绿色荧光蛋白GFP的研究进展及应用_吴沛桥
- 格式:pdf
- 大小:144.11 KB
- 文档页数:4
绿色荧光蛋白作为报告基因在分子生物学中的应用绿色荧光蛋白作为报告基因在分子生物学中的应用摘要:随着科学技术的不断更新和发展,绿色荧光蛋白在动物学、植物学、微生物学等领域的应用研究越来越广泛。
绿色荧光蛋白(green fluorescent protein,GFP)可作为报告基因,且具有分子量较小、荧光性质稳定、对生物体无毒性作用、检测时不需要底物等的特点。
本文就对荧光蛋白在分子生物学中的应用做一综述。
关键词:绿色荧光蛋白;报告基因;应用The Application of GFP As Reporter Gene In the Molecular Biology Abstract: With the upgrade and development of science and technology, the application of green fluorescent protein used in Zoology, Botany and microbiology is more extensive. As a reporter gene, GFP have some characteristics, such as low molecular weight, good fluorescent stability, non- toxicity to organisms. This paper reviews the application of GFP in the molecular biology. Key words: green fluorescent protein, reporter gene, application of GFP绿色荧光蛋白(green fluorescent protein,GFP)是一类来自于海洋生物如水母、水螅和珊瑚等腔肠动物内的一种生物发光蛋白,当受到紫外或蓝光激发时,能发射出绿色荧光。
绿色荧光蛋白——结构及应用孙艺佩【摘要】绿色荧光蛋白(GFP)有稳定、灵敏度高、无毒害、载体便于构建等优点,因此在各个领域已经有了广泛的应用,在细胞生物学与分子生物学领域中,基因常被用作一个报导基因作为生物探针,拿来映证某些假设的实验方法;在医学领域,常用利用绿色荧光蛋白观测肿瘤发生、生长和转移等过程.本文就绿色荧光蛋白的发现与应用背景、结构、生色机理、相对于其他荧光分子的优点和在各领域的应用进行了综述.【期刊名称】《化工中间体》【年(卷),期】2017(000)008【总页数】2页(P124-125)【关键词】绿色荧光蛋白(GFP);荧光生色机理;生色团;技术应用【作者】孙艺佩【作者单位】山东省实验中学山东 250000【正文语种】中文【中图分类】Q绿色荧光蛋白(Green fluorescent protein,GFP)是一类能被蓝紫光激发而发出绿色荧光的蛋白,1962年,下村修等人于维多利亚管状水母中第一次发现并提取出了绿色荧光蛋白。
1994年,马丁·查尔菲首次在实验中成功表达GFP基因,向人们展示了绿色荧光蛋白作为遗传标签的价值。
同年,钱永健与其同事提出GFP生色团发光机理并改造GFP,使其更易作为标记物应用于各类试验。
2008年,诺贝尔化学奖授予钱永健、马丁·查尔菲和下修村,以表彰他们发现和发展了绿色荧光蛋白。
这一发现成果为生命科学的进步提供了更便捷的渠道。
从维多利亚多管水母中分离出来的野生型GFP由238个氨基酸残基组成,分子量约27kDa。
它具有β-桶的结构,几乎是个直径2.4nm,长4.2nm的完美圆柱。
11个β-折叠链形成β-筒的外周,筒两端分别被一些分子量较小的短α-螺旋覆盖,组成生色团的三个残基(Ser65-Tyr66-Gly67)与α-螺旋共价相连,位于圆筒中央螺旋中部。
β-圆筒与短α-螺旋形成致密的结构域,使配体不能扩散进入,生色团被严格保护在筒内,因此其性质稳定,不易被淬灭。
学士学位论文文献综述题目绿色荧光蛋白的应用及发展前景姓名周紫嫣学号专业生物工程指导教师周小萍职称教师中国·武汉二○一二年四月目录摘要 (II)关键词 (II)Abstract (II)Key words (II)1 GPF的发现 (1)2 GFP的结构及发光原理 (1)2.1 GFP的结构 (1)2.2 GFP的发光原理 (2)3 GFP在生物技术中的应用 (2)3.1 GFP作为报告基因 (2)3.2 GFP用于研究病毒与宿主的关系 (3)3.3 GFP用于药物筛选 (3)3.4 GFP作为生物传感器 (3)3.5 GFP用于融合抗体 (4)3.6 GFP用于计算细胞生长速度 (4)3.7 GFP用于基因表达调控 (4)4 GFP存在问题及发展前景 (4)参考文献 (5)致谢 (5)绿色荧光蛋白的应用及发展前景摘要绿色荧光蛋白(GFP)是一种由水母(Aequorea Victoria)体内发现的发光蛋白。
