难熔金属粉末冶金制备新技术
- 格式:doc
- 大小:223.00 KB
- 文档页数:8
难熔金属的粉末冶金制备新技术何勇学号:153312086粉末冶金研究院摘要:本文简要介绍了几种难熔金属的制备新技术,包括三种现代粉末冶金烧结技术(微波烧结、放电等离子烧结、选择性激光烧结)与两种近静成型技术(3D打印、金属粉末注射成形)。
介绍其制备方法的基本原理、技术优势以及应用现状,并在最后简单阐述材料制备技术的发展趋势。
先进烧结技术具有烧结温度低、烧结速度快、晶粒组织细化、结构均匀可控等优点,同时节约能源,生产效率高,是未来难熔金属制品致密化过程的优良选择;近静成型技术摒弃了传统材料制品制备和加工分开进行的传统工艺,大大缩短了生产周期,已成为当今难熔金属材料研究的热点,在高新尖端领域拥有十分可观的前景。
关键词:难熔金属;制备工艺技术;粉末冶金Abstract: This paper briefly introduces several new techniques of preparation of refractory metal, including three modern sintering technologies such as microwave sintering and two kinds of near net shape techniques. The basic principles,advantages and research status of these methods are claimed in the main paragraph. At the last part, some development trend of refractory metal materials are listed briefly.Not only do they possess unique advantages on rapid heating rate, short sintering time, inhibiting grain growth and controlling microstructure, but also show enormous industrial application value and prospect in terms of short production cycle and high efficiency energy saving, so the new sintering techniques have become a present research focus in material field.Near net shape technology has a very considerable prospects in the high-tech frontier because it greatly shortens the production cycle.Key words: refractory metal; preparation technique; powder metallurgy1 前言难熔金属[1]一般是指熔点在2000℃以上的过渡金属元素,广义上包括钨(W)、钼(Mo)、钽(Ta)、铌(Nb)、钛(Ti)、钒(V)、铬(Cr)、锆(Zr)等十几种元素。
粉末冶金钛合金制备技术分析摘要:钛合金的应用广泛,涵盖了航空航天、船舶运输、汽车工业、医疗器械等领域,究其根本,其金属属性优良,具备生物兼容性,虽然金属的整体密度较低,但强度很高,且具有良好的耐热性、耐腐蚀性。
但是,钛价格昂贵,因此,如何有效地降低产品成本、提高合金性能,是钛合金生产中亟待解决的问题。
相比传统的制备方式,粉末冶金方法简化了融化、锻造等过程,钛合金产品直接产出,减少了制备过程中的材料浪费,在提高产量的同时,也为生产企业节约了成本,因而广受业内人士关注。
关键词:粉末冶金;钛合金;制备技术一、粉末冶金钛合金特点目前,国内钛合金产品的生产方式以熔铸工艺和粉末熔炼工艺为主。
钛是一种化学性质非常活泼的金属性材料,熔点较高,不能使用传统的熔铸载体,只能选用无坩埚或水冷铜坩埚中的一种,这种熔铸方式,会产生较高的经济投入,熔炼过程中会产生较高的能耗,而最终产品的纯度却不高。
