高的输入阻抗,可用于音频放大和功率放大等应用。
共基放大电路是另一种常见的三极管放大电路。
在共基放大电路中,三极管的基极作为输入端,发射极作为控制端,集电极作为输出端。
输入信号直接施加在基极上,通过发射极到地的电阻进行偏置。
当输入信号引发了一定的输入电流时,三极管将放大这个电流,并从集电极输出放大后的信号。
共基放大电路具有较低的输入阻抗、较大的电流放大倍数和较小的输出阻抗,常用于射频放大等应用。
共集放大电路是三极管放大电路的另一个常见形式。
在共集放大电路中,三极管的集电极作为输入端,基极作为控制端,发射极作为输出端。
输入信号通过集电极到地的电阻进行偏置,并施加在集电极上。
当输入信号引发了一定的电流时,三极管将放大这个电流,并通过基极到地的电阻将放大后的信号输出。
共集放大电路具有较大的输入阻抗、较大的输出电流和较小的输出阻抗,可用于阻抗匹配和信号隔离等应用。
接下来,我们来介绍三极管的开关电路应用。
开关电路可以将输入信号转换为输出信号,常用于数字电路和计算机器件等。
三极管开关电路可以实现高频开关功能,用于模拟开关电路和数字电路的设计中。
L M应用电路及引脚图集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]LM358 应用电路资料及引脚图LM358是常用的双运放,这里我们介绍一下他的一些资料以及简单电路应用等,有什么问题请去电子论坛.简介:LM358里面包括有两个高增益、独立的、内部频率补偿的双运放,适用于电压范围很宽的单电源,而且也适用于双电源工作方式,它的应用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运放的地方使用。
lm358引脚图及引脚功能LM358封装有塑封8引线双列直插式和贴片式两种。
LM358的特点:. 内部频率补偿. 低输入偏流. 低输入失调电压和失调电流. 共模输入电压范围宽,包括接地. 差模输入电压范围宽,等于电源电压范围. 直流电压增益高(约100dB). 单位增益频带宽(约1MHz). 电源电压范围宽:单电源(3—30V);. 双电源(±一±15V). 低功耗电流,适合于电池供电. 输出电压摆幅大(0 至lm358 pdf资料:lm358稳压电路制作电路原理:本稳压器的核心器件采用LM358。
电路原理如下图所示。
它主要由供电、基准电压、电压取样比较等组成。
lm358稳压电路应用市电从变压器的1、2头输入,3、4头为自耦调压抽头,5、6头为控制电路的电源及取样抽头。
市电电压正常时,因C点电压始终为3V(即R1降压DW稳压所得),A、B点均大于3V,故A1、A2(lm358芯片)输出低电平;当市电电压下降时,5、6头的电压也随之下降,A点电压也跟着下降,当A点电压下降到低于3V 时,A1输出高电平,使三极管V1饱和导通,继电器K1吸合,将调压器输出调于1、3头;当市电电压继续下降时,同理B点电压低于3V时,(VA 反之,如果电压升高时,B点电压也随之升高,当B点电压高于3V时,A2输出低电平,V2截止,H2释放,输出端调至1、3头;当市电电压继续升高时,A点电压高于3V,A1输出低电平,V1截止,K1释放,输出端调至1、2头。
三极管常用应用电路1. 三极管放大电路三极管作为一种主要的电子元器件,广泛应用于电子电路中。
其中,三极管放大电路是其常用的应用之一。
我们可以利用三极管的放大特性来实现不同电压信号的放大,从而实现电子设备的放大控制等。
三极管放大电路一般可分为两种电路结构:共射放大电路和共集放大电路。
共射放大电路中,输入信号加在基极上,输出信号通过集极获得;共集放大电路中,输入信号加在基极上,输出信号通过发射极获得。
2. 三极管开关电路三极管开关电路也是其常用的应用之一。
通过三极管的开关控制,可以实现如定时器、电源控制等功能。
在三极管开关电路中,通常将三极管工作于开启或截止状态,以实现电路的开关控制。
我们可以通过对三极管的控制电压、电流进行调节,从而实现开关电路的控制,如LED闪烁器等电路就是一种基于三极管的开关电路。
3. 三极管稳压电路三极管稳压电路是又一种常用的三极管应用电路。