分子质量为26kDa,由238个氨基酸构成,第65~67位氨基酸(Ser-Tyr-Gly)形成发光团,是主要发光的位置。
其发光团的形成不具物种专一性,发出荧光稳定,且不需依赖任何辅因子或其他基质而发光。
绿色荧光蛋白基因转化入宿主细胞后很稳定,对多数宿主的生理无影响,是常用的报道基因。
本文综述了绿色荧光蛋白的发现过程,基本性质,应用及其发展前景。
关键词绿色荧光蛋白;报告基因;药物筛选;融合抗体Green fluorescent protein application and development prospectAbstractGreen fluorescent protein (GFP) is a kind of the jellyfish (Aequorea Victoria) found in the body of the luminous protein. Molecular quality as kDa 26, with 238 amino acids, 65 ~ 67 of amino acid (Ser-Tyr-Gly) form shine group, is mainly the position of the light. The light the formation of the group has no species specificity, a fluorescent stability, and does not need to rely on any auxiliary factors or other matrix and shine. Green fluorescent protein gene into the host cell is stable, for most of the host physiology no effect, the report is a common gene. This paper reviewed the green fluorescent protein discovery process, basic properties, application and development prospect.Key wordsGreen fluorescent protein;Report gene;Drug screening;Fusion antibody1 GPF的发现2008年的诺贝尔化学奖授予从事有关:“绿色荧光蛋白( GFP) 的发现,表达和发展”并取得重要成就的三位科学家:日本科学家下村修(Osamu Shimomura);美国科学家马丁·沙尔菲(Martin Chalfie)和美籍华裔科学家钱永健(Roger Y. Tsien)。
绿色荧光蛋白的研究现状与应用【摘要】绿色荧光蛋白(GFP)最早发现于水母体中,是一种十分重要的蛋白质。
由于其众多的优点,现已在分子生物和细胞生物的研究中应用十分广泛。
随着技术的进步和研究的进一步深入,GFP基因也在许多其他方面将发挥着越来越重要的作用。
【关键词】绿色荧光蛋白;生色团;报告基因2008年10月8日,瑞典皇家科学院诺贝尔奖委员会授予三位科学家:日裔美国科学家下村修(Osamu Shimomura)、美国科学家马丁?查尔非(Martin Chalfie)和美国华裔科学家钱永健(Roger Y.Tsien)诺贝尔化学奖,以表彰他们在绿色荧光蛋白(GFP)研究方面做出的突出贡献。
1 绿色荧光蛋白的理论研究1.1绿色荧光蛋白的发现绿色荧光蛋白最早于1962年在维多利亚多管发光水母体内被发现,同时它也存在于水螅和珊瑚等腔肠动物体内。
它的内源基团可以在蓝光或紫外光激发下发射绿光,属于生物发光蛋白。
绿色荧光蛋白在水母体内之所以能发光,主要依靠水母素的辅助。
水母素和GFP之间能发生了能量转移,在钙的刺激下,其能量可转移到GFP,刺激GFP发光。
1.2绿色荧光蛋白的结构和发光原理1992年Prasher等克隆了GFP基因的cDNA并分析了其一级结构。
野生型GFP基因组全长2600bp,由3个外显子和2个内含子组成,编码238个氨基酸,分子量约28kDa。
