高考数学填空题的解法分析
- 格式:doc
- 大小:71.00 KB
- 文档页数:5
高考数学大题小题答题套路1500字高考数学大题小题答题套路:在高考数学考试中,大题小题占据了很大的比重。
为了在有限的时间内高效地完成这些题目,我们需要一些答题套路。
下面给出一些常用的答题套路,希望对你备考有所帮助。
一、解决问题的基本步骤无论是解决大题还是小题,解决问题的基本步骤是一样的:分析问题、解决问题。
1. 分析问题:仔细阅读题目,抓住关键信息,理清问题的逻辑关系,确定解题思路。
2. 解决问题:有了解题思路后,可以进行具体的计算或推理,得出结果并给出明确的解答。
二、选择题的解题技巧1. 理清题意:仔细阅读题目,理解题意是解题的第一步。
特别是一些复杂的题目,一定要抓住问题的关键信息。
2. 排除干扰项:在选择题中,往往有一些干扰项,可以通过排除法找到正确的答案。
把每个选项都带入题目中计算,排除那些肯定不符合条件的选项,就可以找到正确答案。
3. 注意选项的表达方式:有时候,选项可能用其他的方式来表达,需要注意一些等价变形或近义词的替代。
三、填空题的解题技巧1. 尝试不同的方法:填空题有时候可以用多种方法解答,尝试不同的方法可以提高解题的灵活性。
2. 合理估算:填空题往往要进行一些复杂的计算,合理估算可以减少计算量,提高解题速度。
可以先进行一些粗略的估算,然后再进行具体的计算。
3. 利用已知条件:在填空题中,利用已知条件进行推导是非常重要的。
根据已知条件和题目要求,进行推理和计算。
四、解答题的解题技巧1. 分析问题:仔细阅读题目,并理清题目的逻辑关系,确定解题思路和步骤。
2. 给出合理的假设:解答题有时候需要做一些合理的假设,可以简化问题,提高解题的效率。
3. 使用合适的公式或定理:解答题一般需要使用一些公式或定理,熟练掌握并合理运用可以快速解决问题。
4. 画图辅助解答:对于一些几何题,可以通过画图来辅助解答。
画出具体的图形,可以更直观地理解问题,找到解决方法。
总结:以上是解决高考数学大题小题的一些常用答题套路。
高考数学真题试卷分析报告为了更好地了解高考数学真题的命题特点和考生答题情况,我们进行了一次深入的分析研究。
通过对历年高考数学真题试卷的梳理和统计,我们得出了以下报告,希望能为广大高中生在备战高考数学中提供一定的参考和帮助。
一、选择题分析高考数学试卷中的选择题一直是考生得分的重要突破口。
我们发现,选择题中以代数、函数、图形几何和概率统计为主,常规思维题和灵活应用题并重的特点依然明显。
对于代数题,考查的主要内容包括方程、不等式、函数和数列等,多为基础题型,较为简单。
而图形几何部分则主要考察平面几何和立体几何,其中涉及到的知识点较为繁多,需要考生具备较强的几何直观和分析能力。
在题量上,选择题基本上占据了试卷的一半左右,考查的知识面相对较广,但难度适中,适合考生快速把握,争取满分。
二、填空题分析填空题在高考数学试卷中也占据着一定的比重,主要考察考生对数学知识的掌握和应用能力。
填空题题目结构相对简单,通常为简单代数式的运算和变形,或者直接利用特定公式计算或推理。
这部分题目需要考生熟练掌握基础知识,灵活运用,尤其在易错题上需要注意审题和解题思路,避免低级错误导致失分。
三、解答题分析解答题在高考数学试卷中的比重相对较大,难度也相对较高。
主要考查考生的数学建模、证明推理和实际问题应用能力。
解答题覆盖了代数、几何、概率统计等多个模块,需要考生全面掌握知识,具备扎实的数学基础和逻辑推理能力。
在解答题中,常见的题型包括证明题、计算题和应用题,对于证明题需要考生灵活运用数学定理和方法,善于分析和推理;而计算题和应用题则需要考生熟练掌握计算方法,理解题意,合理建模。
四、总体分析综合分析高考数学试卷,难度适中,题目内容基本围绕高中数学课程标准,考查的知识面广,涵盖代数、几何、概率统计等多个模块。
整体来看,选择题占据试卷的主要比重,填空题和解答题相对较少,但难度更大。
考生应该在备考过程中注重加强基础知识的掌握,灵活运用所学知识解题,同时要多做真题,熟悉考题命制和命题特点,加强解题技巧和应试能力。
高中数学常考体型及试题解析专题:填空题的解法一、题型特点:数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,是高考数学中的三种常考题型之一,填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题. 这说明了填空题是数学高考命题改革的试验田,创新型的填空题将会不断出现. 因此,我们在备考时,既要关注这一新动向,又要做好应试的技能准备.解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整. 合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求.数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。
求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。
下面是一些常用的方法。
二、例题解析(一)定义法有些问题直接去解很难奏效,而利用定义去解可以大大地化繁为简,速达目的。
例1. 的值是_________________。