稳压电路的作用在于,对波动的电压进行调整,将其稳定在一定的范围内。
三极管稳压电路通常包括基准二极管、稳压二极管和三极管。
在电路中,通过对三极管中的电流进行调节,将其稳定在一定的范围内,从而实现稳压的效果。
4. 三极管单管放大电路三极管单管放大电路是一种特殊的放大电路。
在其电路中,我们将一个三极管单独作为放大器,以实现信号的放大。
虽然在电路中只使用了一个三极管,但通过对其输入电压的调节,可以实现不同程度的放大效果。
5. 三极管正反馈振荡电路三极管正反馈振荡电路也是一个常用的三极管应用电路。
在这种电路中,通过对三极管工作状态进行调节,使电路达到自激振荡的状态,从而实现对信号的产生。
正反馈振荡电路通常包括三极管、电感和电容等元器件。
通过对电路中的元器件进行调整,可以实现不同频率的振荡信号,如在无线电接收机中应用的中频振荡电路就是一种基于三极管的正反馈振荡电路。
三极管是电子电路中常用的元器件之一,其应用广泛。
在实际的电子设备中,常用的三极管应用电路包括放大电路、开关电路、稳压电路、单管放大电路和正反馈振荡电路等。
NE555应用电路图
图1 方波电路图2 振荡器实践电路图3 GIC PROBE WITH PULSE 逻辑脉冲探头
图4 TRONOME电子节拍器电路图5 0-5分定时器电路
图6 铃电路图图7 SCHMITT TRIGGER施密特触发器电路
图8 倾斜开关(水银开关)传感器电路图9TIMER TESTER定时器测试电路图10TWO TONE EXPERIMENT双音实验电路
图11动机调速器电路
图12电源报警电路图13 LED调光器电路图14敏电阻光控报警电路图15光敏电阻光控开关电路
图16红外线发射电路图17 简单闪光电路图18易触摸开关电路图19氖灯驱动电路
图20 50%对称波电路图21 触摸开关电路
图22 单稳态电路触发器
电热毯温控器
一般电热毯有高温、低温两档。
使用时,拨在高温档,入睡后总被热醒;拨在低温档,有时
醒来会觉得温度不够。
这里介绍一种电热毯温控器,它可以把电热毯的温度控制在一个合适的范围。
工作原理:
电路如图所示。
图中IC为NE555时基电路。
RP3为温控调节电位器,其滑动臂电位决定IC的触发电位V2和阀电位Vf,且V5=Vf=2Vz。
220V交流电压经C1、R1限流降压,D1、D2整流、C2滤波,DW稳压后,获得9V左右的电压供IC用。
室温下接通电源,因已调V2<VZ、V6Vz,V6≥Vf时,IC翻转,3脚变为低电平,BCR截止,电热丝停止发热,温度开始逐渐下降,BG1的ICEO随之逐渐减小,V2、V6降低。
当V6。
常用驱动电路设计及应用
常用的驱动电路设计及应用:
1. H桥驱动电路: H桥驱动电路用于控制直流电机的转向和速度。
它由四个开关管组成,可以实现正反转和调速功能。
H桥驱动电路广泛应用于机器人、电动车、电动窗帘等设备。
2. 激光二极管驱动电路: 激光二极管驱动电路是用于控制激光二极管的工作状态。
激光二极管需要稳定的电流和电压来工作,所以激光二极管驱动电路通常包含稳流源电路和稳压源电路。
激光二极管驱动电路广泛应用于激光打印机、激光测距仪、激光指示器等设备。
3. 高频放大器驱动电路: 高频放大器驱动电路用于将低频信号放大为高频信号,常用于无线通信、雷达系统、音频放大器等设备。
高频放大器驱动电路通常包含功率放大器和调谐网络,可以实现信号的放大、滤波和匹配。
4. 步进电机驱动电路: 步进电机驱动电路用于控制步进电机的转动角度和速度。
步进电机驱动电路通常包含双向旋转开关、计数器和时钟电路,可以实现精确的旋转控制。
步进电机驱动电路广泛应用于打印机、数码相机、数控机床等设备。
5. 发光二极管驱动电路: 发光二极管驱动电路用于控制发光二极管的亮度和颜色。
发光二极管驱动电路通常包含电流源电路和PWM调制电路,可以实现对
发光二极管的亮度和颜色进行调节。
发光二极管驱动电路广泛应用于LED显示屏、照明灯具、汽车灯具等设备。
这些驱动电路设计及应用在实际电子设备中起到了重要的作用,不仅可以控制电机、激光器等器件的工作,还可以实现对信号的增益、滤波和调节,从而满足各种应用需求。
