轴结构设计与计算
- 格式:ppt
- 大小:1.61 MB
- 文档页数:61
轴的结构设计及强度计算(1)轴的概述一.轴的功能及分类1.功能支撑回转零件并传递扭矩。
2.分类轴的用途及分类轴的主要功用是支承回转零件及传递运动和动力按照承受载荷的不同,轴可分为:心轴─只承受弯矩的轴,如火车车轮轴。
传动轴─只承受扭矩的轴,如汽车的传动轴。
转轴─同时承受弯矩和扭矩的轴,如减速器的轴。
按照轴线形状的不同,轴可分为曲轴和直轴两大类。
直轴根据外形的不同,可分为光轴和阶梯轴。
轴一般是实心轴,有特殊要求时也可制成空心轴,如航空发动机的主轴。
除了刚性轴外,还有钢丝软轴,可以把回转运动灵活地传到不开敞地空间位置。
二.轴的材料轴的材料主要是碳钢和合金钢,钢轴的毛坯多数用圆钢或锻件,各种热处理和表面强化处理可以显著提高轴的抗疲劳强度。
碳钢比合金钢价廉,对应力集中的敏感性比较低,适用于一般要求的轴。
合金钢比碳钢有更高的力学性能和更好的淬火性能,在传递大功率并要求减小尺寸和质量、要求高的耐磨性,以及处于高温、低温和腐蚀条件下的轴常采用合金钢。
在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此相同尺寸的碳钢和合金钢轴的刚度相差不多。
高强度铸铁和球墨铸铁可用于制造外形复杂的轴,且具有价廉、良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,但是质较脆。
三.轴设计的主要内容轴的设计包括结构设计和工作能力验算两方面的内容。
(1)根据轴上零件的安装、定位以及轴的制造工艺等方面的要求,合理地确定轴的结构形式和尺寸。
(2)轴的承载能力验算指的是轴的强度、刚度和振动稳定性等方面的验算。
轴的设计过程是:选择材料—初估轴径—结构设计—校核强度,刚度,稳定性(2)轴的直径初估方法:类比法按扭矩估算一.轴的扭转强度强度条件:校核式:τT =T/WT=9.55 106P/0.2d3n≤[τT]设计式:d ≥[]362.01055.9n P T τ⨯=C 3nP C---系数(表12-2)(3)轴的结构设计轴的结构设计应该确定:轴的合理外形和全部结构尺寸。
中间轴的设计与计算 1、已知条件中间轴传递的功率KW p 69.32=,转速min /15.1762r n =,齿轮分度圆直径mmd mm d 74.115,990.18232==,齿轮宽度mm b mm b 72,6332==,2、选择轴的材料因传递功率不大,并对重量及结构尺寸无特殊要求,查文献【3】中表8-26选常用的材料45钢,调质处理 3、初算轴径查文献【3】中表9-8得135~106A =考虑轴端不承受转矩,只承受少量的弯矩,故取较小值115=A ,则 mm mm n P A d 74.3115.17669.31153322min =⨯=⨯=4、轴的结构想图如图1-1所示(1)轴承部件的结构设计 轴不长,故轴承采用两端固定方式。
然后,按轴上零件的安装顺序,从min d 处开始设计(2)轴承的选择与轴段①及轴段⑤的设计 该段轴段上安装轴承,起设计应与轴承的设计同步进行。
考虑齿轮有轴向力存在,选用角接触球齿轮。
轴段①、⑤上安装,其直径应便于轴承安装。
又应符合轴承内径系列。
经过综合计算和考虑取7210C 进行设计计算,由文献【3】中11-9得轴承内径mmD mm d 90,50==外径,宽度mmB 20=,定位轴肩直径mmD mm d a a 83,57==外径定位直径,对轴的离作用点与外圈大端面的距离mmd mm a 50,4.1913==故通常一根轴上的两个轴承取相同的型号,则mm d 505=(3)轴段②和轴段④的设计 轴段②上安装齿轮3,轴段④安装齿轮2,为便于齿轮的安装,42d d 和应分别略大于51d d 和,可取mm d d 5242==齿轮2轮榖宽度范围为mm d 78~4.625.1~2.12=)(,取轮毂宽度与齿轮宽度相等mm b 63=,左端采用轴肩定位,右端采取套筒定位。
