声学知识科普
- 格式:ppt
- 大小:1.93 MB
- 文档页数:41
噪声产生原因空气动力噪声由气体振动而产生。
气体的压力产生突变,会产生涡流扰动,从而引起噪声。
如空气压缩机、电风扇的噪声。
机械噪声由固体振动产生。
金属板、齿轮、轴承等,在设备运行时受到撞击、摩擦及各种突变机械力的作用,会产生振动,再通过空气传播,形成噪声。
液体流动噪声液体流动过程中,由于液体内部的摩擦、液体与管壁的摩擦、或者流体的冲击,会引起流体和管壁的振动,并引起噪声。
电磁噪声各种电器设备,由于交变电磁力的作用,引起铁芯和绕组线圈的振动,引起的噪声通常叫做交流声。
燃烧噪声燃料燃烧时,向周围的空气介质传递了热量,使它的温度和压力产生变化,形成湍流和振动,产生噪声。
声波和声速声波质点或物体在弹性媒质中振动,产生机械波向四周传播,就形成声波(声波是纵波)。
可听声波的频率为20~20000Hz,高于20KHz 的属超声波,低于20Hz 的属次声波。
点声源附近的声波为球面波,离声源足够远处的声波视为平面波,特殊情况(线声源)可形成柱面波。
声频( f )声速( c )和波长( λ )λ= c / f声速与媒质材料和环境有关:空气中,c =331.6+0.6t 或t c +=27305.20 (m /s) 在水中声速约为1500 m /s t —摄氏温度传播方向上单位长度的波长数,等于波长的倒数,即1/λ。
有时也规定2π/λ为波数,用符号K 表示。
质点速度质点因声音通过而引起的相对于整个媒质的振动速度。
声波传播不是把质点传走而是把它的振动能量传走。
声场有声波存在的区域称为声场。
声场大致可以分为自由场、扩散场(混响场)、半扩散场(半自由场)。
自由场在均匀各向同性的媒质中,边界影响可忽略不计的声场称为自由场。
在自由场中任何一点,只有直达声,没有反射声。
消声室是人为的自由场,是由吸声材料和吸声结构做成的密闭空间,静谧无风的高空或旷野可近似为自由场。
扩散场声能量均匀分布,并在各个传播方向作无规则传播的声场,称为扩散场,或混响场。
声学基础知识声音,是我们生活中无处不在的一部分。
从清晨鸟儿的鸣叫,到城市道路上的车水马龙声,从悠扬的音乐旋律,到人们日常的交谈,声音以各种形式存在着,并对我们的生活产生着深远的影响。
那么,什么是声学呢?声学是研究声音的产生、传播、接收和效应的科学。
让我们一起走进声学的世界,了解一些声学的基础知识。
首先,我们来聊聊声音的产生。
声音的产生源于物体的振动。
当一个物体振动时,它会引起周围介质(比如空气)的振动,这种振动以波的形式向外传播,就形成了声音。
不同的物体振动方式和频率不同,产生的声音也就不同。
例如,琴弦的振动产生了美妙的音乐,而人的声带振动则产生了说话的声音。
那么声音是如何传播的呢?声音的传播需要介质。
在地球上,最常见的介质就是空气。
当声音在空气中传播时,其实就是空气分子在振动并依次传递能量。
声音在不同介质中的传播速度是不一样的。
比如,声音在固体中的传播速度通常比在液体和气体中快。
在 20 摄氏度的空气中,声音的传播速度约为 343 米每秒。
接下来谈谈声音的频率和波长。
频率指的是物体在单位时间内振动的次数,单位是赫兹(Hz)。
而波长则是声音在一个周期内传播的距离。
频率和波长之间存在着密切的关系,它们的乘积等于声音的传播速度。
人耳能够听到的声音频率范围大约在 20Hz 到 20000Hz 之间。
低于 20Hz 的声音称为次声波,高于 20000Hz 的声音称为超声波。
次声波和超声波在生活中也有广泛的应用,比如次声波可以用于地震监测,超声波可以用于医疗诊断和清洗。
声音的强度也是声学中的一个重要概念。
声音的强度用分贝(dB)来表示。
日常生活中的环境声音强度各不相同,安静的图书馆可能只有 30dB 左右,而繁忙的交通路口可能会达到 80dB 以上。