三级管常用应用电路及分析三极管是一种广泛应用于电子和通信领域的半导体器件。
它具有放大、开关、稳压等多种功能,在各种电路和设备中都有广泛的应用。
本文将介绍三极管的常用应用电路及分析。
1. 放大电路放大电路是三极管最常见的应用之一。
放大电路可以将一个微弱的信号放大到足以驱动扬声器或其他负载的强信号。
三极管的放大电路通常有两种类型:共射放大电路和共基放大电路。
共射放大电路是最常见的放大电路类型,它的工作原理是当输入信号加到基极时,三极管会将电流从集电极转移到接地。
因此,集电极电流就相当于输入信号放大的信号,并将其输出到负载(扬声器、电阻、电容等)上。
共射放大电路具有放大系数高、功率大、输出阻抗低等优点,因此在音频功放、遥控器等电子产品中应用广泛。
共基放大电路是另一种常见的放大电路类型,它的工作原理是当输入信号加到基极时,三极管将信号放大并将其输出到射极。
由于负载与输出引脚之间没有直接的电流路径,因此输出电压大于输入电压。
共基放大电路具有输入电阻低、输出电阻高等特点,因此在调制放大器、高频放大器等领域得到广泛应用。
2. 开关电路另一种常见的三极管应用是开关电路。
开关电路可以将小电流信号转换为大电流信号,以控制高功率负载的开关状态,如电机、灯光、加热器、风扇等。
三极管开关电路主要由两种类型:共射开关电路和共集开关电路。
共射开关电路的工作原理是三极管的基极输入信号控制电流流过三极管的集电极和负载。
这种电路可以使三极管在开启状态下靠近通道电阻,有效地控制电流流动。
共射开关电路常用于低功率应用,如开关电源和继电器。
共集开关电路的工作原理是三极管的集电极输入信号控制电子流经过三极管的射极和负载。
这种电路可以使三极管在关闭状态下透过通道电阻,有效地控制电流流动。
共集开关电路通常用于高功率应用,如电机驱动、加热器、电子气体放电管控制等。
3. 器件保护电路三极管的应用还可以用于保护电路。
在有些电路中,输入电压或不良电流能够损坏先前的电路或其它元件。
常用应用电路Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】555时基集成电路的应用555时基电路分TTL和CMOS两大类。
图是TTL型电路的内部结构图。
从图中可以看出,它是由分压器、比较器、R-S触发器、输出级和放电开关等组成的。
电路中的比较器的主要功能是对输入电压和分压器形成的基准电压进行比较,把比较的结果用高电平"1"或低电平"0"两种状态在其输出端表现出来。
555电路中的R-S触发器是由两个与非门交叉连接构成的。
为了使R-S触发器直接置零,触发器还引出一个MR端,只要在MR端置太低电平"0",不管触发器原来处于什么状态,也不管它输入端加的是什么信号,触发器会立即置零,即Q=0=Uo,所以MR端也称为总复位端。
为了使555电路有更好的性能,触发器的输出端Q是经非门反相后送到输出端U。
的。
由于非门的放大作用,555电路的负载能力得到提高。
555电路在使用中大多跟电容器的充放电有关,例如用555组成定时电路时,定时的长短是由RC电路的充电时间常数确定的。
为了使定时器能反复使用,在完成一次定时控制后,应将电容C上的电荷放掉,为下一次定时工作做好准备"因此在555电路中特设了一个放电开关,它就是三极管VT。
当555电路输出端电平U。
=0时,Q=1,VT 处于导通状态;当输出端电平U。
=1时,Q=O,VT处于截止状态,相当于DIS端开路。
因此三极管VT起到了一个开关的作用。
当U。
=0时,开关闭合,为电容提供了一个接地的放电通路;当U。
=1时,开关断开,DIS端开路,电容器不能放电。
TTL形555电路的内部结构电路中的UC端为外加基准电压的控制端。
由于制造工艺的原因,CMOS型555时基电路的内部结构和TTL型555时基电路是不太一样的,如图所示。
但它们的引脚功能及输入和输出逻辑功能是相同的,两种555电路有着完全相同的外特性。
CMOS型555电路内部结构简化了的555内部电路555时基电路的逻辑功能为了描述555时基电路的外特性,可以把它们的内部电路简化成为一个带放电开关的特殊R-S触发器,放电开关受刁端的控制,如图所示。