GFP的三维立体结构是由11个β折叠围在四周形成一个中空的圆柱体,1条α折叠贯穿在圆柱体的中间,其中有一段位于65-67位的3个氨基酸残基(Ser-Tyr-Gly)形成的杂环咪唑啉结构组成生色团,位于圆筒中央并附着在α螺旋上。
绿色荧光蛋白的发光原理是位于氨基酸第65位的Ser的羧基和67位的Gly的酰基经过亲核反应生成咪唑基,66位的Tyr通过脱氢使芳香团与咪唑基结合,形成对羟基苯甲酸咪唑环酮生色团发出荧光。
GFP的最大和次大的激发波长分别是395nm和475nm。
绿色荧光蛋白的应用及其最新研究进展一、关键词:绿色萤光蛋白、酵母双杂交系统、流式细胞仪、下修村、马丁·查尔菲、钱永健二、背景2008年10月8日,三位美国科学家——伍兹霍尔海洋生物学实验室(Woods Hole Marine Biological Laboratory, MBL)的Osamu Shimomura、哥伦比亚大学(Columbia University)的Martin Chalfie以及加州大学圣地亚哥分校(University of California, San Diego)的钱永健(Roger Y onchien Tsien),因在研究和发现绿色荧光蛋白(green fluorescent protein,GFP)方面做出突出贡献而获得诺贝尔化学奖。
绿色荧光蛋白(green fluorescent protein, GFP)最早由日裔科学家下村修于1962年在水母(Aequorea victoria )中发现。
而后马丁·查尔菲则证明了GFP在作为多种生物学现象发光遗传标记方面的应用价值。
钱永健阐明了GFP发光的机制,并且发现了除绿色之外可用于标记的其它颜色。
他对细胞生物学和神经生物学领域的贡献具有划时代的意义。
他的多色荧光蛋白标记技术让科学家能够用不同颜色对多个蛋白和细胞进行标记,从而实现了同时对多个生物学过程进行追踪。
现在,三位科学家的研究成果已经作为标记工具在生物科学中得到广泛应用。
三、GFP的主要性能GFP在蓝色波长范围的光照激发下发出绿色荧光,其发光过程需要冷光蛋白质Aequorin 的帮助,而且,这个冷光蛋白质可与钙离子(Ca2+)相互作用。
GFP的激发光谱在400nm 附近有一个主激发峰,在470nm附近有一个次激发峰。
发射光谱在505nm附近有一尖锐的主发射峰,在540nm附近有一肩峰。
在Aequorea victoria 中发现的野生型绿色荧光蛋白的分子量较小,由238个氨基酸残基组成,仅为27~30kDa,而编码GFP的基因序列也很短,为2.6kb。
绿色荧光蛋白在生物科研中的应用与发展绿色荧光蛋白(Green Fluorescent Protein,GFP)是一种广泛用于生物科研的工具蛋白,它源自于一种发光生物——海葵。
GFP具有自发的荧光特性,能够发出绿色的荧光信号,并且能够与其他蛋白质一起被观察、追踪。
GFP的发现与利用,为生命科学领域带来了一场革命,被广泛应用于光遗传学、分子标记、细胞成像等多个领域。
在本文中,我们将介绍GFP的应用及其在生物科研中的发展情况。
一、GFP的发现与基本原理1992年,日本科学家下村脩祐在对海葵的研究中,发现有一种名为GFP的蛋白质,它能够在紫外光的照射下自发发出绿色荧光。
1994年,美国生物学家马丁·查尔芬(Martin Chalfie)和罗杰·钱(Roger Tsien)证实了GFP的自发荧光特性,并通过转基因技术成功将GFP导入到非常规高等生物体系中,开创了GFP的应用前景。
GFP的发光原理与其他荧光染料不同,它并不需要诱导剂的作用或化学反应的参与。
GFP的分子结构由238个氨基酸组成,可以自行折叠成一个波浪形的结构,其中蛋白“心脏”的中心是一个色团,称为色素环(chromophore),这个环的结构与化学状态有机会决定了GFP发射绿光荧光的特性。
GFP的发光特性具有“自发、可重复、非侵入性、可监测、可定量化、标记靶点准确”的优点,成为生物科学研究中广泛使用的荧光标记分子。
二、GFP在光遗传学的应用光遗传学是指应用光敏感蛋白和分子工程技术对生物活动进行精准控制和实时监测的技术。
GFP在光遗传学研究中被广泛应用,主要用于驱动离子通道、激酶和离子泵的表达。
通过对这些因子的定向表达,可以研究光敏感信号的传递、光学信息的处理和细胞感知。
GFP的分子可以通过基因克隆技术导入到目标细胞或组织中,与其他光敏感蛋白一起被利用为光敏受体。
结合光学影像技术,研究人员可以通过光刺激来操作蛋白质的表达、离子流动、膜的通透性等,从而研究细胞和生物体系中各种生理或病理情况的变化。