解:从组合数定义有:又代入再求,得出466。
例2. 到椭圆右焦点的距离与到定直线x =6距离相等的动点的轨迹方程是_______________。
解:据抛物线定义,结合图1知:图1轨迹是以(5,0)为顶点,焦参数P =2且开口方向向左的抛物线,故其方程为:(二)直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
例3设,)1(,3)1(j m i b i i m a -+=-+=其中i ,j 为互相垂直的单位向量,又)()(b a b a -⊥+,则实数m = 。
解:.)2(,)4()2(j m mi b a j m i m b a +-=--++=+∵)()(b a b a -⊥+,∴0)()(=-⋅+b a b a ∴0)4)(2()]4()2([)2(222=-+-⋅-++-++j m m j i m m m j m m ,而i ,j 为互相垂直的单位向量,故可得,0)4)(2()2(=-+-+m m m m ∴2-=m 。
填空题的解法1.填空题的特征:填空题是不要求写出计算或推理过程,只需要将结论直接写出的“求解题”.填空题与选择题也有质的区别:第一,填空题没有备选项,因此,解答时有不受诱误干扰之好处,但也有缺乏提示之不足;第二,填空题的结构往往是在一个正确的命题或断言中,抽出其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活.从历年高考成绩看,填空题得分率一直不是很高,因为填空题的结果必须是数值准确、形式规范、表达式最简,稍有毛病,便是零分.因此,解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫.2.解填空题的基本原则:解填空题的基本原则是“小题不能大做”,基本策略是“巧做”.解填空题的常用方法有:直接法、数形结合法、特殊化法、等价转化法、构造法、合情推理法等.3.【方法要点展示】方法一直接法:直接法就是从题干给出的条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,直接得出结论.这种策略多用于一些定性的问题,是解填空题最常用的策略.这类填空题是由计算题、应用题、证明题、判断题改编而成的,可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则等通过准确的运算、严谨的推理、合理的验证得出正确的结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法.例1【湖南省怀化市2019届3月第一次模拟】已知双曲线:的左、右焦点分别为、,第一象限内的点在双曲线的渐近线上,且,若以为焦点的抛物线:经过点,则双曲线的离心率为_______.【解析】由题意,双曲线的渐近线方程为,焦点为,,可得,①又,可得,即为,②由,联立①②可得,,由为焦点的抛物线:经过点,可得,且,即有,即,由,可得,解得例2 【江西省南昌市2019届第一次模拟】若对任意,函数总有零点,则实数的取值范围是__________.【解析】∵函数总有零点,∴对任意恒成立,∴,记在上单调递减,∴,∴,故答案为:例3 已知椭圆C :x 24+y 23=1的左,右焦点分别为F 1,F 2,椭圆C 上点A 满足AF 2⊥F 1F 2.若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为( )【解析】 由椭圆方程知c =4-3=1,所以F 1(-1,0),F 2(1,0),因为椭圆C 上点A 满足AF 2⊥F 1F 2,则可设A (1,y 0),代入椭圆方程可得y 20=94,所以y 0=±32. 设P (x 1,y 1),则F 1P →=(x 1+1,y 1),F 2A →=(0,y 0),所以F 1P →·F 2A →=y 1y 0,因为点P 是椭圆C 上的动点,所以-3≤y 1≤3,F 1P →·F 2A →的最大值为332.答案 332例4已知12,F F 分别是双曲线22221x y a b -= (0,0)a b >>的左、右焦点,过()17,0F -的直线l 与双曲线分别交于点,A B (点A 在右支上),若2ABF ∆为等边三角形,则双曲线的方程为__________.【规律总结】直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.【举一反三】1. 【贵州省遵义航天2019届第七次模拟】 已知等比数列,是方程的两实根,则等于____【解析】,为的两根,,则.故答案为:4. 3 .已知复数z =a +(a -1)i(a ∈R ,i 为虚数单位)为实数,则复数z i 在复平面上所对应的点的坐标为________.解析 因为复数z =a +(a -1)i(a ∈R ,i 为虚数单位)为实数,所以a -1=0,解得a =1.所以复数z =1,所以z i =i.所以复数z i 在复平面上所对应的点的坐标为(0,1).方法二 特例法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,特殊数列,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出待求的结论.