电磁流量计设计论文
- 格式:doc
- 大小:730.01 KB
- 文档页数:40
封面作者:PanHongliang仅供个人学习基于ARM的电磁流量计设计摘要:针对在传统检测领域应用很广的8位单片机系统由于其性能和资源的局限性,只能完成仪器仪表的基本功能,设计开发基于32位的ARM 处理器和嵌入式Linux操作系统的电磁流量计。
该设计采用TFT彩色液晶屏显示,通过JFFS2文件系统采用的方式进行数据存储,以TCP/ IP 协议为基础的工业以太网通讯方式,使得电磁流量计更具智能化、人性化和网络化。
该设计所搭建的嵌入式系统开发平台也可推广应用到其他检测仪表的设计中,加速检测仪表的系统开发。
0引言电磁流量计是一种测量导电介质体积流量的计量仪表,具有测量精度高、稳定性好、可靠性高等特点。
电磁流量计除可测量一般导电液体的流量外,还可测量液固两相液体、高粘度液体及盐类、强酸、强碱液体的体积流量,可广泛应用于水泥、化工、轻纺、冶金、矿山、造纸、医药、给排水、食品饮料、环保等工业技术部门,其产品的性能、质量和可靠性对上述企业的经济效益有着重要的影响。
嵌入式系统(Embedded Sy stem)是以应用为中心和以计算机技术为基础的,并且软硬件是可以裁减的,能满足应用系统对功能、可靠性、成木、体积、功耗等指标的严格要求的专用计算机系统。
它是面向用户、面向产品、而向应用的专用系统,与通用的计算机系统相比具有如下特点:嵌入式CPU通常具有低功耗、体积小、集成度高、成木低等优点,能够把通用的CPU中许多由板卡完成的功能集成到芯片内部;嵌入式系统的开发和应用不容易在市场上形成垄断;嵌入式系统产品一旦进入市场,一般具有较长的生命周期;嵌入式系统的硬件和软件都必须高效率地设计;嵌入式系统必须有一套交叉开发工具和环境才能进行开发。
检测仪表是实现参数检测过程的重要一环,一般都具有变换、测量装置和显示装置三部分。
针对于检测仪表的要求,合理剪裁软硬件实现高集成度、小型化,使得检测仪表不仅具有传感测量、补偿计算、显示的功能,还具有更加强大的信息处理、比较推理、故障诊断、自学习自适应等智能化功能。
小口径PFA衬里耐负压电磁流量计设计汪俊明,刘晨凯,许胜军(浙江迪元仪表有限公司,浙江义乌 322000)【摘要】目前,市面上流通的PFA衬里结构电磁流量计负压能力较差,生产运输成本高,测量精度低。
为了解决上述问题,研究了一种新的小口径PFA衬里耐负压电磁流量计,对流量计的结构和工作流程进行设计,并研究了流量计特点。
实验结果表明,设计的小口径PFA衬里耐负压电磁流量计工艺成熟,成本较低,耐负压性能良好,测量结果精度高,具有极高的应用价值。
关键词:小口径;电磁流量计;耐负压;流量计设计;PFA衬里中图分类号:O441.5 文献标识码:BDOI:10.12147/ki.1671-3508.2023.11.043Design of Small Caliber PFA Lining Negative PressureResistant Electromagnetic FlowmeterWang Junming,Liu Chenkai,Xu Shengjun(Zhejiang Diyuan Instrument Co., Ltd., Yiwu, Zhejiang 322000, CHN)【Abstract】Currently, PFA lined electromagnetic flow meters in circulation have poor negative pressure capacity, high production and transportation costs, and low measurement accuracy. In order to solve the above problems, a new small caliber PFA lined negative pressure resistant electromagnetic flowmeter was studied, and the structure and workflow of the flowmeter were de⁃signed. The characteristics of the flowmeter were also studied. The experimental results show that the designed small caliber PFA lined negative pressure electromagnetic flowmeter has ma⁃ture technology, low cost, good negative pressure resistance performance, high measurement ac⁃curacy, and high application value.Key words:small caliber;electromagnetic flow meter;resistance to negative pressure;flowmeter design;PFA lining随着电子技术的快速发展,电磁流量计测量技术已广泛应用于各种液体测量工作,特别是在医药与化工领域中的应用范围更加广泛。
流量测量研究论文论文关键字:流量计原理容积式电磁流量计论文摘要:对目前重要的不同的流量计(容积式计量表,质量流量计,电磁流量计)的原理、测量方法、应用条件、注意事项等进行了总结,进而对流量测量有进一步的了解。
