必修五解三角形高考题型总结复习
- 格式:pdf
- 大小:160.46 KB
- 文档页数:2
第一章解三角形一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 —=—=—=2R (其中R 是三角形外接圆的半径) sin A sin B sinC a + b + c a b c = = = . sin A + sin B + sin Csin A sin B sin C 2)化边为角: a : b : c = sin A : sin B : sin C . a sin A b sin B a sin Ab sin B ,c sin C ,csin C 3)化边为角:a = 2R sin A , b = 2R sin B , c = 2R sin Csin A a sin B b sin A a • —— •sin B b ' sin C c ' sin C c 'abc sin A =——, sin B =——, sin C =—— 2 R 2 R 2 R3.利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角;例:已知角B,C,a,解法:由A+B+C=180o ,求角A,由正弦定理a =空A ;-=把B b sin B c sin C a sin A = ------- ;求出b 与c c sin C②已知两边和其中一边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理a =竺4求出角B,由A+B+C=180o 求出角C,再使用正 b sin B弦定理a = sn A 求出c 边 c sin C 4.△ABC 中,已知锐角A,边b,则①a < b sin A 时,B 无解;②a = b sin A 或a > b 时,B 有—个解③b sin A < a < b 时,B 有两个解。
2.变形:1) 4)化角为边: 5)化角为边:如:①已知A :60。
高中数学必修5__第一章_解三角形复习知识点总结与练习高中数学必修5第一章解三角形复习一、知识点总结【正弦定理】1.正弦定理:ainAbinBcinC2RR为三角形外接圆的半径2正弦定理的一些变式:iabcinAinBinC;iiinAa2R,inBb2R,inCc2R;2Riiia2RinA,b2RinB,b2RinC;(4)3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角abcinAinBinC(2)已知两边和其中一边的对角,求其他边角(可能有一解,两解,无解)中,已知a,b及A时,解得情况:解法一:利用正弦定理计算解法二:图形一解两解一解一解无解A 为锐角A为钝角或直角关系式解的个数【余弦定理】a2b2c22bccoA2221.余弦定理:bac2accoB2推论:设a、b、c是C的角、、C的对边,则:①若abc,则C90;②若abc,则C90;③若abc,则C90.3两类余弦定理解三角形的问题:(1)已知三边求三角(2)已知两边和他们的夹角,求第三边和其他两角12222222【面积公式】已知三角形的三边为a,b,c,1.S1aha1abinC1rabc(其中r为三角形内切圆半径)12abc,S/h的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B点观测灯塔A的方位角为110°,航行半小时到达C点观测灯塔A的方位角是65°,则货轮到达C点时,与灯塔A的距离是多少?扩展阅读:高中数学必修5第一章解三角形知识点复习及经典练习高中数学必修五第一章解三角形知识点复习及经典练习一、知识点总结abc2R或变形:a:b:cinA:inB:inC1.正弦定理:inAinBinC推论:①定理:若α、β>0,且αβ<,则α≤βinin,等号当且当α=β时成立。
②判断三角解时,可以利用如下原理:inA>inBA>Ba>bcoAcoBAB(co在0,上单调递减)b2c2a2coA2bca2b2c22bccoA2a2c2b2222.余弦定理:bac2accoB或coB2acc2b2a22bacoCb2a2c2coC2ab3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角2、已知两角和其中一边的对角,求其他边角(2)两类余弦定理解三角形的问题:1、已知三边求三角2、已知两边和他们的夹角,求第三边和其他两角4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式5.三角形中的基本关系:inABinC,coABcoC,tanABtanC,in已知条件一边和两角(如a、B、C)ABCABCABCco,coin,tancot222222一般解法由ABC=180,求角A,由正弦定理求出b与c,在有解时有一解。
解三角形一、知识点总结 1. 内角和定理:在ABC ∆中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C -;sincos cos sin tan cot 222222A B C A B C A B C+++===;;. 2.面积公式:1sin 2ABC S ab C ∆== 1sin 2bc A =1sin 2ca B 3.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R CcB b A a 2sin sin sin ===或变形:::sin :sin :sin a b c A BC = (解三角形的重要工具) 形式二:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具)4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2222cos a b c bc A =+-2222cos b c a ca B =+- (解三角形的重要工具) 2222cos c a b ab C =+-形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cos C =abc b a 2222-+5.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角. 6.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 7. 已知条件 定理应用 一般解法一边和两角 (如a 、B 、C ) 正弦定理由A+B+C=180˙,求角A ,由正弦定理求出b 与c ,在有解时 有一解。