这样可大大地简化推理、论证的过程.例1已知函数(a R ∈)为奇函数,则=a .【解析】试题分析:函数()f x 的定义域为R ,又因为()f x 为奇函数,所以(0)0f =,即,解得2a =-.例3 如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________.【解析】 把四边形ABCD 看成正方形,则P 点为对角线的交点,AC =6,则AP →·AC →=18.答案 18【规律总结】求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.本题中的发现函数过一个定点是本题的运用特值法的前提条件,从而减少了计算量.【举一反三】练习 1 若,则被3除的余数是______.【解析】令,得.分别令和,将得到的两式相加,得.所以.练习 2 如图,在△ABC 中,AD ⊥AB ,BC →= 3 BD →,|AD →|=1,则AC →·AD →=________.【解析】不妨取|BD →|=2,则|BC →|=23,∠ADB =π3,∴AC →·AD →=(BC →-BA →)·AD →=BC →·AD →-BA →·AD →=23×1×cos π3+0= 3.练习 3 cos 2α+cos 2(α+120°)+cos 2(α+240°)的值为________________.【解析】令α=0°,则原式=cos 20°+cos 2120°+cos 2240°=32.练习 4 已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.【解析】 此题考查抽象函数的奇偶性,周期性,单调性和对称轴方程,条件多,将各种特殊条件结合的最有效方法是把抽象函数具体化.根据函数特点取f (x )=sin π4x ,再由图象可得(x 1+x 2)+(x 3+x 4)=(-6×2)+(2×2)=-8.答案 -8方法三数形结合法对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以借助图形的直观性,迅速作出判断,简捷地解决问题,得出正确的结果,Venn图、三角函数线、函数的图象及方程的曲线等,都是常用的图形.例1已知函数f(x)=x|x-2|,则不等式f(2-x)≤f(1)的解集为________.【解析】函数y=f(x)的图象如图,由不等式f(2-x)≤f(1)知,2-x≤2+1,从而得到不等式f(2-x)≤f(1)的解集为[-1,+∞).例2【浙江省温州市2019届2月测试】已知,若对任意的 a∈R,存在∈[0,2] ,使得成立,则实数k的最大值是_____【解析】当0时,即a≤0时,在[0,2]恒成立,∴,此时在[0,2]上单调递增,∴max f(x)max=f(2)=22﹣2a=4﹣2a,∴k≤4-2a对任意的a≤0成立,∴k≤4;当2时,即a≥4,在[0,2]恒成立,∴,此时在[0,2]上单调递减,∴max f(x)min=-f(2)=-22+2a=-4+2a,∴k≤-4+2a对任意的a≥4成立,∴k≤4;当0时,即0<a≤2时,此时在[0,]上单调递减,在[,2] 上单调递增,且在[0,a]恒成立,在[a,2]恒成立,∴max,又-=+2a-4≥0时,即时,max,∴k≤对任意的成立,∴k≤;时,max ,∴k≤对任意的成立,∴k≤;当2时,即2<a <4时,f (x )max ==,∴k≤对任意的2<a <4成立,∴k≤1; 综上所述: k≤;故答案为.例4 【湖南省郴州市一中2009届高三二月月考】点M N 、分别是函数()f x 、()g x 图像上的点,若M N 、关于原点对称,则称M N 、是一对“关联点”.已知()242f x x x =-+-, ()24g x x x =--,则函数()f x 、()g x 图像上的“关联点”有__________ 对.【规律总结】图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.【举一反三】1. 【山东省潍坊市2019届一模】已知抛物线的焦点为,准线为,过的直线与抛物线及其准线依次相交于、、三点(其中在、之间且在第一象限),若,,则__________.【解析】如图,过M 作MH ⊥l =H ,由|MN |=2|MF |,得|MN |=2|MH |,∴MN 所在直线斜率为,MN 所在直线方程为y (x ),联立,得12x 2﹣20px +3p 2=0.解得:,则|GF |,即p =2.故答案为:2.2 设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0表示的平面区域.区域D 上的点与点(1,0)之间的距离的最小值为________.【解析】 作不等式组表示的平面区域,如图所示(△OAB 及其内部),易观察知,所求最小值为点P (1,0)到2x -y =0的距离d =|2×1-0|22+(-1)2=255. 3 已知点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则x 2+y 2-6x +9的取值范围是________________________________________________________________________.