长期处于高强度的噪音环境中会对人的听力造成损害,因此,控制噪音是非常重要的。
在声学中,还有一个重要的概念是声波的反射、折射和衍射。
当声波遇到障碍物时,会发生反射。
不可不知的超声科普小知识,快来了解声学将声音分为次声、可听声和超声,20Hz以下的声波频率是次声波,20-20000Hz的声波频率时可听声音,所有正常人都可听到,而在声音超过20000Hz 后,正常人已经难以听到,这就是人们所谓的超声波。
超声因其本身的各项优势,多用于常规检查,以此来发现很多潜在的疾病、身体问题等,从而提前对其进行干预、治疗,保证健康,很多人因缺乏对超声的了解,会认为其对身体有所辐射,这完全是错误观念,超声属于“无辐射、无损伤、无痛苦”的“三无检查”,以下我们就来科普一下关于超声的各项小知识,希望能给朋友们带来一些帮助。
1.超声检查原理是什么?超声利用的是声波的反射原理,其与海豚、蝙蝠定位是一个道理,通过超声装置发射常人听不到的声波,在作用到人体对应组织后反射,再被超声接头接收,进行机器加工,形成可观察图像,图像在医生查看后给出对应的判断,得出“超声报告单”,如此检查人员能得出自身当前的检查结果。
2.超声检查包括哪些类型?超声检查主要包括以下数项:A超。
主要是借助波形来展示人体特定器官组织特征,测量的是器官经线并判断其大小,多用于眼科领域;B超。
这是最为常见的超声检查,以平面图形来展示人体组织基本情况;彩超,即彩色B超,以专用医学设备来探查机体内液体具体流动方向,若是流动方向朝向探头,显示器上显示红色,若是相反,代表液体流动方向原理探头,图像显示蓝色,需注意的是,“彩色”并非人体组织颜色,是设备添加的,故而又称“伪彩”;B超出了上述两种外,还有三维B超,将多个二维图形借助相应手段加工为立体图形,此外还包括四维B超,其以三维B超为基础,录制动画;M超。
即超声新动图检查,观察活动界面具体时间变化,多用来检查心脏区域活动情况;D超。
即超声频移诊断、多普勒超声,是记住多普勒原理来进行器官活动、血液流动检查的超声诊断方式。
3.超声检查有哪些方面的应用?超声检查应用方面主要包括以下多点:泌尿外科、肾内科,用于泌尿系结石、前列腺、膀胱、输尿管、肾脏等部位观察;眼科:主要用于测量眼轴、眼底、眼球、晶体状屈光度等情况;妇产科:主要用于检查女性子宫、胎儿、附件状况等,保障胎儿与孕妈妈健康,并就可能出现的问题提前干预;消化科:用于检查消化腺体、肠、胃等;内分泌科:用于检查甲状腺;心内科:主要用于颈动脉彩超、超声心动图检查等,查看颈部大动脉中有无粥样斑块及心脏大小、瓣膜疾病等。
声学基础知识声音,作为我们日常生活中最常接触到的感知,是一种形式的机械波,它通过物质的震动传播而产生。
声学是研究声音产生、传播和听觉效应等相关现象的学科。
本文将介绍声学的基础知识,包括声音的特性、声波的传播与衰减、和人类的听觉系统。
一、声音的特性声音有几个重要的特性,包括音调、音量和音色。
音调是指声音的高低,由声源的频率决定。
频率越高,音调越高;频率越低,音调越低。
音量是指声音的强弱,由声源振幅的大小决定。
振幅越大,音量越大;振幅越小,音量越小。
音色是指具有独特质感的声音特征,由声音的谐波成分和声源的包络形状决定。
不同的乐器演奏同一个音高,因为其谐波成分和包络形状不同,所以会有不同的音色。
二、声波的传播与衰减声波是指由声源振动产生的压力波。
声波传播时,需要介质作为传播介质,常见的介质包括空气、水、固体等。
在传播过程中,声波会经历衍射、反射、折射等现象。
衍射是指声波遇到障碍物时沿着障碍物的边缘传播,使声音能够绕过障碍物。
反射是指声波遇到障碍物后从障碍物上反弹回来,产生回声。
折射是指声波在介质之间传播时由于介质密度不同而改变传播方向。
声波在传播过程中会逐渐衰减,衰减的程度取决于声音传播的距离、传播介质的特性以及环境条件等。