两边和夹角 (如a 、b 、c) 余弦定理 由余弦定理求第三边c ,由正弦定理求出小边所对的角,再 由A+B+C=180˙求出另一角,在有解时有一解。
解三角形(理)知识要点:一、正弦定理及其变形: sin a A= (R 为三角形外接圆半径) 变形1:=C B A sin :sin :sin 变形2:⎪⎪⎩⎪⎪⎨⎧======)(sin ;)(sin ;)(sin ;C c B b A a 二、余弦定理及其推论:=2a=2b=2c推论:=A cos =B cos =C cos三、三角形面积公式=∆ABC S l r S ABC ⋅=∆21(r 是内切圆的半径,l 是三角形的周长) 1sin cos 22=+A A π=++C B A重要习题1、在△ABC 中,b =22,B =45°,则A=60°a =______;2、在△ABC 中,已知bc c b a ++=222,则角A 为 ;3、在△ABC 中,已知bc b c a =--2222123且32π=A △ABC 是 三角形. 4、在△ABC 中,a =3,b =7,c =2,那么B 等于 ;最大角的余弦值为 ; △ABC 的面积为 ;5、在△ABC 中,4:3:2sin :sin :sin =C B A 且14=+c b 则△ABC 的面积为 。
6、在ABC ∆中,若其面积222S =C ∠=_______;7、已知△ABC 中,a =8,b =7,B =60°,求边c 及S △ABC ‘《不等式》(理)一、一元二次不等式的解法:1、解一元二次不等式的步骤:当0a ≠时求解不等式:20ax bx c ++>(或20axbx c ++<)(1)将原不等式化为一般式(a ).(2)判断 的符号.(3)求 (4)根据 写解集. 顺口溜:在二次项系数为正的前提下:大于 ,小于 。
2、分式不等式求解步骤: , , , ,如:⇒>a x g x f )()(⇒≤a x g x f )()( 3、一元二次不等式恒成立情况小结:20ax bx c ++>(0a ≠)恒成立⇔20ax bx c ++<(0a ≠)恒成立⇔4、[]n m x x f a ,)(∈<,恒成立⇔[]n m x x f a ,)(∈≥,恒成立⇔三.线性规划1、解线性规划问题的一般步骤:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找到最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值。
人教A 版必修五第一章《解三角形》章末复习知识梳理1.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.2.余弦定理:(1)形式一:A cos bc 2c b a 222⋅-+=,B cos ac 2c a b 222⋅-+=,C cos ab 2b a c 222⋅-+=形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab2c b a C cos 222-+=,(角到边的转换)3.S △ABC =21absinC=21bcsinA=21acsinB,S △=))()((c S b S a S S ---=Sr(S=2cb a ++,r 为内切圆半径)=R abc 4(R 为外接圆半径).4.在三角形中大边对大角,反之亦然.5.射影定理:a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA.6.三角形内角的诱导公式(1)sin(A+B)=sinC,cos(A+B)=-cosC,tanC=-tan(A+B),cos 2C =sin 2BA +,sin 2C =cos 2BA ……在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°;(3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.7.解三角形常见的四种类型(1)已知两角A 、B 与一边a,由A+B+C=180°及A a sin =B b sin =C c sin ,可求出角C ,再求b 、c.(2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2-2bccosA ,求出a ,再由余弦定理,求出角B 、C.(3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C.(4)已知两边a 、b 及其中一边的对角A ,由正弦定理A a sin =B bsin ,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由A a sin =C c sin 求出C ,而通过A a sin =Bbsin 求B 时,可能出一解,两解或无解的情况,其判断方法,如下表:9.三角形的分类或形状判断的思路,主要从边或角两方面入手.专题一:正、余弦定理的应用1.正弦定理主要有两个方面的应用:(1)已知三角形的任意两个角与一边,。
第十二讲 解三角形1、三角形三角关系:A+B+C=180°;C=180°—(A+B);3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B .7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A 等,变形: 222cos 2b c a bc+-A =等,8、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
②已知三边求角) 9、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . 10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >. 11、三角形的四心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等)12.坡角和坡比坡角:坡面与水平面的夹角(如图④,角θ为坡角).坡比:坡面的铅直高度与水平长度之比(如图④,i 为坡比).1. △ABC 中,45B =,60C =,1c =,则最短边的边长等于 ( )A 63B 62C 12D 322. △ABC 中,cos cos cos a b cA B C ==,则△ABC 一定是 ( )A 直角三角形B 钝角三角形C 等腰三角形D 等边三角形3.△ABC 中,若60A =,3a =,则sin sin sin a b cA B C +-+-等于 ( )A 2B 12C 3D 324. △ABC 中,:1:2A B =,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( )A13 B 12 C 34D 0 5.在钝角△ABC 中,已知1a =,2b =,则最大边c 的取值范围是 。