粉末冶金制备过程与传统工艺存在较大差异,对温度要求较低,只需要低于熔点的温度便可进行制备,以金属粉末为原料进行成型和烧结,可实现近净成形,且加工费用较低。
通常,企业可使用氢化脱氢法、气雾化法、旋转式电极雾化法等制备钛粉。
虽然钛的金属活泼性较高,但因为处于较低的温度,避免了与其他材料产生化学反应的情况,且组分均匀,因而这种制备方式潜力巨大,受到各领域的追捧。
二、粉末冶金钛合金制备技术(一)钛粉制备工艺钛粉制备工艺按钛粉的形状,可分为非规则粉体制备工艺和球体粉体制备工艺两大类。
其中,非规则粉体制备工艺主要包括氢化脱氢法和热还原法,球体粉体制备工艺主要包括气雾化法、旋转式电极雾化法和等离子球化法。
1.氢化脱氢法利用钛和氢的可逆反应实现钛粉制备。
Ti和H2在一定温度和压力条件下,反应生成TiH2,其脆性较高,通过机械手段破碎可以得到微粉,再将微粉脱去氢气,即可得到纯钛粉。
该工艺可选用海绵钛或残余钛作原料,对设备的要求较低,可有效降低制钛成本,是目前最常用的钛粉制备工艺,非常适合工业化的大量生产。
粉末注射成型粉末注射成型是一项新型近净尺寸成型技术,被用于生产较小尺寸及复杂外形与表面的制品,与传统的加工工艺相比,粉末注射成技术成本优势明显。
目前粉末冶金注射成形零件截面尺寸为25~50mm,长度可达150mm,间单重在0.1g~150g间,所以粉末冶金注射成形适于生产批量大,外形复杂,尺寸小的零件。
⏹PIM结合了粉末冶金与塑料注射成型工艺,用来生产金属、陶瓷制品以及难熔金属部件。
该工艺包括以下4道工序:混料、注射成型、脱脂、烧结。
当注射成型技术应用于陶瓷和金属时,称为陶瓷粉末注射成型(Ceramic Injection Molding,简称CIM)和金属粉末注射成型(Metal Injection Molding,简称MIM)。
⏹原理粉末注射成形是将粉末与粘结剂均匀混合使其具有流动性,在注射挤压机上经一定的温度和压力,注入模具内成形。
⏹这种工艺能够制造出形状复杂的坯块,所得到的坯块经溶剂处理或专门脱除粘结剂的热分解炉后,再进行烧结.其制品的致密度可达95%以上,线收缩率可达15%~25%,再根据需要对烧结制品进行精压,少量加工及表面强化处理等工序,最后可得制品。
⏹陶瓷粉末注射成型技术来源于高分子材料的注塑成型,借助高分子聚合物在高温下熔融、低温下凝固的特性来进行成型的,成型之后再把高聚物脱除。
与传统的陶瓷加工工艺相比,陶瓷粉末注射成型技术要简单的多,能制造出各种复杂形状的高精度陶瓷零部件,且易于规模化和自动化生产,已广泛用于航空、军事、汽车、电子、机械以及医疗器械等工业。
⏹CIM基本工艺包括4个步骤:⏹ 1.粘结剂与陶瓷粉末的混炼2. 成型 3.脱脂 4.烧结⏹其中脱脂是陶瓷注射成型技术⏹金属粉末注射成型技术是在传统的注射成型和粉末冶金工艺的基础上发展起来的一种新型的金属注射成形,已广泛用于电子信息,医疗用具,汽车,航空航天等各领域.⏹注射成型工艺,特别适合于大批量生产小型、复杂的高密度金属或金属化合物的制品,扩大了粉末冶金技术的应用范围。
难熔金属基复合材料的研究进展难熔金属基复合材料是一种具有卓越性能和广泛应用潜力的材料。
它由高熔点金属基体和分散相组成,具有高温强度、耐腐蚀性、耐磨损性和导电性等优点。
难熔金属基复合材料的研究已经取得了显著的进展,并在航空航天、能源、汽车和冶金等领域得到广泛应用。
难熔金属基复合材料的研究主要涉及材料的制备技术、性能优化和应用研究。
目前,常用的制备技术包括粉末冶金、熔融混合、机械合金化和表面改性等方法。
其中,粉末冶金是一种常用的制备难熔金属基复合材料的方法。
通过粉末冶金技术可以得到具有均匀分散相的复合材料,从而提高材料的力学性能和耐热性能。
难熔金属基复合材料的性能优化主要通过合金化和微结构控制实现。
通过合金化可以改变金属基体的组成,调整材料的力学性能和导热性能。
通过微结构控制可以调控分散相的尺寸、形状和分布,进一步提高材料的力学性能和耐热性能。
此外,难熔金属基复合材料的表面改性也是一种常用的性能优化手段。
通过在金属基体的表面引入功能性涂层,可以提高材料的表面硬度、耐磨损性和耐腐蚀性。
难熔金属基复合材料在航空航天领域具有广泛的应用前景。
在航空发动机中,难熔金属基复合材料可以作为高温结构材料使用,用于制造涡轮叶片、燃烧室和燃气轮机等部件。