万方数据2004年6月绿色荧光蛋白(GFP)研究进展71随着生命科学和医学研究的不断深入,研究者们迫切需要一种能够在活体中表达且易于检测的报告基因,现有的报告基因主要有:分泌型胎盘磷酸酯酶(s秘P)、B一半乳糖苷酶(互丑cz)、8一葡糖苷酸酶(GUS)、萤火虫荧光素酶(LUc)等,但这些基因的检测方法并不理想,它们都需要底物和辅助因子,因而在活体中的应用受到限制。
最近,一种全新的非酶性报告基因——绿色荧光蛋白(GFP)引起了人们的关注,该蛋白能够自身催化形成发色结构并在蓝光激发下发出绿色荧光。
作为报告基因,GFP是目前唯一能在活细胞中表达的发光蛋白;作为荧光标记分子,GFP既具有敏感的标记检测率,又没有放射性的危害。
最近又发现G即还是一个良好的细胞间信号传递的动态标记分子,可以跟踪观测第二信使。
近来关于GFP方面的研究和综述越来越多,但多是针对某一方面的特点或应用,作者将cFP基础理论和应用研究进展作一简要综述。
lGFP基础理论研究进展1.1发展历史1962年蹦n舢u飓等…首先从多管水母属(枷ria、ricto.ria)中分离出了cFP;1992年Prasller等u3克隆了GFP基因的cDNA,并分析了GFP的一级结构;1994年ch址e等b3首次在大肠杆菌细胞和线虫中表达了GFP,开创了GFP应用研究的先河,之后很快发现GFP能在多种异源细胞中表达,GFP在细胞学、分子生物学和医学、病毒学等领域中迅速掀起了一股热潮;199r7年10月18—22日在美国New—J嘲y专门召开了一次关于GFP的国际会议。
1.2GFP结构、生化特性、发光机制、光谱特性1.2.1结构由正常野生型cFP(wtG即)的cDNA序列推出的蛋白质一级结构,由238个氨基酸残基组成,sD卜PAGE凝胶电泳测定其分子量为27—30l【D。
晶体学证据H’表明,GFP中央是一个B罐(p一锄)结构。
GFP的生色团位于“一69的六肽内。
酶活性及产量成为可能。
迄今为止,国外对纳豆激酶基因的研究仅限于Nadamura 等人利用鸟枪法得到了NK 基因,并将NK 基因重组到pUC19质粒上,转化到E.coli H B101受体菌中,该基因工程菌发酵产物具有胞外蛋白酶活性,但没有检测其溶栓活性。
至于对纳豆激酶基因表达及表达产物的研究还未见报道。
但与纳豆激酶同源性很高的枯草杆菌蛋白酶E 和枯草杆菌蛋白酶amylosacchariticus 都已有基因克隆的报道。
Y oshim otoT 等人利用穿梭质粒载体pHY 300P LK 克隆amylosac 2chariticus 基因,转化到四种不同的枯草杆菌中(ISW1214,M1111,I A510,I A274),发现转化菌株(ISW1214/PTH1)的蛋白水解酶的产率比宿主菌和基因供给菌分别提高20倍和4倍(Y oshim oto T ,1988年)[5]。
Mark L 等人将枯草杆菌蛋白酶E 基因克隆到穿梭载体pBS42上,转化枯草杆菌,表达的丝氨酸蛋白酶活性是野生型的5倍(Mark L ,1984年)[6]。
W ong 等人通过质粒整合和噬菌体pBS1转导绘制了枯草杆菌蛋白酶E 基因图谱。
研究表明,克隆化的枯草杆菌蛋白酶基因只在静止生长期表达,并且受δ37启动子的控制(Maria Y,1984年)[7]。
H T akagi 等人[8]将枯草杆菌蛋白酶E 基因克隆到嗜热表达载体上,实现了在嗜热杆菌中的表达。
近年来,我国掀起对纳豆激酶的研究和开发热潮,纳豆激酶的药用价值日益突出,我国学者渴望利用基因工程菌生产纳豆激酶,致使对纳豆激酶基因的克隆、表达、纯化及表达产物的产量和活性方面的研究取得了很大进展。
已经从不同菌株(枯草杆菌,纳豆杆菌,解淀粉芽孢杆菌)中克隆了纳豆激酶成熟肽基因,包括前导肽和成熟肽的纳豆激酶原基因,以及包括启动子、前导肽、信号肽和成熟肽的纳豆激酶全基因。
分别重组到温控型和诱导型质粒载体上,实现了在大肠杆菌、枯草杆菌和酵母菌中的表达。
绿色荧光蛋白的应用及其研究进展摘要:绿色荧光蛋白(green fluorescent protein,GFP)是众多报告基因中发展起步较晚,但是应用相对较为广泛的其中之一。
报告基因是用于编码一些易检测蛋白质或酶的基因,通过它的表达产物来标定目的基因的表达调控。
该技术具有较高的灵敏度、较方便的检测方法等特点,报告基因技术在转基因、启动子分析以及药物筛选等领域有了广泛的应用。
近年来,随着荧光分析方法和技术的进步,绿色荧光蛋白成为众多报告基因中的后起之秀,本文以这绿色荧光蛋白为分析重点,综述了该报告基因的特点、应用、近年来的进展以及未来发展方向。
关键词:绿色荧光蛋白;报告基因;GFP报告基因是一种编码某种易于检测蛋白质或酶的基因,通过它的表达产物来标定目的基因的表达调控。