由于齿轮3 的直径比较小,采用实心式,取其轮毂宽度与齿轮宽度相等mm b 723=,其右端采用轴肩定位,左端采用套筒定位。
轴11.1 内容提要本章主要内容包括:1.轴的功用、类型、特点及应用,轴的常用材料;2.轴的结构设计及轴的设计步骤;3.轴的三种强度计算方法:按扭转强度计算;按弯矩、转矩合成强度计算;按疲劳强度进行安全系数校核计算;4.轴的按静强度计算安全系数的方法,轴的刚度计算、振动计算方法。
本章重点内容是轴的结构设计和强度计算,其中结构设计是本章的难点。
11.2 要点分析1.轴的结构设计轴的结构设计,目的就是要确定轴的各段直径d和各段长度l。
确定直径d时,应先根据转矩初算出受转矩段的最小直径,再逐渐放大推出各段直径;各段长度l需根据轴上零件的尺寸及安装要求情况来确定。
轴没有固定的标准结构,设计时应保证:轴和轴上零件有准确的周向和轴向定位及可靠固定;轴上零件便于装拆和调整;轴具有良好的结构工艺性;轴的结构有利于提高其强度和刚度,尤其是减少应力集中。
进行轴的结构设计时,要注意几个具体问题:(以单级斜齿圆柱齿轮减速器输出轴力例)(1)各段配合直径d应符合标准尺寸(GB2822-81),而与滚动轴承、联轴器、油封等标准件配合的轴径(如图1⒈1中轴的①、②、③、⑦段),应符合标准件的内径系列。
(2)注意两种不同台阶的设计:一种台阶是定位用的(如图11-l中轴的①~②段、④~⑤段、⑥~⑦段),这种台阶过低,定位作用差;过高,径向尺寸和应力集中增大,一般高度h=(2~3)C或R(C、R分别为零件倒角和圆角半径尺寸)。
另一种台阶是为了装配容易通过(如图1⒈1中轴的②~③、③~④段),这种台阶高度很小,一般在直径方向上只差1~3mm 即可。
(3)与轴上零件(如肯轮)相配合的轴段长度l,要比轴上零件的宽度尺寸B短2~3mm (见图11-1),这样才能把轴上零件固定住。
(4)轴的过渡圆角半径r要比相配合的零件的倒角C或圆角半径尺小,这样零件端面才能紧贴轴的台肩,起到定位作用。
(5)为制造方便,同一根轴上的圆角半径、倒角尺寸、中心孔尺寸等应尽量一致,几个平键槽的对称线均应处于同一直线上。
轴的设计计算【一】能力目标1.了解轴的功用、分类、常用材料及热处理。
2.能合理地进行轴的结构设计。
【二】知识目标1.了解轴的分类,掌握轴结构设计。
2.掌握轴的强度计算方法。
3.了解轴的疲劳强度计算和振动。
【三】教学的重点与难点重点:轴的结构设计难点:弯扭合成法计算轴的强度【四】教学方法与手段采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。
【五】教学任务及内容任务 知识点轴的设计计算 1. 轴的分类、材料及热处理2. 轴的结构设计3. 轴的设计计算一、轴的分类(一)根据承受载荷的情况,轴可分为三类1、心轴 工作时只受弯矩的轴,称为心轴。
心轴又分为转动心轴(a )和固定心轴(b)。
2、传动轴 工作时主要承受转矩,不承受或承受很小弯矩的轴,称为传动轴。
3、转轴工作时既承受弯矩又承受转矩的轴,称为转轴。
(二)按轴线形状分:1、直轴(1)光轴作传动轴(应力集中小)(2)阶梯轴优点:1)便于轴上零件定位;2)便于实现等强度2、曲轴另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的空间位置。
如牙铝的传动轴。
二、轴的结构设计轴的结构设计就是确定轴的外形和全部结构尺寸。
但轴的结构设计原则上应满足如下要求:1)轴上零件有准确的位置和可靠的相对固定;2)良好的制造和安装工艺性;3)形状、尺寸应有利于减少应力集中;4)尺寸要求。
(一)轴上零件的定位和固定轴上零件的定位是为了保证传动件在轴上有准确的安装位置;固定则是为了保证轴上零件在运转中保持原位不变。
作为轴的具体结构,既起定位作用又起固定作用。
1、轴上零件的轴向定位和固定:轴肩、轴环、套筒、圆螺母和止退垫圈、弹性挡圈、螺钉锁紧挡圈、轴端挡圈以及圆锥面和轴端挡圈等。
2、轴上零件的周向固定:销、键、花键、过盈配合和成形联接等,其中以键和花键联接应用最广。