必修五第一章解三角形知识点总结及经典习题(数学教研组)一、知识点总结 1 •正弦定理:一 ab c2R (R:外接圆半径)sin A sin B sinC或变形: a: b :c sin A:sin B:sin C .结论:①定理:在三角形中,a 、B 为其内角,则a<p ② 判断三角形大小关系时,可以利用如下原理: sin A > sin B A > B a > bcos A cos B A B a < b111③ 三角形的面积公式: S = - absin C= - bcsin A= - acsin B2 2 2cosAa 2b 2c 22bccos A2. 余弦定理: b 2 a 2 c 2 2ac cosB 或 cosB2 2 2c b a 2ba cosCcosC3. 利用正弦定理和余弦定理分别能解决的问题:(1) 正弦定理:1、已知两角和一边(如 A 、B 、c),由A+B+C= n 求C,由正弦定理求a 、b.(ASA 或 AAS)2 、已知两边和其中一边的对角(如 a 、b 、A),应用正弦定理求B,由A+B+C= n 求C,再由正弦定理或余弦定理求 c 边,要注意解可能有多种情况.(SSA) (2) 余弦定理:1、已知三边a 、b 、c,应余弦定理求 A B,再由A+B+C = n ,求角C.(SSS)2 、已知两边和夹角(如a 、b 、C),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用 A+B+C= n ,求另一角.(SAS)主流思想:利用正、余弦定理实现边角转化,统一成边的形式或角的形式 . 5.三角形中的基本关系: sin(A B) si nC, cos(A B)cosC, tan (A B) tanC,.A B C ABC+AB +C sin cos ,cossin ,ta ncot —2 2 2 2 2 26.求解三角形应用题的一般步骤: (1) 分析:分析题意,弄清已知和所求;(2) 建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图; (3) 求解:正确运用正、余弦定理求解;(4)检验:检验上述所求是否符合实际意义b 22c 2 a2bc2 a 2 c b 22ac222ba c sin sin ,等号当且当a =3时成立。
高考数学常考题型的总结(必修五)对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。
同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。
对重难点要了如指掌,能做到有的放矢。
同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。
人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。
必修五主要包括三大部分内容:解三角形、数列、不等式。
高考具体要考查那些内容呢?这是我们师生共同研究的问题。
虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。
下面具体对必修五常考的型作一分解:解三角形解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。
考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。
知识点:正弦定理、余弦定理和三角形的面积的公式。
正弦定理:R CcB b A a 2sin sin sin ===(R 为ABC ∆的外接圆半径) 余弦定理:C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A bc a c b cos 2222=-+(变形后)C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cba b c cos 2222=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆。
知识点分解:(1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。
(2)两角一边,求另外一角和两边,肯定是正弦定理。
必修五解三角形常考题型1.1正弦定理和余弦定理1.1.1正弦定理【典型题剖析】考察点1:利用正弦定明白得三角形例1 在ABC 中,已知A:B:C=1:2:3,求a :b :c.例2在ABC 中,已知C=30°,求a+b 的取值范围。
考察点2:利用正弦定理判定三角形形状例3在△ABC 中,2a ·tanB=2b ·tanA ,判定三角形ABC 的形状。
例4在△ABC 中,若是lg lg lg sin a c B -==-,而且B 为锐角,试判定此三角形的形状。
例5在△ABC 中,求证2222220cos cos cos cos cos cos a b b c c a A B B C C A---++=+++.例6在△ABC 中,a,b,c 别离是角A,B,C 的对边,C=2B ,求证22c b ab -=.考察点4:求三角形的面积例7在△ABC 中,a,b,c 别离是三个内角A,B,C 的对边,假设2,,cos425B aC π===,求△ABC 的面积S.例8已知△ABC 中a,b,c 别离是三个内角A,B,C 的对边,△ABC 的外接圆半径为12,且3C π=, 求△ABC 的面积S 的最大值。
考察点5:与正弦定理有关的综合问题例9已知△ABC 的内角A,B 极为对边a,b 知足cot cot ,a b a A b B +=+求内角C例10在△ABC 中,A ,B ,C 所对的边别离为a,b,c,且c=10,cos 4cos 3A bB a ==,求a,b 及△ABC 的内切圆半径。
『易错疑难辨析』易错点 利用正弦定明白得题时,显现漏解或增解【易错点辨析】本节知识在明白得与运用中常显现的错误有:(1)已知两边和其中一边的对角,利用正弦定理求另一边的对角时,显现漏解或增解;(2)在判定三角形的形状时,显现漏解的情形。
例1(1) 在△ABC 中,6,30,;a b A B ===︒求(2) 在△ABC 中,2,60,;a b A B ===︒求易错点 忽略三角形本身的隐含条件致错【易错点解析】解题进程中,忽略三角形本身的隐含条件,如内角和为180°等造成的错误。