1研究背景:计量是工业生产的眼睛。
流量计量是计量科学技术的组成部分之一,它与国民经济、国防建设、科学研究有密切的关系。
做好这一工作对于保证产品质量、提高生产效率、促进科学技术的发展都具有重要的作用。
特别是在能源危机、工业生产自动化程度愈来愈高的当今时代,流量计在国民经济中的地位与作用更加明显。
节约能源和环境保护是大多数先进企业非常关心的问题。
而要确保压缩空气系统高效地运转,流量测量是至关重要的。
对一个典型压缩空气系统的全部成本进行分析后,我们发现最大的成本是由电力消耗,而不是系统的投资或维护产生的。
一台新式的压缩机将百分之九十的电力转换成热量,而仅将百分之十转换成压缩空气,这就使得压缩空气比电要贵十倍。
测量耗电量随处可见,但是测量压缩空气消耗量的企业并不多。
不进行测量就意味着不知道系统的效率。
统计数据显示百分之三十的压缩空气会由于泄漏而损失掉,这本来是可以被检测出来并修理好的。
还有另外一个重要问题:二氧化碳总排放量的百分之四十来自于工业。
这些二氧化碳是在燃烧矿物燃料(媒、石油、煤气等)来发电的过程中产生的。
我们都知道,过多的二氧化碳会造成全球变暖。
在能源变得短缺并且环保和我们每一个人息息相关的时候,流量测量将帮助您依据消耗量和泄漏检测来分析您的系统,从而减少能耗和成本。
2调研目的:由于流量是一个动态量,流量测量是一项复杂的技术。
从被测流体来说,包括气体、液体和混合流体这三种具有不同物理特性的流体;从测量流体流量时的条件来说,又是多种多样的,如测量时的温度可以从高温到低温;测量时的压力可以从高压到低压;被测流量的大小可以从微小流量到大流量;被测流体的流动状态可以是层流、湍流等等。
此外就液体而言,还存在粘度大小不同等情况。
电磁流量计的工作原理及设计今天为大家介绍一项国家发明授权专利——电磁流量计。
该专利由阿自倍尔株式会社申请,并于2018年9月7日获得授权公告。
内容说明本发明涉及在各种工艺系统中测量流体的流量的电磁流量计,尤其涉及一种具备测量流体的电导率的功能的电磁流量计。
发明背景电磁流量计为如下测量设备,其具备:励磁线圈,其在与在测定管内流动的流体的流动方向垂直的方向上产生磁场;以及一对电极,它们配置在测定管上,沿与由励磁线圈产生的磁场正交的方向配置,该测量设备一边交替切换流至励磁线圈的励磁电流的极性、一边检测上述电极间产生的电动势,由此测量在测定管内流动的被检测流体的流量。
通常,电磁流量计大致分为接触式和电容式(非接触式),所述接触式是使设置在测定管上的电极直接接触测量对象的流体来检测上述流体的电动势,所述电容式(非接触式)是经由流体与电极间的静电电容来检测上述流体的电动势而不会使设置在测定管上的电极接触测量对象的流体。
电容式电磁流量计是利用信号放大电路(例如差动放大电路)来放大电极间产生的电动势,之后利用模数转换电路转换为数字信号,并将该数字信号输入至微控制器等程序处理装置来执行规定的运算处理,由此算出流量。
这种电容式电磁流量计因电极不易劣化、容易维护,所以近年来特别受到业界关注。
此外,电磁流量计当中,存在具备不仅测量流体的流量、还测量该流体的电导率(所谓的导电率)的功能的电磁流量计。
例如,专利文献3中揭示有一种配备双电极方式的电导率计的电磁流量计,所述双电极方式的电导率计对2个电极间施加正弦波或矩形波等的交流信号并测定在电极间流通的电流,由此求出电导率。
该专利文献揭示的电导率计是通过将2个电极均浸入测量对象的液体来测量电导率。
发明内容本发明者对在电容式电磁流量计中追加测量流体的电导率的功能这一内容进行了研究。
然而,根据本发明者的研究,明确了存在以下所示的问题。
电磁流量计的原理及设计今天为大家介绍一项国家发明专利——电磁流量计。
该专利由横河电机株式会社申请,并于2019年1月8日获得授权公告。
内容说明本公开涉及一种电磁流量计,更特别地,涉及一种抑制构造成覆盖测量管内部的内衬材料的变形的技术。
发明背景由于构造为利用电磁感应来测量导电流体的流量的电磁流量计是耐用的且具有高精度,所以被广泛用于工业用途。
电磁流量计构造为使被测量的导电流体能够流入沿正交方向施加了磁场的测量管中,并且测量所产生的电动势。
由于电动势与被测量流体的流量成正比,所以可以基于测量的电动势来获得被测量流体的体积流量。
在电磁流量计中,测量管具有附接于测量管上的用于电动势测量的电极及类似物且与安装到设备及类似物上的管道联接,且基于联接结构而分类成凸缘型和薄片型。
在凸缘型中,电磁流量计的测量管形成有大的凸缘且使螺栓能够穿过管道的凸缘和测量管的凸缘,使得测量管与管道的凸缘联接。
在薄片型中,电磁流量计的测量管形成有小的凸缘且联接到管道的凸缘,而使得螺栓不能穿过测量管的凸缘。
发明内容本发明的示例性实施例提供了能够抑制内衬材料由于被测量流体的压力而变形的电磁流量计。
根据示例性实施例的电磁流量计,包括:测量管,其具有凸缘部,所述凸缘部构造为通过螺栓紧固而与管道侧凸缘联接;内衬材料,其构造为覆盖所述测量管的内侧和所述凸缘部的联接侧表面的具有预定直径的内周区域;以及接地环,其构造为设置在所述凸缘部和所述管道侧凸缘之间,其中,所述接地环具有环形板部和沿着所述环形板部的外周形成的壁部。
所述壁部的内径可以构造为比所述凸缘部的联接侧表面上的被所述内衬材料覆盖的所述预定直径大。
当所述凸缘部和所述管道侧凸缘通过螺栓紧固而联接起来时,所述内衬材料。
电磁流量计:设计考虑和解决方案
当今有哪些工业领域使用流量计?