一般来说,声音传播的距离越远,声波能量的衰减越大;传播介质的特性也会影响声波的衰减,固体传播声波的衰减相对较小,而空气和水传播声波的衰减相对较大。
环境条件如温度和湿度也会对声波的衰减产生一定影响。
三、人类的听觉系统人类的听觉系统是感知声音的重要器官。
它由外耳、中耳、内耳和大脑皮层等部分组成。
外耳包括耳廓和外耳道,它们的主要功能是接收和传导声音。
中耳包括鼓膜和听小骨(锤骨、砧骨和镫骨),它们的主要功能是将声音的机械能转换为神经信号。
内耳包括耳蜗和前庭,耳蜗负责感知声音,前庭负责维持平衡。
大脑皮层负责处理和解读声音信号。
人类听觉系统对不同频率的声音有不同的感知范围。
一般来说,人类可以听到频率范围在20Hz到20kHz之间的声音。
声学基础知识解析声学,作为物理学的一个分支,研究了声音的产生、传播和感知。
声波是一种机械波,是由固体、液体和气体中的物质震动引起的。
声学的研究对于我们日常生活和科学研究中都具有重要的意义。
本文将对声学的基础知识进行解析。
一、声的产生声音的产生是由物体的振动引起的。
当物体振动时,周围的空气分子也会跟随振动,形成一个机械波,即声波。
声波的频率越低,音调就越低,频率越高,音调就越高。
二、声的传播声波是通过介质传播的,大部分情况下是通过空气传播。
当我们发出声音时,声波会向四面八方传播,当声波到达一个物体时,它会撞击物体的表面,使表面振动,并且使介质内的分子也发生振动。
这种振动会一直传播下去,直到遇到障碍物或者被吸收。
三、声的特性声音具有以下几个基本特性:1. 音量:也称为声音的强度,是指声音的大小。
音量与声波的振幅有关,振幅越大,音量就越大。
2. 频率:也称为音调,是指声音振动的快慢。
频率与声波的周期有关,周期越短,频率就越高,音调就越高。
3. 声音色彩:是指声音的质地或音质,不同的乐器和人的声音都有独特的音色。
音色由声波的谐波分量决定。
四、声的吸收与反射当声波遇到物体时,它会发生吸收和反射。
当声波被吸收时,会转化为其他形式的能量,导致声音变弱或消失。
当声波被物体表面反射时,它会沿着其他方向传播,形成回声。
五、应用领域声学的研究在很多领域都有重要的应用,以下是一些常见的应用领域:1. 音乐:声学研究有助于了解乐器的原理和声音产生的机制,帮助人们更好地演奏乐器和欣赏音乐。
2. 建筑与环境:声学研究在建筑和环境设计中发挥重要作用,可以帮助减少噪音污染,改善室内声学环境。
3. 通讯:声学研究在通讯技术中起着关键作用,例如手机和音频设备的设计。
4. 医学:声学在医学中的应用广泛,包括超声波成像、听力研究等。
结论声学作为物理学的一个分支,研究了声音的产生、传播和感知。
通过学习声学的基础知识,我们可以更好地理解声音的产生和传播原理,并且可以应用于音乐、建筑、通讯和医学等领域。
声学知识科普声音啊,就像一群调皮的小精灵,在我们的世界里到处乱窜。
你想抓住它们,了解它们的小秘密吗?那就跟着我开启这场声学知识的奇妙之旅吧。
先来说说声音是怎么产生的。
想象一下,物体就像一个个小鼓手,当它们受到敲打、振动的时候,就开始“演奏”了,这一演奏就产生了声音。
比如说,你敲桌子,桌子就像被唤醒的巨兽,微微颤抖着发出“咚咚”的声音,那就是它在告诉你:“嘿,我在振动呢,声音就是这么来的。
”声音传播也特别有趣。
它就像一个超级旅行家,不过这个旅行家有点懒,必须得依靠介质才能出发。
介质就像是声音的小专车,如果没有这些专车,比如在真空中,声音这个旅行家就只能干瞪眼,哪儿也去不了。
在空气里传播的时候,声音就像一个慢悠悠的小蜗牛,每秒只能跑340米左右,比起光这个闪电侠,那可慢太多了。
音调呢,就像是声音的身高。
高音就像身材高挑的模特,趾高气昂地走着猫步;低音则像矮壮的大力士,虽然不高,但是充满力量。
不同的物体振动频率不一样,发出的音调也就有高有低。
就像小提琴的琴弦,细的琴弦振动快,发出的声音音调高,就像小鸟在欢快地唱歌;粗的琴弦振动慢,发出的音调低,仿佛是低沉的牛哞声。