(二)轴的结构工艺性轴的结构形状和尺寸应尽量满足加工、装配和维修的要求。
为此,常采用以下措施:1、当某一轴段需车制螺纹或磨削加工时,应留有退刀槽或砂轮越程槽。
例题:某一化工设备中的输送装置运转平稳,工作转矩变化很小,以圆锥-圆柱齿轮减速器作为减速装置。
试设计该减速器的输出轴。
减速器的装置简图如下。
输入轴与电动机相联,输出轴通过弹性柱销联轴器与工作机相联,输出轴为单向旋转(从装有联轴器的一端看为顺时针方向)。
已知电动机功率P=10kW,转速n1=1450r/min,齿轮机构的参数列于下表:解: 1.求输出轴上的功率P3、转速n3和转矩T3若取每级齿轮传动的效率(包括轴承效率在内)η=0.97,则又于是2.求作用在齿轮上的力因已知低速级大齿轮的分度圆直径为而圆周力Ft,径向力Fr及轴向力Fa的方向如图。
3.初步确定轴的最小直径先初步估算轴的最小直径。
选取轴的材料为45号钢,调质处理。
取A0=112,于是得输出轴的最小直径显然是安装联轴器处轴的直径dⅠ-Ⅱ。
为了使所选的轴直径dⅠ-Ⅱ与联轴器的孔径相适应,故需同时选取联轴器型号。
联轴器的计算转矩Tca=K A T3,考虑到转矩很小,故取K A=1.3,则:Tca=K A T3=1.3×960000 N·mm=1248000 N·mm按照计算转矩Tca应小于联轴器公称转矩的条件,查标准GB5014-85或手册,选用HL4型弹性柱销联轴器,其公称转矩为1250000N·mm。
半联轴器Ⅰ的孔径dⅠ=55mm;故取dⅠ-Ⅱ=55mm;半联轴器长度L=112mm,半联轴器与轴配合的毂孔长度L1=84mm。
4.轴的结构设计1)拟定轴上零件的装配方案本题的装配方案已在前面分析比较,现选用如图所示的第一种装配方案。
2)根据轴向定位的要求确定轴的各段直径和长度⑴为了满足半联轴器的轴向定位要求,Ⅰ-Ⅱ轴端右端需制出一轴肩,故取Ⅱ-Ⅲ段的直径 d II-III=62mm;左端用轴端挡圈定位,按轴端直径取挡圈直径D=65mm。
半联轴器与轴配合的毂孔长度L1=84mm,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故Ⅰ-Ⅱ段的长度应比 L1略短一些,现取l I-II= 82mm。
一、实验目的1. 熟悉轴系结构设计的基本原理和方法。
2. 掌握轴、轴承和轴上零件的结构特点及装配关系。
3. 学会轴系结构设计的计算和绘图方法。
4. 培养实际操作能力和工程意识。
二、实验内容1. 实验原理与计算(1)轴的结构设计:根据轴的受力情况,确定轴的材料、直径、长度和形状。
(2)轴承组合设计:根据轴的转速、载荷和润滑条件,选择合适的轴承类型、型号和安装方式。
(3)轴上零件的固定:根据轴上零件的类型和用途,选择合适的固定方法。
2. 实验步骤(1)分析轴的受力情况,确定轴的材料和直径。
(2)根据轴的转速、载荷和润滑条件,选择合适的轴承类型和型号。
(3)设计轴承组合结构,包括轴承的安装方式、轴向定位和轴向固定。
(4)选择轴上零件的固定方法,并绘制装配图。
三、实验过程1. 分析轴的受力情况(1)根据实验要求,确定轴的转速、载荷和转速范围。
(2)根据转速和载荷,选择合适的材料。
(3)计算轴的直径,满足强度、刚度和稳定性要求。
2. 选择轴承类型和型号(1)根据转速、载荷和润滑条件,选择合适的轴承类型。
(2)根据轴承类型,选择合适的轴承型号。
3. 设计轴承组合结构(1)确定轴承的安装方式,如外圈固定、内圈固定等。
(2)设计轴承的轴向定位和轴向固定,确保轴承在轴向方向的稳定。
4. 选择轴上零件的固定方法(1)根据轴上零件的类型和用途,选择合适的固定方法。
(2)绘制装配图,标注固定方式和尺寸。
四、实验结果与分析1. 实验结果(1)根据实验要求,完成了轴的结构设计。
(2)根据实验要求,完成了轴承组合设计。
(3)根据实验要求,完成了轴上零件的固定设计。
2. 分析(1)实验过程中,对轴的结构设计、轴承组合设计和轴上零件的固定方法有了更深入的了解。
(2)通过实验,掌握了轴系结构设计的基本原理和方法。
(3)提高了实际操作能力和工程意识。