【解析】 画出可行域如图,所求的x 2+y 2-6x +9=(x -3)2+y 2是点Q (3,0)到可行域上的点的距离的平方,由图形知最小值为Q 到射线x -y -1=0(x ≥0)的距离d 的平方,∴d 2min =(|3-0-1|12+(-1)2)2=(2)2=2. 最大值为点Q 到点A 的距离的平方,∴d 2max =16.∴取值范围是[2,16].方法四 构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.例1 【重庆市第一中学2019届3月模拟】设是定义在上的函数,其导函数为,若,,则不等式(其中为自然对数的底数)的解集为______.【解析】令g (x )=e x f (x )﹣e x ,则g ′(x )=e x f (x )+e x f ′(x )﹣e x =e x (f (x )+f ′(x )﹣1),∵f (x )+f ′(x )<1,∴f (x )+f ′(x )﹣1<0,∴g ′(x )<0,g (x )在R 上为单调递减函数,∵g (0)=f (0)﹣1=2018﹣1=2017,∴原不等式可化为g (x )>g (0),根据g (x )的单调性得x <0, ∴不等式(其中为自然对数的底数)的解集为,故答案为.例2 如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.【解析】 (1)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62,故球O 的体积V =4πR 33=6π.例3 e 416,e 525,e 636(其中e 为自然对数的底数)的大小关系是________. 【解析】 由于e 416=e 442,e 525=e 552,e 636=e 662,故可构造函数f (x )=e xx 2,于是f (4)=e 416,f (5)=e 525,f (6)=e 636. 而f ′(x )=(e x x 2)′=e x ·x 2-e x ·2x x 4=e x (x 2-2x )x 4,令f ′(x )>0得x <0或x >2,即函数f (x )在(2,+∞)上单调递增,因此有f (4)<f (5)<f (6),即e 416<e 525<e 636.例4 已知奇函数()f x 定义域为()()(),00,,'f x -∞+∞为其导函数,且满足以下条件①0x >时,()()3'f x f x x <;②()112f =;③()()22f x f x =,则不等式()224f x x x <的解集为 .【解析】0x >时,令()()()343()()0f x xf x f x g x g x x x '-'=⇒=<,又()f x 为奇函数,所以()g x 为偶函数,因为()()22f x f x =,所以()11111142248f f f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,31()14814()4f g ⎛⎫== ⎪⎝⎭,从而()2112()8(||)()||444f x x g x g x g x x <⇒<⇒<⇒>⇒解集为【举一反三】1.设函数为自然对数的底数),当x R ∈时, ()0f x ≥恒成立,则实数m 的取值范围是__________.【解析】由题意可得:恒成立,令,则,令可得:,绘制函数的图像如图所示,满足题意时, 212xy x e =的图像不在的图像的下方,设切点坐标为()00,P x y ,切线方程为:,即:,切线过点2,03⎛⎫ ⎪⎝⎭,则:,解方程可得: 00x =或01x =或043x =-,结合函数图像可得:,即06m e ≤≤.表示为区间形式即[]0,6e .2 已知a =ln 12 013-12 013,b =ln 12 014-12 014,c =ln 12 015-12 015,则a ,b ,c 的大小关系为________.【解析】 令f (x )=ln x -x ,则f ′(x )=1x -1=1-x x .当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数.∵1>12 013>12 014>12 015>0,∴a >b >c .3 . 已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的投影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面的结论中,正确结论的序号是________(写出所有正确结论的序号).【解析】 用正方体ABCD —A 1B 1C 1D 1实例说明A 1D 1与BC 1在平面ABCD 上的投影互相平行,AB 1与BC 1在平面ABCD 上的投影互相垂直,BC 1与DD 1在平面ABCD 上的投影是一条直线及其外一点.故①②④正确.方法五 归纳推理法做关于归纳推理的填空题的时候,一般是由题目的已知可以得出几个结论(或直接给出了几个结论),然后根据这几个结论可以归纳出一个更一般性的结论,再利用这个一般性的结论来解决问题.归纳推理是从个别或特殊认识到一般性认识的推演过程,这里可以大胆地猜想.1 观察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…,若某数m 3按上述规律展开后,发现等式右边含有“2 015”这个数,则m =________.