难熔金属基复合材料具有出色的高温强度和耐热性能,可以提高发动机的工作效率和可靠性。
此外,在航天航空热保护系统中,难熔金属基复合材料也可以作为热隔断材料使用,有效减少空气动力热、压力热和辐射热对航天器的影响。
在能源领域,难熔金属基复合材料可以用于制造高温燃料电池和核能反应堆等设备。
难熔金属基复合材料具有优异的导电性能和耐腐蚀性,可以提高燃料电池和核能反应堆的运行效率和安全性。
此外,难熔金属基复合材料还可以用于制造高温储能设备,用于储存太阳能和风能等可再生能源。
在汽车领域,难熔金属基复合材料可以用于制造发动机和制动系统等关键部件。
难熔金属基复合材料具有出色的耐磨损性和耐高温性能,可以提高发动机和制动系统的性能和寿命。
化学气相沉积技术及在难熔金属材料中的应用蔡兆机硕113班030110455摘要:难熔金属由于其独特的性能,在当今科学领域的应用越来越重要。
化学气相沉积法成功制取高纯致密难熔金属有利于其应用的推广。
采用化学气相沉积法在难熔金属材料表面制备铂族金属薄膜作为高温抗氧化涂层,更扩展了难熔金属材料在高科技领域的应用。
关键词:难熔金属;CVD;化学气相沉积;1引言难熔金属材料的制备方法主要是粉末冶金、电弧熔炼和电子束熔炼等。
经过几十年的发展,许多制备加工新技术已应用到难熔金属材料工业中,包括粉末注射成形(PIM)、放电等离子体烧结(SPS)、定向凝固、热机械加工、电磁共振技术、单晶技术及化学气相沉积技术等[1,2,3,4]。
化学气相沉积(Chemical V apor Deposition,简称CVD)是在热、光和等离子体等的激活和驱动下使气态物质在气相或气固界面上发生化学反应,从而制得稳定固态沉积物(或赋予固体材料表面某种特性)的一项材料制备技术。
沉积反应可分为均相反应和多相反应,它们分别在气相和气/固界面上发生,前者形成粉末,后者形成薄膜。
CVD是一种原子或原子集团沉积过程,过程本身具有提纯作用,因而其沉积层亦具有高纯高致密特征。
由于化学反应的多样性,使得CVD作为一种材料制备技术具有灵活多样的特点,构成了CVD制备多种材料的化学工艺基础。
从理论上讲,几乎所有的纯金属材料均可以采用CVD技术制备,CVD已成为材料制备技术的一个重要分支。
与其他制备方法相比,CVD技术具有适应性强、可选择性多及设备相对简单等特点:①是一种静成型技术,特别适合外形复杂器件(如喷管、坩埚等)的制备成型;②大幅降低了材料成型温度,对制备高熔点材料特别具有优势;③CVD制备的材料致密度高、纯度高。
CVD技术应用于贵金属及难熔金属的制备历史并不长,20世纪70年代,前人采用金属无机物为前驱体沉积的贵金属薄膜质量难以令人满意。
80年代,采用贵金属有机化合物化学气相沉积(MOCVD)法制备贵金属薄膜或涂层材料,薄膜的纯度和致密性得以解决。
粉末冶金制粉技术(一)粉末冶金新技术、新工艺的应用,不但使传统的粉末冶金材料性能得到根本的改善,而且使得一批高性能和具有特殊性能的新一代材料相继产生。
例如:高性能摩擦材料、固体自润滑材料、粉末高温合金、高性能粉末冶金铁基复合和组合零件、粉末高速钢、快速冷凝铝合金、氧化物弥散强化合金、颗粒增强复合材料,高性能难熔金属及合金、超细晶粒及涂层硬质合金、新型金属陶瓷、特种陶瓷、超硬材料、高性能永磁材料、电池材料、复合核燃料、中子可燃毒物、粉末微晶材料和纳米材料、快速冷凝非晶和准晶材料、隐身材料等。
这些新材料都需要以粉末冶金作为其主要的或惟一的制造手段。
本章将简要介绍粉末冶金的基本工艺原理和方法,重点介绍近年米粉末冶金新技术和新工艺的发展和应用状况。
1.雾化制粉技术粉末冶金材料和制品不断增多,其质量不断提高,要求提供的粉末的种类也愈来愈多。
例如,从材质范围来看,不仅使用金属粉末,也要使用合金粉末、金属化合物粉末等;从粉末形貌来看,要求使用各种形状的粉末,如生产过滤器时,就要求球形粉末;从粉末粒度来看,从粒度为500~1000m的粗粉末到粒度小于0.1m的超细粉末。
近几十年来,粉末制造技术得到了很大发展。
作为粉末制备新技术,第一个引人注目的就是快速凝固雾化制粉技术。
快速凝固雾化制粉技术是直接击碎液体金属或合金并快速冷凝而制得粉末的片法。
快速凝固雾化制粉技术最大的优点是可以有效地减少合金成分的偏析,获得成分均匀的合金粉末。
此外,通过控制冷凝速率可以获得具有非晶、准晶、微晶或过饱和固溶体等非平衡组织的粉末。