该技术的主要优点是高灵敏度、可信性及检测方便且适合大规模检测。
目前已广泛应用于启动子分析、监控转基因及其表达、细胞的信号转导与药物的筛选等多种细胞事件。
随着技术和检测方法的进步,荧光分析以其能够将细胞内报告基因的活性可视化和对细胞的非破坏性而越来越成为主流,因此绿色荧光蛋白这种可发出荧光的报告基因成为众多报告基因中的后起之秀,本文以绿色荧光蛋白为重点,综述了该报告基因的选择及其研究趋向。
一、绿色荧光蛋白基因荧光蛋白家族是从水螅虫纲和珊瑚类动物中发现的相对分子质量为20~30k D的同源性蛋白,包括绿色、红色、色和青色荧光蛋白等。
绿色荧光蛋白(gree n fluorescent protein,GFP)是其中应用的最多的一种。
早在1992年,Prasher和Chalfie报道了由于能量转移至GFP才使生物发光水母的发光,即该基因最初是从维多利亚发光水母(Aequorea victoria)中分离得到。
该蛋白可以接受由Ca2+激活的光蛋白水母素的能量,此后在体内产生荧光,这一过程不需要任何底物或辅助因子的参与。
下村修在研究水母的发光机制时发现腔肠素(coalenterazine)和钙离子与水母发光蛋白结合后,水母发光蛋白发蓝色荧光,同时激发GFP,使其发绿色荧光[1],马丁·沙尔菲进一步研究了绿色荧光蛋白的发光机理,钱永健对绿色荧光蛋白的改造则使绿色荧光蛋白得到了更广泛的应用,由于对GFP 研究及应用的突出贡献,上述3位学者共同获得了2 008 年的诺贝尔化学奖。
绿色荧光蛋白技术在细胞生物学研究中的应用绿色荧光蛋白(green fluorescent protein,GFP)技术是一种在细胞生物学研究中广泛应用的技术。
GFP技术利用从海洋放线菌(Aequorea victoria)获得的GFP基因,通过基因工程技术将其导入到目标细胞中,从而实现对目标细胞的可视化和追踪。
GFP技术在细胞生物学研究中的应用非常广泛。
下面将从细胞标记、蛋白质定位和基因表达调控等几个方面来详细介绍。
首先,GFP技术可以用于细胞标记。
通过将GFP基因导入到目标细胞中,可以实现对细胞的可视化标记。
这对于细胞追踪、细胞分化以及研究细胞生命周期等都非常有意义。
例如,在神经科学研究中,研究人员可以将GFP基因导入到神经元中,通过观察GFP的荧光表达来跟踪神经元的生长和连接过程。
另外,GFP技术也可以辅助研究细胞分化。
将GFP基因与特定的分化标记基因组合,可以通过荧光观察该细胞的分化状态。
其次,GFP技术可以用于蛋白质定位研究。
将GFP与目标蛋白质序列相连,可以通过荧光观察该蛋白质在细胞内的定位位置。
这对于研究蛋白质的运输、定位以及功能都非常重要。
例如,在细胞生物学研究中,可以将GFP与细胞质蛋白、核蛋白或细胞器蛋白等相连,通过观察GFP的荧光表达来确定蛋白质在细胞中的位置。
这种定位研究可以帮助我们更好地理解蛋白质的功能。
此外,GFP技术还可以用于基因表达调控研究。
通过将GFP与目标基因的调控序列相连,可以通过观察GFP的荧光表达来研究基因的表达调控机制。
例如,在遗传学研究中,可以将GFP与特定的启动子相连,通过观察GFP的荧光表达来研究该启动子对于基因表达的调控作用。
此外,GFP技术还可以结合其他技术,如荧光共振能量转移(FRET)、荧光染料和激光共聚焦显微镜等,来进一步提高荧光标记的灵敏度和分辨率。
这些组合应用可以实现对细胞和细胞器更加精确的观察和定位。
总而言之,绿色荧光蛋白技术在细胞生物学研究中具有广泛的应用。
GFP荧光蛋白的应用概述前言:源于多管水母属等海洋无脊椎动物的绿色荧光蛋白(GFP),是一种极具应用潜力的标记物,有着极其广泛的应用前景。
绿色荧光蛋白的发现具有划时代的重要意义,它不仅为当代生物学研究提供了极为实用的基本研究手段,并且在此基础上改造发展和发现了一些列荧光蛋白,扩展了应用范围。
现就GFP的理化性质、荧光特性、改进和应用研究进行了综述。
主要内容:1、GFP的具体应用:作为转基因植物和动物的筛选标记用于定位标记跟踪观察微生物发育机理研究用于细胞筛选用于免疫学2、GFP在生物领域的最新应用进展:显像技术失踪技术报告基因生物光学感受器筛选技术抗体生产(1)显像技术由于荧光蛋白有多种颜色,且稳定无毒,所以荧光蛋白可是的动物体内复杂的系统结构可视化。
Livet等用多种不同的颜色的荧光蛋白对神经系统进行了基因标记,使得我们能够观察到大脑的集成路线图,可以直观地看到神经细以及细胞间的相互作用。
另外,荧光蛋白还可用于生物发育领域,能够形象的观察生物体的器官组织结构的变化,随着发育学研究的深入,荧光蛋白必将成为强有力的工具。