解析 由题意可得第n 个算式的左边是n 3,右边是n 个连续奇数的和,设第n 个算式的第一个数为a n ,则有a 2-a 1=3-1=2,a 3-a 2=7-3=4,…,a n -a n -1=2(n -1),以上n -1个式子相加可得a n -a 1=(n -1)[2+2(n -1)]2,故a n =n 2-n +1,可得a 45=1 981,a 46=2 071,故 2 015在453的展开式中,故m =45. 2 .图中是应用分形几何学做出的一个分形规律图,按照图甲所示的分形规律可得图乙所示的一个树形图,我们彩用 “坐标”来表示图乙各行中的白圈黑圈的个数(横坐标表示白圈的个数,纵坐标表示黑圈的个数)比如第一行记为()0,1,第二行记为()1,2,第三行记为()4,5,照此下去,第四行中白圈与黑圈的“坐标”为_________.【解析】有图甲所示的分形规律,1个白圈分形为2个白圈1个黑圈,1个黑圈分形为2个黑圈1个白圈,记某行白圈x 个,黑圈y 个为(),x y ,则第一行记为()0,1,第二行记为()1,2,第三行记为()4,5,第四行白圈数为,黑圈数为,第四行中白圈与黑圈的“坐标”为()13,14,故答案为()13,14.【规律总结】这类问题是近几年高考的热点.解决这类问题的关键是找准归纳对象.如本题把函数的前几个值一一列举出来.观察前面列出的函数值的规律,归纳猜想一般结论或周期,从而求得问题.【举一反三】1.所有真约数(除本身之外的正约数)的和等于它本身的正整数叫做完全数(也称为完备数、完美数).如:6123=++;28124714=++++;4961248163162124248=++++++++.此外,它们都可以表示为2的一些连续正整数次幂之和.如12622=+,23428222=++,……,按此规律,8128可表示为 .【答案】6712222+++…【解析】因为681282127=⨯,又由1212712n-=-,解得7n =.所以6681282(122)=⨯+++…=6712222+++….2. 【山东省淄博市2019届3月模拟】古代埃及数学中发现有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单分数和的形式.例如,可以这样理解:假定有两个面包,要平均分给5个人,如果每人,不够,每人,余,再将这分成5份,每人得,这样每人分得+.形如(n =2,3,4,…)的分数的分解:,按此规律,=_____(n =2,3,4,…).【解析】通过分析题目所给的特殊项,的分解是由两个部分构成,第一个部分是,第二部分是,故=.2 (1)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2,五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.【解析】 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k 2n , ∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.3 用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为________.【解析】观察题图①,共有8根火柴,以后依次增加6根火柴,即构成首项为8,公差为6的等差数列,所以,第n 个“金鱼”图需要火柴棒的根数为6n +2.方法六 正反互推法多选型问题给出多个命题或结论,要求从中选出所有满足条件的命题或结论.这类问题要求较高,涉及图形、符号和文字语言,要准确阅读题目,读懂题意,通过推理证明,命题或结论之间互反互推,相互印证,也可举反例判断错误的命题或结论.例 已知f (x )为定义在R 上的偶函数,当x ≥0时,有f (x +1)=-f (x ),且当x ∈[0,1)时,f (x )=log 2(x +1),给出下列命题:①f (2 013)+f (-2 014)的值为0;②函数f (x )在定义域上为周期是2的周期函数;③直线y =x 与函数f (x )的图象有1个交点;④函数f (x )的值域为(-1,1).其中正确的命题序号有________.【解析】 根据题意,可在同一坐标系中画出直线y =x 和函数f (x )的图象如下:根据图象可知①f (2 013)+f (-2 014)=0正确,②函数f (x )在定义域上不是周期函数,所以②不正确,③根据图象确实只有一个交点,所以正确,④根据图象,函数f (x )的值域是(-1,1),正确.答案 ①③④练习 ①双曲线y 22-x 2=1的渐近线方程为y =±2x ;②命题p :“∀x ∈R +,sin x +1sin x ≥2”是真命题;③已知线性回归方程为y ^=3+2x ,当变量x 增加2个单位,其预报值平均增加4个单位;④设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=0.2,则P (-1<ξ<0)=0.6;⑤已知22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式的规律,得到一般性的等式为n n -4+8-n(8-n )-4=2(n ≠4).