响度这个家伙就像是声音的嗓门大小。
大声说话的时候,响度就像一头咆哮的狮子,能把你的耳朵震得嗡嗡响;小声说话呢,响度就像一只胆小的老鼠,吱吱吱地小声嘀咕,你得竖起耳朵仔细听。
音色就更神奇了,它是声音的独特“指纹”。
每个人的声音都有自己的音色,就像世界上没有两片完全相同的树叶一样。
你听周杰伦唱歌和刘德华唱歌,一下子就能分辨出来,那就是音色在起作用。
它就像声音的个性标签,让每一种声音都独一无二。
回声就像是声音的调皮分身。
声音在传播过程中遇到障碍物,就像一个皮球撞到墙上又弹回来一样,形成回声。
在空荡荡的大礼堂里,你大喊一声,回声就像一个跟屁虫,过一会儿才慢悠悠地回应你。
超声波和次声波这两个家伙就像声音世界里的神秘客。
超声波频率高得像火箭发射,我们人类听不到,但它在医疗、工业检测等方面可厉害着呢,就像一个隐藏在幕后的超级英雄。
声学基本知识和专业名词作为一个操作音响的人员连最基本的声学知识都不了解,他将无法真正操作好音响设备,连一些专业名词无法理解,他不是一个合格的音响操作人员。
一、声音的物理特性(一)声音的直线传播特性1、声音的产生:声音是由物体振动引起空气的波动,传到耳膜,经过听觉神经听到声音。
声源:发生声音的振动源叫作声源。
声波:由声源引起媒质的振动形成声波。
声场:声波传播的空间叫作声场。
声音在空气中是以一疏一密的纵波传播的。
为什么叫“纵波”,因为它进行方向和传播方向一致2、声速与波长声波在单位时间内传播的距离称为声速,常用符号“C”表示,单位是米/秒(M/S)。
一般来说声速只和传播媒质及其状态有关,在标准大气压下和温度为20°C时,空气中的声速为344米/秒;15°C 时为340米/秒,工程计算一般取344米/秒(因为温度和湿度对声速影响比较大,温度每增加1°C,声速增加2英尺)。
如果声波在水中传播,声速约为1485米/秒,在海水中1500米/秒,在木材中为3320米/秒,在钢材中则为5000米/秒。
声速在室内声学设计和扩声技术中应用很多,一般以毫秒计算,即千分之一秒,1S/1000,简写MS。
声波振动一周所传播的距离为波长,常用符号“λ”表示,单位是米(M)。
声波的波长与声速和频率的关早期反射声都控制在50MS以内,在常温下50MS 所传播的距离为340M 0.05=17M,要记牢这个数值,它是一个界限,50MS以内的早期反射声,有助于加强直达声。
超过50MS的反射声会影响清晰度。
系如下:λ=C/f f为频率由此可见,相同条件下,频率越高,波长越短。
例如,常温空气中,频率为20HZ声波的波长为17.20米,频率为5千赫的声波波长为0.0688米。
3、反射、折射和透射声音在传播过程中,遇到墙壁等障碍物时,一部分声波在分界面处将改变传播方向返回到原来的媒质中去,而另一部分声波则以新的传播方向进入到新的媒质中去,并在新的媒质中继续向前传播。
声学基本知识一、声音的基本性质声音来源于振动的物体。
辐射声音的振动物体称为“声源”。
声源要在弹性介质中发声并向外传播。
声波是纵波。
(1)人耳所能听到的声波的频率范围为20~20000Hz,称为可听声。
低于20Hz的声音称为次声;高于20000Hz的声音称为超声。
次声与超声不能使人产生声音的感觉。
(2)室温下空气中的声速为340m/s.声速c,波长λ和频率f有如下关系:频率为100~10000Hz的声音的波长为3.4~0.034m.这个波长范围与建筑物室内构件的尺度相当,在室内声学中,对这一频段的声波尤为重视。
-f2.每一频带以其中心频率fc标度,.建筑声学设计和测量中常用的有倍频带和1/3倍频带;在倍频带分析中,上限频率是下限频率的两倍,即fl=2f2;在1/3倍频带分析中,在可听声范围内,倍频带及1/3倍频带的划分及其中心频率如表3—l所示。
表中第一行为1/3倍频带中心频率,第二行为倍频带中心频率。