它的逻辑功能见表。
CMO5型555电路内部结构简化不的555内部电路555时基电路的逻辑功能从简化的内部电路结构和逻辑功能表中可以看出,555电路有以下儿个特点: ①两个输入端触发电平的羽值要求不同。
在TH输入端加上大于(或Vc)的电压时,可以把触发器置于"O"状态,即u。
=0。
在TR 端加上小于(或)的电压时,可以把触发器置于"1"状态,即u。
=1。
②复位端而可低电平有效,平时应为高电平。
③对于放电开关端DIS,当U。
为低电平时,DIS端接地;当U。
为高电平时,DIS对地开路。
555内部电原理图我们知道,555电路在应用和工作方式上一般可归纳为3类。
每类工作方式又有很多个不同的电路。
在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。
这样一来,电路变的更加复杂。
为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。
每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。
方便大家识别、分析555电路。
下面将分别介绍这3类电路。
单稳类电路单稳工作方式,它可分为3种。
见图示。
双稳类电路这里我们将对555双稳电路工作方式进行总结、归纳。
555双稳电路可分成2种。
无稳类电路第三类是无稳工作方式。
无稳电路就是多谐振荡电路,是555电路中应用最广的一类。
电路的变化形式也最多。
为简单起见,也把它分为三种。
第一种(见图1)是直接反馈型,振荡电阻是连在输出端VO的。
以上归纳了555的3类8种18个单元电路,虽然它们不可能包罗所有555应用电路,古话讲:万变不离其中,相信它对我们理解大多数555电路还是很有帮助的。
各种应用电路555触摸定时开关集成电路IC1是一片555定时电路,在这里接成单稳态电路。
平时由于触摸片P端无感应电压,电容C1通过555第7脚放电完毕,第3脚输出为低电平,继电器KS释放,电灯不亮。
当需要开灯时,用手触碰一下金属片P,人体感应的杂波信号电压由C2加至555的触发端,使555的输出由低变成高电平,继电器KS吸合,电灯点亮。
同时,555第7脚内部截止,电源便通过R1给C1充电,这就是定时的开始。
当电容C1上电压上升至电源电压的2/3时,555第7脚道通使C1放电,使第3脚输出由高电平变回到低电平,继电器释放,电灯熄灭,定时结束。
定时长短由R1、C1决定:T1=1.1R1*C1。
按图中所标数值,定时时间约为4分钟。
D1可选用1N4148或1N4001。
相片曝光定时器附图电路是用555单稳电路制成的相片曝光定时器。
用人工启动式单稳电路。
工作原理:电源接通后,定时器进入稳态。
此时定时电容CT的电压为:VCT=VCC=6V。
对555这个等效触发器来讲,两个输入都是高电平,即VS=0。
继电器KA不吸合,常开点是打开的,曝光照明灯HL不亮。
按一下按钮开关SB之后,定时电容CT立即放到电压为零。
于是此时555电路等效触发的输入成为:R=0、S=0,它的输出就成高电平:V0=1。
继电器KA吸动,常开接点闭合,曝光照明灯点亮。
按钮开关按一下后立即放开,于是电源电压就通过RT向电容CT充电,暂稳态开始。
当电容CT上的电压升到2/3VCC既4伏时,定时时间已到,555等效电路触发器的输入为:R=1、S=1,于是输出又翻转成低电平:V0=0。
继电器KA释放,曝光灯HL熄灭。
暂稳态结束,有恢复到稳态。
曝光时间计算公式为:T=1.1RT*CT。
本电路提供参数的延时时间约为1秒~2分钟,可由电位器RP 调整和设置。
电路中的继电器必需选用吸合电流不应大于30mA的产品,并应根据负载(HL)的容量大小选择继电器触点容量。
单电源变双电源电路附图电路中,时基电路555接成无稳态电路,3脚输出频率为20KHz、占空比为1:1的方波。
3脚为高电平时,C4被充电;低电平时,C3被充电。
由于VD1、VD2的存在,C3、C4在电路中只充电不放电,充电最大值为EC,将B端接地,在A、C两端就得到+/-EC的双电源。
本电路输出电流超过50mA。