则正确命题的序号为________(写出所有正确命题的序号).答案 ①③⑤知识方法总结 六招拿下填空题:(一)直接法 (二)特例法 (三)数形结合法 (四)构造法(五)归纳推理法 (六)正反互推法从考试的角度来看,解填空题只要做对就行,不需要中间过程,正因为不需要中间过程,出错的概率大大增加.我们要避免在做题的过程中产生笔误,这种笔误很难纠错,故解填空题要注意以下几个方面:(1)要认真审题,明确要求,思维严谨、周密,计算有据、准确.(2)要尽量利用已知的定理、性质及已有的结论.(3)要重视对所求结果的检验.(4)注意从不同的角度分析问题,从而比较用不同的方法解决题目的速度与准确度,从而快速切题,达到准确解题的目的.填空题的主要特征是题目小,跨度大,知识覆盖面广,形式灵活,突出考查考生准确、严谨、全面、灵活运用知识的能力.近年来填空题作为命题组改革实验的一个窗口,出现了一些创新题,如阅读理解型、发散开放型、多项选择型、实际应用型等,这些题型的出现,使解填空题的要求更高、更严了.。
选择、填空题解法¤专题剖析:数学选择、填空题,在当今高考试卷中,不但题目多,而且占分比例高,其分值约占到试卷总分的二分之一. 它们具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题与填空题,成为高考成功的关键. 解答的关键是准确、迅速. 由于不设中间分,一步失误,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确.解答选择题、填空题的常用策略是:①熟练掌握各种基本题型的一般解法. ②结合题目的结构和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等常用解法与技巧. ③挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择. 常用的方法如下:1、直接法:直接从题设条件出发,准确计算,讲究技巧,得出结论.2、特例法:当题目暗示结论唯一或其值为定值时,可取特例求解.3、图解法:借助于图形进行直观分析,并辅之以简单计算得出结论.4、定义法:即直接运用数学定义、性质等去求解,它可以优化解题过程.5、等价转化:从题目出发,把复杂的、生疏的、抽象的、困难的和未知的问题通过等价转化为简单的、熟悉的、具体的、容易的和已知的问题来解决.6、逆向思维:从问题反面出发,从未知入手,寻求使结论成立的原因,从而使问题获解.一、选择题的解法1.直接法有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直。
其中正确命题的个数为( )A .0B .1C .2D .3 2.特例法 (1)特殊值若02,sin απαα≤≤>,则α的取值范围是:( )(A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭(2)特殊函数定义在R 上的奇函数f(x)为减函数,设a+b ≤0,给出下列不等式:①f(a)·f(-a)≤0;②f(b)·f(-b)≥0;③f(a)+f(b)≤f(-a)+f(-b);④f(a)+f(b)≥f(-a)+f(-b)。
这样解高考数学填空题又快又好湖南宁乡一中 黎国之填空题只要求填结果,每空不是得满分就是得零分,考生在填空题上失分一般都相当严重,尤其是现在很多省份加大了对填空题的考查,所以我们很有必要探讨填空题的解答策略和方法.解答填空题时,基本要求就是:正确、迅速、合理、简捷。
解题的基本策略是:巧做;解题的要领:稳——变形要稳,不可操之过急;快——运算要快,力戒小题大作,道题都应力争在1~3分钟内完成,最快的在5秒内完成;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意,尤其是组合填空题,一般有4个小命题,判错一个就吃大亏了。
申明三点:一、利用下面的方法解题,方法是科学的,答案是可靠的;二,利用下面的方法解题,完全符合高考命题者的真实意图,是合法的,不要有任何道德顾虑;三,虽然你有权不采用这些方法,但是建议你接受和学会这些方法,并且在平时有意识地去运用,形成习惯。
一.直接推演法:直接从题设条件出发,利用定义、性质、定理、公式等,经过变形、推理、计算、判断得到结论的方法,称之为直接求解法。
它是解填空题的常用的基本方法。
使用直接法解填空题,要善于透过现象抓本质,自觉地、有意识地采取灵活、简捷的变换. 【例1】.焦点为1F (-2,0)和2F (6,0),离心率为2的曲线方程是_______.【解析】:由题设知曲线为双曲线,利用双曲线的定义即性质,其中心在(2,0),且 c=4,e=ac=2.计算得: 2a =4,2b =12,所以双曲线的方程是4)2(2-x -122y =1.【例2】.函数2()f x =的定义域为 。
【解析】:210,10,1 1.x x x ⎧--≥⎪-⎨⎪-≠⎩3x ⇒≥。
【例3】、(08上海)函数()()(2)f x x a bx a =++(常数,a b R ∈)是偶函数,且它的值域为(],4-∞,则该函数的解析式()f x 。
【解析】:22()(2)2f x bx a b x a =+++,它是偶函数,所以(2)0a b +=,所以0a =或2b =-。