(4)波阵面与声线声波从声源出发,在同一介质中按一定方向传播,声波在同一时刻所到达的各点的包络面称为波阵面。
声线表示声波的传播方向和途径。
在各向同性的介质中,声线是直线且与波阵面垂直。
依据波阵面形状的不同,将声波划分为:1)平面波——波阵面为平面,由面声源发出;2)柱面波——波阵面为同轴柱面,由线声源发出;3)球面波——波阵面为球面,由点声源发出。
一个声源是否可以被看成是点声源,取决于声源的尺度与所讨论声波波长的相对尺度。
当声源的尺度比它所辐射的声波波长小得多时,可看成是点声源。
所以往往一个尺度较大的声源在低频时可按点声源考虑,而在中高频则不可以。
(5)声绕射声波在传播过程中,遇到小孔或障板时,不再沿直线传播,而是在小孔处产生新的波形或绕到障板背后而改变原来的传播方向,在障板背后继续传播。
这种现象称为绕射,或衍射。
(6)声反射声波在传播过程中,当介质的特性阻抗发生变化时,会发生反射。
从几何声学角度,可更直观地解释为,声波在传播过程中遇到尺寸比声波波长大得多的障板时,声波将被反射。
声学基本常识声学啊,那可老有趣了呢。
声学就像是隐藏在我们生活各个角落的小精灵,到处都有它的影子。
1、声学在生活中的体现你听啊,每天早上的鸟叫声,那清脆的叽叽喳喳声,就是声学。
鸟儿通过它们独特的发声器官,振动空气,然后这些振动就变成了美妙的声音传到我们耳朵里。
还有那风声,呼呼作响,有时候轻柔得像妈妈的手在抚摸,有时候又狂躁得像个生气的小怪兽。
这风的声音也是声学的一部分呢。
比如说,当风从狭窄的缝隙穿过时,就会发出那种尖细的啸叫声,就像有人在吹口哨一样。
在城市里呢,汽车的喇叭声、刹车声,这些都是声学现象。
汽车喇叭通过电路控制,让喇叭里面的膜片振动,发出响亮的“嘟嘟”声,这是为了提醒路上的行人和其他车辆。
刹车声呢,那是刹车片和刹车盘摩擦产生的,那种刺耳的声音虽然不好听,但也是一种声学的体现。
2、声学的科学原理声学的背后可是有着很科学的原理的。
声音其实就是一种波,是通过介质(像空气、水等)传播的振动。
当一个物体振动的时候,它就会推动周围的介质分子,这些分子就像一个个小皮球一样,被撞了之后又去撞别的分子,这样就把振动传递出去了。
就像我们在平静的湖面上扔一个小石子,会泛起一圈圈的涟漪一样。
声音的传播速度在不同的介质里是不一样的。
在空气中,声音传播速度大概是340米每秒,但是在水里,传播速度就快多了,大概是1500米每秒呢。
这就是为什么在水里听声音和在空气中听声音感觉不一样。
而且啊,声音还有频率的概念。
频率就是单位时间内振动的次数。
我们人耳能听到的声音频率范围是20赫兹到20000赫兹之间。
低于20赫兹的声音叫做次声波,像地震前有时候会发出次声波,很多动物能感受到,但是我们人耳听不到。
高于20000赫兹的声音叫做超声波,蝙蝠就是利用超声波来定位和捕捉昆虫的呢。
蝙蝠发出超声波,当超声波遇到昆虫的时候就会反射回来,蝙蝠就知道昆虫在哪里了。
3、声学在艺术中的应用声学在艺术领域那可是大放异彩啊。
在音乐里,声学是灵魂所在。
声学知识点总结声学是研究声音的产生、传播和听觉效应的科学。
声学知识点涉及声音的物理特性、声波的传播、声音的感知等方面。
本文将对一些常见的声学知识点进行总结,以帮助读者更好地理解声音及其相关概念。
一、声音的产生和传播声音是由物体振动引起的,产生振动的物体称为声源。
声源的振动导致周围介质中的分子也发生振动,从而形成声波。
声波通过介质的传播,可以是固体、液体或气体。
声音的传播速度与介质的性质有关,一般来说,固体介质中传播速度最快,气体中最慢。
在空气中,声音的传播速度约为340米/秒。
二、声音的特性1. 频率:声音的频率是指单位时间内振动的次数,单位为赫兹(Hz)。
频率越高,音调越高;频率越低,音调越低。
2. 声强:声音的声强是指声源发出的声音能量在单位面积上的平均传播能力,单位为分贝(dB)。