它的出现无论对粉末合金成分的设计还是对粉末合金的微观结构以及宏观特性都产生了深刻影响,它给高性能粉末冶金材料制备开辟了一条崭新道路,有力地推动了粉末冶金的发展。
雾化法最初生产的是像锡、铅、锌、铝等低熔点金属粉末,进一步发展能生产熔点在1600~1700℃以下的铁粉及其他粉末,如纯铜、黄铜、青铜、合金钢、不锈钢等金属和合金粉末。
科技成果——高性能特种粉体材料近终成形技术技术开发单位北京科技大学技术领域新材料成果简介该项目属于粉末冶金学科。
高性能特种材料具有其他材料不具备的特殊性能,在高技术领域中具有不可取代的关键作用。
然而,这类材料往往硬度高、脆性大,难以采用传统技术加工制备,成为许多国防和民用高技术装备发展的瓶颈。
为此,项目基于粉体流变成形原理,研发了难加工材料的近终形制造新技术,广泛应用于国防和民用高技术领域。
主要发明点如下:1、发明了高性能特种材料的粉末注射成形新工艺,实现了金属钨、氮化铝、含氮不锈钢等难加工材料制品的近终形制造;发明了专用注射成形机、侧抽芯新结构模具等关键工艺装备;创立了基于机器视觉的粉末注射成形产品尺寸和外观质量在线自动检测、工业机器人动态抓取和分拣软硬件系统,首次实现了全自动化生产和高质量稳定性控制,生产效率提高6倍以上。
2、首创了适合注射成形的近球形微细特种粉体制备和改性新技术。
提出基于酸根离子的化学推进剂理论,创立了可控溶液燃烧合成难熔金属和氮化物反应体系和工艺,制备出粒径小于50nm的高分散近球形氮化铝和钨基粉体。
创立了“气流分级分散-等离子球化”粉体改性技术,制备出满足精密多孔阴极需要的细粒径窄分布(5±2μm)球形钨粉。
3、发明了适合不同材料的粘结剂体系及成形和高效脱脂工艺。
提出基于聚合物功能基团的多组元粘结剂设计原理,创立了两相流协调运动模型,阐明了两相分离和缺陷产生的不确定性机制,发明了残碳型、低残留型和高粘性粘结剂体系,有效解决了坯体两相分离、变形、增氧、缺陷等控制难题,产品尺寸精度达到±0.2%。
4、发明了多孔脱脂坯强化烧结致密化和组织性能精确调控技术。
提出金属钨的低温无压活化烧结致密化理论和钝化处理孔隙结构精确调控技术,突破了高致密度钨的细晶化和多孔钨的孔隙均匀化技术瓶颈,烧结金属钨电极的晶粒尺寸仅570nm,抗电子轰击性能提高2个数量级,多孔钨的活性物质填充量提高20%;综合利用液相烧结和残碳“脱氧”原理,解决了氮化铝高致密化、晶界相控制和晶格净化等难题,热导率高达248W/m/K。
难熔金属的粉末冶金制备新技术何勇学号:153312086粉末冶金研究院摘要:本文简要介绍了几种难熔金属的制备新技术,包括三种现代粉末冶金烧结技术(微波烧结、放电等离子烧结、选择性激光烧结)与两种近静成型技术(3D打印、金属粉末注射成形)。
介绍其制备方法的基本原理、技术优势以及应用现状,并在最后简单阐述材料制备技术的发展趋势。
先进烧结技术具有烧结温度低、烧结速度快、晶粒组织细化、结构均匀可控等优点,同时节约能源,生产效率高,是未来难熔金属制品致密化过程的优良选择;近静成型技术摒弃了传统材料制品制备和加工分开进行的传统工艺,大大缩短了生产周期,已成为当今难熔金属材料研究的热点,在高新尖端领域拥有十分可观的前景。
关键词:难熔金属;制备工艺技术;粉末冶金Abstract: This paper briefly introduces several new techniques of preparation of refractory metal, including three modern sintering technologies such as microwave sintering and two kinds of near net shape techniques. The basic principles,advantages and research status of these methods are claimed in the main paragraph. At the last part, some development trend of refractory metal materials are listed briefly.Not only do they possess unique advantages on rapid heating