做数学填空题的技巧有哪些?数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,是高考数学中的三种常考题型之一。
其形态短小精悍、跨度大、学问掩盖面广、考查目标集中,形式敏捷,答案简短、明确、详细,评分客观、公正、精确等。
下面是高三网我整理的做数学填空题的技巧,供参考。
做数学填空题的基本技巧是精确、快速、干净。
精确是解答数学填空题的先决条件,填空题不设中间分,一步失误,全题无分,所以应认真审题、深化分析、正确推演、谨防疏漏,确保精确;快速是赢得时间猎取高分的必要条件,对于数学填空题的答题时间,应当掌握在不超过20分钟左右,速度越快越好,要避开超时失分现象的发生;干净是保住得分的充分条件,只有把正确的答案干净的书写在答题纸上才能保证阅卷老师正确的批改,在网上阅卷时干净显得尤为重要。
高考中的数学填空题一般是简单题或中档题,数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)推断型的试题,应答时必需按规章进行切实的计算或者合乎规律的推演和推断。
求解填空题的基本策略是要在准、巧、快上下功夫。
常用的方法有直接法、特别化法、数行结合法、等价转化法等。
点击查看:高中数学学习方法数学填空题的技巧解析一、直接法这是解填空题的基本方法,它是直接从题设条件动身、利用定义、定理、性质、公式等学问,通过变形、推理、运算等过程,直接得到结果。
它是解填空题的最基本、最常用的方法。
使用直接法解填空题,要擅长通过现象看本质,娴熟应用解方程和解不等式的方法,自觉地、有意识地实行敏捷、简捷的解法。
二、特别化法当填空题的结论唯一或题设条件中供应的信息示意答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特别值(或特别函数,或特别角,图形特别位置,特别点,特别方程,特别模型等)进行处理,从而得出探求的结论。
这样可大大地简化推理、论证的过程。
三、数形结合法数缺形时少直观,形缺数时难入微。
专题一 选择、填空题常用的10种解法 抓牢小题,保住基本分才能得高分________________________________________________________________________ 原则与策略:1.基本原则:小题不用大做.2.基本策略:充分利用题干和选项所供应的信息作出推断.先定性后定量,先特殊后推理,先间接后直接,选择题可先排解后求解.解题时应认真审题、深化分析、正确推演运算、谨防疏漏. 题型特点:1.高中低档题,且多数按由易到难的挨次排列.2.留意基本学问、基本技能与思想方法的考查.3.解题方法机敏多变不唯一.4.具有较好的区分度,试题层次性强.方法一 定义法所谓定义法,就是直接利用数学定义解题,数学中的定理、公式、性质和法则等,都是由定义和公理推演出来的.简洁地说,定义是对数学实体的高度抽象,用定义法解题是最直接的方法.一般地,涉及圆锥曲线的顶点、焦点、准线、离心率等问题,常用定义法解决.[例1] 如图,F 1,F 2是双曲线C 1:x 216-y 29=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若|F 1A |=|F 1F 2|,则C 2的离心率是( )A.56B.23C.25D.45解析:由双曲线C 1的方程可得|F 1F 2|=216+9=10, 由双曲线的定义可得|F 1A |-|F 2A |=216=8, 由已知可得|F 1A |=|F 1F 2|=10, 所以|F 2A |=|F 1A |-8=2.设椭圆的长轴长为2a ,则由椭圆的定义可得2a =|F 1A |+|F 2A |=10+2=12. 所以椭圆C 2的离心率e =2c 2a =1012=56.故选A.答案:A[增分有招] 利用定义法求解动点的轨迹或圆锥曲线的有关问题,要留意动点或圆锥曲线上的点所满足的条件,机敏利用相关的定义求解.如[本例]中依据双曲线的定义和已知条件,分别把A 到两个焦点的距离求出来,然后依据椭圆定义求出其长轴长,最终就可依据离心率的定义求值. [技法体验]1.(2021·广州模拟)假如P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,若x 1+x 2+…+x n =10,则|P 1F |+|P 2F |+…+|P n F |=( ) A .n +10 B .n +20 C .2n +10D .2n +20解析:由题意得,抛物线C :y 2=4x 的焦点为(1,0),准线为x =-1,由抛物线的定义,可知|P 1F |=x 1+1,|P 2F |=x 2+1,…,|P n F |=x n +1,故|P 1F |+|P 2F |+…+|P n F |=x 1+x 2+…+x n +n =n +10,选A. 答案:A2.(2022·高考浙江卷)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________. 解析:借助双曲线的定义、几何性质及余弦定理解决.∵双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,∴|F 1F 2|=4,||PF 1|-|PF 2||=2.