声强越大,声音越响亮。
3. 声音的音色:音色是指不同乐器或人声发出的同样频率的声音所具有的个体差异。
不同的音色可以通过波形分析得到。
三、声波的性质声波是一种机械波,具有以下性质:1. 反射:声波在遇到障碍物时会发生反射,产生回声。
声音的反射可以用来测定距离或检测有无障碍物。
2. 折射:当声波从一种介质传播到另一种介质时,由于介质密度和声速的变化而发生折射现象。
3. 干涉:当两个或更多的声波相遇时,它们会相互干涉,产生增强或减弱的效果。
干涉现象在音乐演奏和声学实验中经常出现。
四、声音的感知声音的感知是人类的听觉系统对声波刺激的反应。
听觉系统将声波转化为神经信号,并通过听觉通路传递到大脑进行处理。
1. 声音的音高:音高是指声音的主观感受,与声音的频率密切相关。
低频音感觉低沉,高频音感觉尖锐。
2. 声音的响度:响度是指声音的主观感受,与声音的声强有关。
声音的响度与声音强度的平方成正比。
3. 声音的定位:人类通过左右耳的听觉差异来定位声音的方向,这被称为声音的定位。
五、常见应用声学在现实生活中有着广泛的应用,例如:1. 音乐制作:声学的理论和技术应用于音频录制、混音和后期制作中,提供了音频质量的保证。
科普知识宣传资料篇一:科普知识宣传科普知识宣传(1)汽车上的物理知识一、力学方面1、汽车的底盘质量都较大,这样可以降低汽车的重心,增加汽车行驶时的稳度。
2、汽车的车身设计成流线型,是为了减小汽车行驶时受到的阻力3、汽车前进的动力——地面对主动轮的摩擦力(主动轮与从动轮与地面的摩擦力的方向相反)4、汽车在平直路面匀速前进时——牵引力与阻力互相平衡,汽车所受重力与地面的支持力平衡5、汽车拐弯时:①司机要打方向盘——力是改变物体运动状态的原因;②乘客会向拐弯的反方向倾倒——由于乘客具有惯性6、汽车急刹车(减速)时,①司机踩刹车——力是改变物体运动状态的原因;②乘客会向车行方向倾倒――惯性;③司机用较小的力就能刹住车――杠杆原理;④用力踩刹车——增大压力来增大摩擦;⑤急刹车时,车轮与地面的摩擦由滚动变摩擦成滑动摩擦7、不同用途的汽车的车轮还存在大小和个数的差异——这与汽车对路面的压强大小相关8、汽车的座椅都设计得既宽且大,这样就减小了对坐车人的压强,使人乘坐舒服9、汽车快速行驶时,车的尾部会形成一个低气压区,这是我们常常能在运动的汽车尾部看到卷扬的尘土形成原因10、交通管理部门要求:①小汽车的司机和前排乘客必须系好安全带——这样可以防止惯性的危害;②严禁车辆超载——不仅仅减小车辆对路面的破坏,还有减小摩擦、惯性等;③严禁车辆超速——防止急刹车时,因反应距离和制动距离过长而造成车祸11、简单机械的应用:①方向盘、车轮、开窗摇柄等都是轮轴,②调速杆,自动开关门装置是杠杆12、汽车爬坡时要调为低速:由P=Fv,功率一定时,降低速度,可增大牵引力13、关于速度路程,时间的计算问题;参照物与运动状态的描述问题14、认识限速,里程,禁鸣等标志牌,了解其含义二、声学方面1、汽车喇叭发声要响,发动机的声音要尽量消除(发动机上装配消音器)――这是在声源处减弱噪声2、为减轻车辆行驶时的噪声对道旁居民的影响,在道旁设置屏障或植树――可以在传播过程中减弱噪声3、喇叭发声:电能――机械能三、热学方面1、汽车发动机常用柴油机或汽油机——它们是内燃机——利用内能来做功2、发动机外装有水套,用循环流动的水帮助发动机散热——水的比热容大3、冬天,为防冻坏水箱,入夜时要排尽水箱中的水――防止热胀冷缩的危害4、小汽车的后窗玻璃板中嵌有一道道的电热丝——它可以防止车内形成的雾气附着于玻璃上并凝结5、刚坐进汽车或有汽车从你身旁驶过时,会闻到浓浓的汽油味——扩散现象6、空调车车窗玻璃设计成双层的――防止传热7、环保汽车使用气体燃料,可减小对大气的污染四、电学方面1、汽车的发动机常用低压电动机起动:电动机是根据磁场对电流的作用的道理制成的,工作时把电能转化为机械能。