(2)失踪技术一般的荧光染料标记的微生物,由于其生长快、分裂快,染料可在短时间内被稀释,所以不能实时准确地观察微生物侵入活体动物以及细胞的过程。
近年发现,荧光蛋白可用于失踪流行性病毒对活体细胞的感染,流行性病毒可被实时监控,借助这一新技术,可以更深入地研究其感染方式。
Zhao等发现用GFP标记细菌,可以详细的对细菌的入侵进行时空检测,以确定细菌特异性的感染部位以及传染源的空间位移。
GFP克服了一般荧光染料所带有的缺陷,GFP必将会进一步取代一般的荧光染料,有效地帮助学术研究者观察分析细菌病毒的感染方式。
(3)报告基因由于荧光蛋白发光团的形成不具有物种专一性,可发出荧光稳定,且不需要依赖任何辅因子或其他基质而发光,所以转入宿主细胞后的荧光蛋白基因很稳定,对多数宿主的生理无影响,是理想的报告基因。
绿色荧光蛋白在转基因动物研究中的应用绿色荧光蛋白(GFP)是一种来自水母的蛋白质,具有独特的荧光性质,可以发出绿色荧光。
近年来,GFP被广泛应用于生物学研究中,特别是在转基因动物研究中得到了广泛应用。
利用GFP基因的表达,科学家可以追踪细胞、组织以及整个生物体系的运动和功能。
通过将GFP基因转入目标细胞或组织中,科学家可以用荧光显微镜观察其在生物中的位置和运动轨迹,繁殖情况以及基因表达水平等重要信息。
在转基因动物研究中,GFP的应用尤其重要。
通过将GFP基因转入小鼠、果蝇等模式动物中,科学家可以追踪这些动物的胚胎发育、器官生长、细胞分化以及疾病模型等过程。
此外,还可以利用GFP的荧光特性,观察细胞内各种蛋白质的表达情况,从而了解其在疾病发生发展中的作用,为药物开发提供参考。
总之,GFP在转基因动物研究中的应用,不仅能够促进科学家对于生物体系的认识和了解,还能够为疾病治疗提供新的思路和方法。
随着技术的进步,GFP的应用前景将会更加广阔。
- 1 -。
2008年诺贝尔化学奖成果:绿色荧光蛋白(GFP)的研究Katharine Sanderson
【期刊名称】《分子植物育种》
【年(卷),期】2009(7)1
【摘要】2008年10月8日,瑞典皇家科学院把今年的诺贝尔化学奖授予绿色荧光蛋白的发现者和推广者。
他们分别为日本科学家下村惰(Osamu Shimomur)、美国科学家马丁·查尔菲(Maain Chalfie)和钱永健(RogerTsien)。
日本科学
家下村惰1962年在普林斯顿大学做研究的时候,从一种特殊水母中提取水母素时,偶然发现一种在紫外光下可以发强烈绿色的蛋白一绿色荧光蛋白(GFP)。
【总页数】1页(P62-62)
【关键词】绿色荧光蛋白;诺贝尔化学奖;日本科学家;普林斯顿大学;科学院;发现者;
紫外光;水母
【作者】Katharine Sanderson
【作者单位】
【正文语种】中文
【中图分类】N19;Q78
【相关文献】
1.绿色荧光蛋白研究的三个里程碑——2008年诺贝尔化学奖简介 [J], 崔志芳;邹
玉红;季爱云
2.绿色荧光蛋白——2008年诺贝尔化学奖简介 [J], 李炎武;谭卫兵;李赞;邝雪英
3.2008年诺贝尔化学奖解读——明星分子GFP:绿色荧光蛋白 [J], 刘涛
4.绿色荧光蛋白的发现与发展——2008年诺贝尔化学奖简介 [J], 朱杰;吴平
5.绿色荧光蛋白质——2008年诺贝尔化学奖成果介绍 [J], 杨梅;刘艳梅;刘克文因版权原因,仅展示原文概要,查看原文内容请购买。
■通信作者 E mail :baxiaoge1957@yahoo .com .cn绿色荧光蛋白GFP 的研究进展及应用吴沛桥1,巴晓革2■,胡海1,赵静1(1.南京农业大学生命科学学院,南京210095;2.山东药品食品职业学院,威海264210)摘要:源于多管水母属等海洋无脊椎动物的绿色荧光蛋白(GFP ),是一种极具应用潜力的标记物,有着极其广泛的应用前景。
我们就GFP 的理化性质、荧光特性、改进和应用研究进行了综述。
关键词:绿色荧光蛋白(GFP );标记物;荧光特性;进展;改进;应用中图分类号:Q51,503;R318 文献标识码:A 文章编号:1672-6278(2009)01-0083-04Research Progress and Application of Green Fluorescent ProteinWU Peiqiao 1,BA Xiaoge 2,HU Hai 1,ZHAO Jing1(1.Nanjing Agricultu ral University ,College of Life Science ,Nanj ing 210095,China ;2.Shandong Drug and Food V ocatio nal