五、实验总结1. 实验过程中,遇到了一些问题,如轴承型号的选择、轴上零件的固定方法等。
轴的结构设计及计算一、轴的结构设计1.轴的外形尺寸设计轴的外形尺寸设计包括轴的直径、长度、轴颈长度、轴草图等方面。
具体设计参数受以下因素影响:(1)载荷:轴的外形尺寸应根据设计负载来确定。
载荷分为轴向负载和弯矩负载两部分。
轴向负载通过轴承来传递,而弯矩负载作用在轴的中部。
(2)材料:轴的外形尺寸受轴材料的强度和刚度限制。
根据材料的特性,考虑到轴的强度、韧性和硬度。
(3)工作条件:轴工作环境的温度、湿度、油脂润滑、振动等因素对外形尺寸的设计有影响。
例如,在高温情况下,轴的线膨胀要考虑,以保证工作正常。
2.轴的内部结构设计轴的内部结构设计包括轴承座设计、防滑设计和轴孔尺寸设计。
(1)轴承座设计:根据所选定的轴承类型和尺寸,设计轴承座结构,以确保轴与轴承之间的协调度。
轴承座结构应具有足够的强度和刚度,能够传递载荷,并保证轴与轴承之间的空隙要求。
(2)防滑设计:轴与零件之间需要使用紧固件进行连接,以避免轴在工作时滑动和脱离。
必须根据设计载荷和接口尺寸来计算紧固件的数量和规格。
(3)轴孔尺寸设计:根据零件的要求和装配要求,设计轴孔尺寸,使得轴能够与其他零件有效连接,并保证装配的质量。
二、轴的计算1.轴的强度计算轴的强度计算一般涉及以下几个方面:(1)轴的弯曲强度计算:根据所受弯矩以及轴的几何形状、材料等参数,计算轴在弯曲工况下的承载能力。
考虑轴的弯矩分布、扭转矩、振动疲劳影响等因素,进行强度计算。
(2)轴的切削强度计算:当轴上存在切削力或切削载荷时,计算轴在切削区域内的切削强度,以确保轴能够承受切削载荷,并避免刀具和轴的损坏。
(3)轴的挤压强度计算:当轴上存在压力或挤压载荷时,计算轴在压力区域内的挤压强度,以确保轴能够承受挤压载荷,并避免轴的变形或破裂。
2.轴的刚度计算轴的刚度计算是为了评估轴的变形情况,以确保设计轴的刚度足够,以满足使用要求。
在刚度计算中,可以应用刚度矩阵法和有限元法计算轴的刚度。
轴结构设计及强度计算§11—1 概述一、轴的用途与分类1、功用:1)支承回转零件;2)传递运动和动力2、分类按承基情况分转轴——T和M的轴——齿轮轴心轴——而不受扭矩:转动心轴(图11-2a);固定心轴(图11-2b)传动轴——主要受扭矩而不受弯矩或弯矩很小的轴按轴线形状分直轴——光轴(图11-5a)——作传动轴(应力集中小)阶梯轴(图11-5b):优点:1)便于轴上零件定位;2)便于实现等强度曲轴——另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的空间位置(图11-8),如牙铝的传动轴。
二、轴的材料及其选择碳素钢——价廉时应力集中不敏感——常用45#,可通过热处理改善机械性能,一般为正火调质和合金钢——机械性能(热处理性)更好,适合于大功率,结构要求紧凑的传动中,或有耐磨、高温(低温)等特殊工作条件,但合金钢对应力集中较敏感。
注意:①由于碳素钢与合金钢的弹性模量基本相同,所以采用合金钢并不能提高轴的刚度。
②轴的各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(喷丸、滚压)对提高轴的疲劳强度有显著效果。
表11-1,轴的常用材料及其主要机械性能表三,轴设计的主要内容:结构设计——按轴上零件安装定位要求定轴的形状和尺寸交替进行工作能力计算——强度、刚度、振动稳定性计算§11—2 轴的结构设计轴的结构外形主要取决于轴在箱体上的安装位置及形式,轴上零件的布置和固定方式,受力情况和加工工艺等。
轴的结构设计要求:①轴和轴上零件要有准确、牢固的工作位置;②轴上零件装拆、调整方便;③轴应具有良好的制造工艺性等。
④尽量避免应力集中(书上无)一、拟定轴上零件的装配方案根据轴上零件的结构特点,首先要预定出主要零件的装配方向、顺序和相互关系,它是轴进行结构设计的基础,拟定装配方案,应先考虑几个方案,进行分析比较后再选优。
原则:1)轴的结构越简单越合理;2)装配越简单、方便越合理。