rate, short sintering time, inhibiting grain growth and controlling microstructure, but also show enormous industrial application value and prospect in terms of short production cycle and high efficiency energy saving, so the new sintering techniques have become a present research focus in material field.Near net shape technology has a very considerable prospects in the high-tech frontier because it greatly shortens the production cycle.Key words: refractory metal; preparation technique; powder metallurgy1 前言难熔金属[1]一般是指熔点在2000℃以上的过渡金属元素,广义上包括钨(W)、钼(Mo)、钽(Ta)、铌(Nb)、钛(Ti)、钒(V)、铬(Cr)、锆(Zr)等十几种元素。
难熔金属元素均位于元素周期表的IIIB、IVB、VB族内,其中钨、钼、钽、铌和铼(Re)这五种元素应用最广。
难熔金属及其合金、金属间化合物以其高熔点、高硬度、高强度等一系列独特的物理与力学性能而广泛应用于国防军工、航空航天、电子信息、冶金化工、能源环保等领域, 历来受到世界各国的高度重视, 在国民经济中占有重要地位[2]。
例如钨钼及其合金由于耐高温性能好、密度大、抗高温冲击和疲劳, 广泛用于电力、冶金、兵器、核聚变、化工等行业中[3]。
难熔金属合金可以抵抗辐射、温度、腐蚀和拉伸应力的苛刻环境, 在高温时具有高蠕变强度, 且同碱流体材料具有很好的相容性, 因此可以作为高温结构材料使用。
随着现代工业技术的不断进步与发展,对于难熔金属材料性能的要求越来越严格,传统的熔炼铸造等制备加工方法已经无法满足现代制造业对难熔金属制品的性能要求,与之相比,粉末冶金技术能够制备出高纯、高强、高性能的特殊制品,是目前难熔金属制备发展的主流趋势。
2 难熔金属的烧结新技术粉末冶金烧结技术是制备难熔金属及其合金锭坯的主要方法,也是生产过程中的关键工序,对产品的最终性能起着决定性作用。
常规烧结方法有氢气烧结、真空烧结、热等静压烧结等,能够实现绝大多数情况下,难熔金属材料的制备要求。
随着粉末制备和烧结手段的发展,还能实现一些功能梯度材料、细晶粒材料和形状复杂的零件烧结制备[4]。
微波烧结、放电等离子烧结和选择性激光烧结都是这一方向的最新成果。
2.1 微波烧结技术微波烧结(Microwave Sintering, MS)是材料科学与微波技术结合的新产物,通过电磁场使材料整体加热至烧结温度来实现致密化。
由于微波烧结炉是采用微波发生器代替传统的热源,因此微波烧结的加热原理与常规烧结工艺有本质的区别。
常规烧结中热量是通过介质从材料表面向内部扩散,最终完成烧结过程;而微波烧结是将材料吸收的微波能转化为材料内部分子的动能和势能,使材料内部的每一个分子和原子都成为发热源[5]。
很显然,这种加热方式可以使材料整体受热更加,从而使材料的热应力减至最小,这对于改善材料的密度、强度和韧性都非常有利。
图1为微波烧结装置的工作原理图[6]。
在微波烧结过程中, 微波发生器产生的微波由波导管导入加热腔中, 对放置在腔体中的试样进行加热烧结, 部分微波能量会被反射回来,环行器的作用是将反射回的微波导向水负载从而保护磁控管。
微波烧结加热腔体是微波烧结设备的核心部分,腔体的合理设计、精密制作和正确调整是实现材料成功烧结的关键, 图2为微波烧结炉加热腔体的简图[7],微波加热腔体有多种形式,通常可分为行波加热器、多模炉式加热器、单模谐振腔式加热器3种。
多模炉式加热器由于结构简单, 适用于各种加热负载,目前在生产实际中应用最为广泛。
图1 微波烧结原理图图2 微波烧结炉加热腔简图难熔金属及其合金材料由于是微波反射型材料, 微波与这类材料的介电耦合作用很差, 一般情况下不能用来烧结金属材料。