简易催眠器时基电路555构成一个极低频振荡器,输出一个个短的脉冲,使扬声器发出类似雨滴的声音(见附图)。
扬声器采用2英寸、8欧姆小型动圈式。
雨滴声的速度可以通过100K电位器来调节到合适的程度。
如果在电源端增加一简单的定时开关,则可以在使用者进入梦乡后及时切断电源。
直流电机调速控制电路这是一个占空比可调的脉冲振荡器。
电机M是用它的输出脉冲驱动的,脉冲占空比越大,电机电驱电流就越小,转速减慢;脉冲占空比越小,电机电驱电流就越大,转速加快。
因此调节电位器RP的数值可以调整电机的速度。
如电极电驱电流不大于200mA时,可用CB555直接驱动;如电流大于200mA,应增加驱动级和功放级。
图中VD3是续流二极管。
在功放管截止期间为电驱电流提供通路,既保证电驱电流的连续性,又防止电驱线圈的自感反电动势损坏功放管。
电容C2和电阻R3是补偿网络,它可使负载呈电阻性。
整个电路的脉冲频率选在3~5千赫之间。
频率太低电机会抖动,太高时因占空比范围小使电机调速范围减小。
用555制作的D类放大器我们知道D类放大器具有体积小、效率高的特点。
这里介绍一个用555电路制作的简易D类放大器。
它是利用555电路构成一个可控的多谐振荡器,音频信号输入到控制端得到调宽脉冲信号(如图),基本能满足一般的听音要求。
由IC555和R1、R2、C1等组成100KHz可控多谐振荡器,占空比为50%,控制端5脚输入音频信号,3脚便得到脉宽与输入信号幅值成正比的脉冲信号,经L、C3接调、滤波后推动扬声器。
风扇周波调速电路夏天要来了,电风扇又得派上用场。
这里介绍一个电风扇模拟阵风周波调速电路,可以为将我们家里的老式风扇增加一个实用功能,也算是一个迎接夏天到来的准备吧。
下面介绍其工作原理。
电路见图1a。
电路中NE555接成占空比可调的方波发生器,调节RW可改变占空比。
在NE555的3脚输出高电平期间,过零通断型光电耦合器MOC3061初级得到约10mA正向工作电流,使内部硅化镓红外线发射二极管发射红外光,将过零检测器中光敏双向开关于市电过零时导通,接通电风扇电机电源,风扇运转送风。
在NE555的3脚输出低电平期间,双向开关关断,风扇停转。
MOC3061本身具有一定驱动能力,可不加功率驱动元件而直接利用MOC3061的内部双向开关来控制电风扇电机的运转。
RW为占空比调节电位器,亦即电风扇单位时间内(本电路数据约为20秒)送风时间的调节,改变C2的取值或RW的取值可改变控制周期。
图1b电路为MOC3061的典型功率扩展电路,在控制功率较大的电机时,应考虑使用功率扩展电路。
制作时,可参考图示参数选择器件。
由于电源采用电容压降方式,请自制时注意安全,人体不能直接触摸电路板。
电热毯温控器一般电热毯有高温、低温两档。
使用时,拨在高温档,入睡后总被热醒;拨在低温档,有时醒来会觉得温度不够。
这里介绍一种电热毯温控器,它可以把电热毯的温度控制在一个合适的范围。
工作原理:电路如图所示。
图中IC为NE555时基电路。
RP3为温控调节电位器,其滑动臂电位决定IC的触发电位V2和阀电位Vf,且V5=Vf=2Vz。
220V交流电压经C1、R1限流降压,D1、D2整流、C2滤波,DW稳压后,获得9V左右的电压供IC用。
室温下接通电源,因已调V2<Vz、V6<Vf,IC的3脚为高电位,BCR被触发导通,电热毯通电发热,温度逐渐升高。
热敏传感器BG1随温度的升高其穿透电流ICEO增大,V2、V6升高。
当V2>Vz,V6≥Vf时,IC翻转,3脚变为低电平,BCR截止,电热丝停止发热,温度开始逐渐下降,BG1的ICEO随之逐渐减小,V2、V6降低。
当V6<Vf,V2≤Vz时,IC的3脚电位回到高电位,BCR又触发导通,电热丝又开始发热。
实际证明,调节RP2使V2=1/2V6时,温差为零;而V2=V6时最大。
元件选择:BG1可选用3AX、3AG等PNP型锗管;BCR用400V以上的小型双向可控硅,其它元件按图标选用。
制作要点:热敏传感器BG1可用耐温的细软线引出,并将其连同管脚接头装入。
一电容器铝壳内,注入导热硅脂,制成温度探头。
使用时,把该温度探头放在适当部位既可。