若不能度量,则无法管理。
这是工业领域的一句口头禅,尤其适合于流量测量。
简单说来,对流量监测的需求越来越多,常常还要求更高速度和精度的监测。
有几个领域中,工业流量测量很重要,比如生活废弃物。
随着人们越来越关注环境保护,为使我们的世界更干净卫生、污染更少,废弃物的处置和监测就变得非常重要。
人类消耗着大量的水,随着全球人口增长,用水量会越来越大。
流量计至关重要,既能监测生活废水,也是污水处理厂过程控制系统不可或缺的一部分。
图1. 污水处理厂简图
流量计还被用于许多工业控制过程,包括化学/制药、食品饮料、纸浆造纸等。
此类应用常常需要在有大量固体存在的情况下测量流量大部分流量技术不能轻松胜任这一要求。
输送计量领域处理两方之间的产品转移和支付,需要高端流量计。
实例之一是通过大型管道系统输送油品。
在这种应用中,流量测量精度随时间的变化即便很微小,也可能导致某一方损失或获得重大利益。
电磁感应技术为什么非常适合液体流量测量?
对于液体流量测量,电磁流量计技术有多种优势。
它的传感器一般是连接到管道中,其直径与管道直径一致,因而测量时不会干扰或限制介质的流动。
由于传感器不是直接浸没在液体中,没有活动部件,因此不存在磨损问题。
电磁方法测量的是体积流量,这意味着测量对流体密度、温度、压力和粘度等参数的变化不敏感。
一旦用水标定电磁流量计,就可以使用它来测量其他类型的导电流体,无需进一步标定。
这是其他类型流量计所不具备的一个。
电磁流量计设计1. 简介电磁流量计是一种广泛应用于工业领域的流量测量仪器,能够通过测量电导率液体中的电磁感应原理来测量流体的流量。
本文将介绍电磁流量计的设计原理、组成结构以及工作原理。
2. 设计原理电磁流量计的设计原理基于法拉第电磁感应定律,即当导体在磁场中运动时,会在导体两端产生感应电动势。
流体作为导体,当流体通过电磁流量计时,会在测量电极间产生感应电动势,利用这个原理可以测量流体的流速和流量。
3. 组成结构电磁流量计由以下几个主要部件组成:3.1 传感器传感器是电磁流量计的主要组成部分,用于感知流体的流量。
传感器通常由激励线圈、测量电极和外壳组成。
激励线圈通过通电产生磁场,测量电极用于测量电磁感应产生的电动势。
外壳用于保护传感器内部结构,并确保测量精度和稳定性。
3.2 信号处理器信号处理器用于接收传感器测量到的电信号,并将其转换成标准化的模拟或数字信号。
信号处理器还负责进行噪声滤波、数据处理和输出等功能,保证测量结果的准确性和稳定性。
3.3 显示和控制单元显示和控制单元通常由显示屏、按键和控制电路组成。
显示屏用于显示实时流量数据和其他相关信息,按键用于进行参数设置和操作控制。
控制电路负责实现仪器的自动控制和报警功能,提高仪器的可靠性和自动化水平。
4. 工作原理电磁流量计的工作原理可以简单归纳为以下几个步骤:4.1 磁场生成激励线圈通电产生磁场,磁场的强度和方向决定了对流体的作用力和感应电动势的大小。
4.2 流体通过当流体通过电磁流量计时,流体作为导体在磁场中运动,导致感应电动势的产生。
感应电动势的大小与流速和流量成正比。
4.3 电信号测量测量电极测量到感应电动势,将其转化为电信号。
根据法拉第电磁感应定律,感应电动势的大小与流速和流量成正比。
4.4 信号处理和输出信号处理器接收测量到的电信号,并进行滤波、放大、线性化等处理。
最后将处理后的信号转换为标准化的模拟或数字信号输出。
5. 应用领域电磁流量计广泛应用于水处理、化工、石油、食品、制药等工业领域,常用于液体流量的测量和控制。