College ,W eihai 264210,China )A bstract :The green fluorescent protein (GFP )from the jellyfish Aequorea vietoria is a great potential for application of the marker ,has a wide range of applications .The article on the physical and chemical properties ,the fluorescence characteristics ,improvement and application of GFP are reviewed .Key words :Green fluorescent protein ;Marker ;Fluorescence characteristics ;Progress ;Improvement ;Application1 引 言发光是海洋无脊椎动物中普遍存在的现象,一些腔肠动物包括水母、水螅和珊瑚等受到机械性干扰时都可发射绿色荧光,而栉水母类发射蓝色荧光。
绿色荧光蛋白(Green fluorescent pr otein ,GFP )是一类存在于这些腔肠动物体内的生物发光蛋白。
1962年Shimomura 等[1]首先从多管水母(Ae quoria victoria )中分离出一种分子量为20kD 的称为A equorin 的蛋白。
由于水母整体荧光及提取的蛋白质颗粒荧光都呈绿色,因此,人们将这种蛋白命名为绿色荧光蛋白。
随后,人们从不同动物体内提取出了各种不同的GFP ,其中研究较为深入的是来自多管水母科(Aequorleidae )和海紫罗兰科(Renillidae )的GFP ,即Ae quoria GFP 和Renilla GFP 。
2 GFP 的理化性质,荧光特性及其改进2.1 GFP 的理化性质从水母体内分离到的GFP 基因,长达2.6kD ,由3个外显子组成,分别编码69、98和71个氨基酸。
GFP 本身是一种酸性,球状,可溶性天然荧光蛋白。
A equoria GFP 分子量约27×103,一级结构为一个由238个氨基酸残基组成的单链多肽;而Renilla GFP 是分子量为54kD 的同型二聚体。
两种GFP 有不同的激发光谱,A equoria GFP 在395nm 具有最高光吸收峰,肩峰为473nm ;Renilla GFP 在498nm 具有强烈的光吸收,肩峰为470nm 。
两种GFP 含有相同的生色团,发射光谱基本相同(λmax =508~509nm )。
GFP 性质极其稳定,易耐受高温处理,甲醛固定和石蜡包埋不影响其荧光性质。
其变性需在90℃或pH <4.0或pH >12.0的条件下用6mol L 盐酸胍处理,一旦恢复中性环境,或去除变性剂,虽然变性的蛋白质并不能完全复性,但是复性蛋白质同天然蛋白质对温度、pH 变化的耐受性、抗胰蛋白酶消解的能力是相同的。
更重要的是,它们在很大的pH 范围内(pH7~12.2)的吸收、发射光谱也是相同的。
Renilla GFP 的稳定性就更为显著。
它在上述一系列的变性条件下都很稳定,不易变性。
根据Sheen生物医学工程研究J ournal of Biomedical Engineering Res earch2009,28(1):83~86 等[2]的研究,GFP在受体内表达时,其稳定性并不亚于CAT蛋白,因而可以得到持续时间较长的荧光。
2.2 GFP的荧光原理GFP的性质和发射光谱的稳定性是同其生色团结构的稳定性密不可分的。
GFP表达后折叠,在氧存在的条件下,使66位氨基酸残基的α、β键间脱氢。
由65~67位的氨基酸残基(Ser-Tyr-Gly)环化为稳定的对羟基苯咪唑啉酮(4-p-hydroxybene -5-imidazolinone),形成生色团(基于组成生色团的元件不同,可将已知的GFP及其变种分为7种,每一种都有一组不同的荧光激发和发射波长)[3-5]。
GFP无需再加任何底物和辅助因子,在紫外或蓝光激发下就能发荧光,在450~490nm蓝光激发下, GFP荧光至少能保持10min以上,不像其他荧光素,荧光容易淬灭。
其中,GFP的一个引人注目的特点,其生色团的形成没有物种的特异性,可以在翻译后2~4h通过自动催化作用来合成。
Cubitt等[6]认为生色团自身环化的驱动力来自蛋白质三维结构的形成,由此Kolb等[7]提出一个假说,即环化在新合成的多肽的折叠过程中进行。