20 世纪90 年代以来逐渐展开了微波烧结金属材料的研究。
美国宾夕法尼亚州立大学的Roy 教授等[8,9]首次用微波烧结法成功地制备出Fe、Cu、Ni、Co、W及Fe-Cu、Fe-Ni、Ni-Al-Cu 等金属粉末的粉末冶金样品。
经过十几年的发展,金属的微波烧结技术日渐成熟,最近D.Agrawal等[10]采用频率为2.45GHz的微波烧结炉分别烧结了WC-6Co和WC-10Co, 已经能够获得比热等静压烧结更均匀和更细小的组织。
与常规烧结技术相比,微波烧结具有许多独特的优势。
首先是烧结温度低且烧结速度快,这能够有效抑制烧结体晶粒组织的长大,在微波电磁能作用下,材料内部分子或离子的动能增加, 使烧结活化能降低,烧结温度最大降温幅度可达500℃左右,同时材料内外均匀加热, 烧结时间大大缩短了。
此外,微波烧结具有快速烧结的特征,烧结时间的缩短可使微波烧结的能耗大大降低,与常规烧结相比,节能70%~90%,不仅提高了能源的利用效率,而且降低了烧结能耗费用。
2.2 放电等离子烧结技术放电等离子体烧结(Spark Plasma Sintering, SPS)是将金属等粉末装入模具内,将直流脉冲电流和压制压力施加于烧结粉末,经放电活化、热塑变形和冷却完成制取高性能材料的一种新的粉末冶金烧结技术。
SPS烧结过程的基本原理是利用直流脉冲电流直接通电对材料进行烧结,它不但具有类似热压烧结的焦耳热和加压造成塑性变形促进烧结过程, 而且其独特之处在于SPS烧结过程中粉末颗粒间会产生直流脉冲电压, 使粉体颗粒间放电产生自发热[11]。
SPS的装置基本结构示意图如图3所示[12],主要包括三个部分:一是产生轴向压力的轴向加压装置;二是用以产生等离子体的脉冲电流发生器,以对材料进行活化处理;最后是电阻加热装置。
SPS烧结过程中有2个非常重要的步骤,首先特殊电源产生的直流脉冲电压将电能贮存在颗粒团的介电层中,电能的间歇式快速释放在粉体的空隙产生放电等离子体,撞击颗粒间的接触部分,使物质产生蒸发作用而净化金属颗粒表面,提高烧结活性,有助于加速原子的扩散。
此外放电也会瞬时产生高达几千摄氏度至几万摄氏度的局部高温,在颗粒表面引起蒸发和熔化,在颗粒接触点形成颈部,气相物质凝聚在颈部而达成物质的蒸发-凝固传递[11]。
国内外在利用SPS技术制备难熔材料方面做过不少研究和努力。
例如Y.Bilge等[13]研究WC-Co-cBN的放电等离子体烧结,整个过程是在1300℃和75MPa的条件下烧结7.5min完成,烧结后经测试发现,WC-Co-cBN的密度达到了近全致密程度;余洋等[14]对比研究了放电等离子体烧结(SPS)和真空烧结(VAS)平均粒径为160nm 的WC-12Co硬质合金粉末的组织和性能,结果表明,放电等离子体烧结能使WC-12Co 在较低温度、较短时间内完全致密化,烧结温度比真空烧结低250 ℃以上, 而烧结时间却只有真空烧结的1/26,具体的数据结果如表1。
表1 放电等离子体烧结和真空烧结块体硬质合金的力学性能烧结方式晶粒尺寸/nm 致密度/% HRA TRS/MPa SPS1150230 99.3 91.1 1704 SPS1200330 99.5 90.6 1604 VAS530 99.8 89.2 1424图3 放电等离子体烧结系统示意图2.3 选择性激光烧结技术选择性激光烧结技术(Selective Laser Sintering, SLS)又称为选区烧结技术,是利用激光有选择地由下而上逐层烧结固体粉末,叠加生成CAD预先设计三维图型的一种快速成形制造方法,是集新材料、激光技术、计算机技术于一体的快速原型制造技术的一个重要分支,它既是目前广泛发展的3D打印技术的前身,这种技术在下文中还会详细介绍。
选择性激光烧结的原理示意图如图4所示[15]。
SLS系统通常包含3个主要部分:激光源的主要作用是产生激光束;粉末摊铺系统的作用是在每层扫描结束后,迅速铺下一层粉末,铺粉厚度对烧结时间和制品精度将产生直接影响,是十分关键的步骤;气氛控制系统可以根据不同的烧结材料提供不同的烧结气氛,以防止烧结过程中粉末出现氧化、鼓泡和气孔等缺陷。
SLS烧结最初是由美国德克萨斯大学奥斯汀分校的Carl Deckard于1987年提出, 后由美国DTM公司于1992年推出该工艺的商业化生产设备Sinter Station 2000[16]。