2.3 GFP的荧光性质及应用优点[8-9]GFP的荧光性质比较特殊,具有诸多优点而备受关注。
(1)易于检测,灵敏度高。
GFP荧光反应不需要外加底物和辅助因子,只需紫外光或蓝光激发,即可发出绿色荧光,用荧光显微镜甚至肉眼就可以观察到。
其次,即便是未经纯化的GFP发射的绿光也是相当强的,在正常室内光线下仍清晰可辨。
对于单细胞水平的表达也可识别。
(2)荧光性质稳定。
GFP对光漂白(一种荧光衰减现象)有较强的耐受性,能耐受长时间的光照,从而延长了可探测时间;GFP在pH7~12范围内也能正常发光,对高温(70℃)、碱性、除垢剂、盐、有机溶剂和大多数普通酶都有较强抗性。
(3)对细胞无毒害。
从目前的研究结果来看, GFP对生活的细胞基本无毒害,与目的基因融合后,对目的基因的结构功能没有影响,转化后细胞仍可连续传代。
(4)构建载体方便。
由于编码GFP的基因序列很短,所以很方便地同其它序列一起构建多种质粒,而不至于使质粒过大影响转化频率。
(5)可直接用于活细胞测定。
GFP是能在异源细胞内表达后,能自发产生荧光的蛋白,并且GFP 的分子量较小,N-端和C-端都能忍受蛋白的融合,是理想的标记物,可进行活细胞实时定位观察,更能接近自然真实的状态。
如在活细胞中直接观察蛋白向细胞核、内质网运动的状态,还可实时观察到外界信号刺激下,目的蛋白的变化过程,借助荧光显微镜观察,使研究更为方便。
使用激光共聚焦显微镜,其图像效果更佳,结合现代的计算机软件,可进行三维显示。
(6)不受假阳性干扰。
由于其他生物本身不含有GFP,因此不会出现假阳性结果,GFP作为分子探针可以代替荧光染料,避免由于染料扩散造成的定位不准,使结果真实可靠。
(7)广谱性。
表现在GFP的表达几乎不受种属范围的限制,在微生物、植物、动物中都获得了成功的表达,其次是GFP没有细胞种类和位置上的限制,在各个部位都可以表达发出荧光。
(8)易于得到突变体。
如GFP中氨基酸的替换可产生不同光谱特性的突变体,且增强了荧光强度,适合在不同物种中专性表达。
2.4 GFP的改进尽管GFP作为报告基因或分子探针有许多无可比拟的优点,但是野生型GFP(wtGFP)具有一定的缺点:如GFP有两个激发峰影响了其特异性,并且长波激发峰强度较小,不易观察;GFP合成及折叠产生荧光的过程慢,蛋白质折叠受温度影响大,表达量较低;而且在某些植物细胞中并不表达。
这些都限制了进一步的应用,所以,一些研究人员运用定点突变、DNA-shuffling等技术对GFP进行了改进,获得了荧光光谱、量子产率、溶解性、密码子嗜性、温度敏感性等改变的多种突变体,扩大了GFP的应用范围。
2.5 GFP的改进方法2.5.1 除去GFP基因中隐蔽型内含子 Haseloff 等[10]利用农杆菌把含花椰菜花叶病毒35S启动子驱动的GFPcDNA转入到拟南芥上,但在转基因拟南芥幼苗上检测不到GFP的荧光。
经研究发现这是由于GFP片段中第405~488碱基序列转录的mRNA被植物误识别为内含子,从而被错误加工,导致GFP不能正确表达。
因此改变碱基组分,消除隐蔽型内含子,可以避免植物细胞的错误剪接。
如突变型m GFP改变了碱基组分后,在转基因拟南芥中检测到荧光,但荧光强度较弱。
2.5.2 消除编码蛋白的积累 Haseloff等[10]认为消除隐蔽型内含子后的突变体mGFP荧光较弱,可能是由于编码蛋白的积聚。
增加ER定位信号可部分84 生物医学工程研究 第28卷消除编码蛋白的积累,增加荧光强度。
2.5.3 改变碱基组分 Zolotukhin等[11]改变了wt G FP基因编码区中88个密码子中的92个碱基而用人类基因组中常用的密码子代替,使GFP的荧光强度提高22倍。
其中S65T突变提高了GFP的荧光强度,Y66H突变使之同时具有部分蓝色荧光蛋白(B FP)的性能,但其蓝色荧光强度很低。
这种GFPh 是一种人工全合成的适合在哺乳动物细胞中高效表达GFP的突变体。
McCullough等[12]对水母的密码子进行优化修饰,更换为植物偏爱密码子,即增加G 和C的含量,降低A和T含量,改造的GFP基因表达效率可有较大提高。
2.5.4 更换GFP生色团氨基酸 Heim等[4]将wt G FP中的Ser65用Thr替代,得到突变体S65T-GFP,相比wtGFP具有明显的改进。
首先,S65T-GFP激发谱中只有一个峰,且红移至490nm,是一种红移荧光蛋白(RSFP)。
用蓝光即可激发R SFP,更适于普通荧光显微镜观察。
其次,激发后产生的荧光强度是wtGFP的6倍,并且对光漂白具有更强的抵抗性。
最后,这种突变体分子的成熟速度比wtGFP 快4倍,从而缩短了从合成到发光的时间。