若△F 1PF 2为锐角三角形,则由余弦定理知|PF 1|2+|PF 2|2-16>0,可化为(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|>16①.由||PF 1|-|PF 2||=2,得(|PF 1|+|PF 2|)2-4|PF 1||PF 2|=4.故2|PF 1||PF 2|=|PF 1|+|PF 2|2-42,代入不等式①可得(|PF 1|+|PF 2|)2>28,解得|PF 1|+|PF 2|>27.不妨设P 在左支上,∵|PF 1|2+16-|PF 2|2>0,即(|PF 1|+|PF 2|)·(|PF 1|-|PF 2|)>-16,又|PF 1|-|PF 2|=-2,∴|PF 1|+|PF 2|<8.故27<|PF 1|+|PF 2|<8. 答案:(27,8)方法二 特例法特例法,包括特例验证法、特例排解法,就是充分运用选择题中单选题的特征,解题时,可以通过取一些特殊数值、特殊点、特殊函数、特殊数列、特殊图形、特殊位置、特殊向量等对选项进行验证的方法.对于定性、定值的问题可直接确定选项;对于其他问题可以排解干扰项,从而获得正确结论.这是一种求解选项之间有着明显差异的选择题的特殊化策略.[例2] (2022·高考浙江卷)已知实数a ,b ,c ( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100 解析:结合特殊值,利用排解法选择答案. 对于A ,取a =b =10,c =-110, 明显|a 2+b +c |+|a +b 2+c |≤1成立, 但a 2+b 2+c 2>100,即a 2+b 2+c 2<100不成立.对于B ,取a 2=10,b =-10,c =0, 明显|a 2+b +c |+|a 2+b -c |≤1成立, 但a 2+b 2+c 2=110,即a 2+b 2+c 2<100不成立.对于C ,取a =10,b =-10,c =0,明显|a +b +c 2|+|a +b -c 2|≤1成立, 但a 2+b 2+c 2=200,即a 2+b 2+c 2<100不成立. 综上知,A ,B ,C 均不成立,所以选D. 答案:D[增分有招] 应用特例排解法的关键在于确定选项的差异性,利用差异性选取一些特例来检验选项是否与题干对应,从而排解干扰选项. [技法体验]1.函数f (x )=cos x ·log 2|x |的图象大致为( )解析:函数的定义域为(-∞,0)∪(0,+∞),且f (12)=cos 12log 2|12|=-cos 12,f (-12)=cos(-12)·log 2|-12|=-cos 12,所以f (-12)=f (12),排解A ,D ;又f (12)=-cos 12<0,故排解C.综上,选B. 答案:B2.已知E 为△ABC 的重心,AD 为BC 边上的中线,令AB →=a ,AC →=b ,过点E 的直线分别交AB ,AC 于P ,Q 两点,且AP →=m a ,AQ →=n b ,则1m +1n=( )A .3B .4C .5D.13解析:由于题中直线PQ 的条件是过点E ,所以该直线是一条“动”直线,所以最终的结果必定是一个定值.故可利用特殊直线确定所求值.法一:如图1,PQ ∥BC ,则AP →=23AB →,AQ →=23AC →,此时m =n =23,故1m +1n=3.故选A.法二:如图2,取直线BE 作为直线PQ ,明显,此时AP →=AB →,AQ →=12AC →,故m =1,n =12,所以1m +1n =3.故选A.答案:A方法三 数形结合法数形结合法,包含“以形助数”和“以数辅形”两个方面,其应用分为两种情形:一是代数问题几何化,借助形的直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是几何问题代数化,借助于数的精确性阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.[例3] (2021·安庆模拟)已知函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e ,g (x )=x 2-2x ,设a 为实数,若存在实数m ,使f (m )-2g (a )=0,则实数a 的取值范围为( )A .[-1,+∞)B .[-1,3]C .(-∞,-1]∪[3,+∞)D .(-∞,3]解析:∵g (x )=x 2-2x ,a 为实数,∴2g (a )=2a 2-4a .∵函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e ,作出函数f (x )的图象可知,其值域为[-2,6],∵存在实数m ,使f (m )-2g (a )=0,∴-2≤2a 2-4a ≤6,即-1≤a ≤3, 故选B.答案:B[增分有招] 数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,如[本例]中求解,可通过作出图象,数形结合求解. [技法体验]1.(2021·珠海摸底)已知|a |=|b |,且|a +b |=3|a -b |,则向量a 与b 的夹角为( ) A .30° B .45° C .60°D .120°解析:通解:设a 与b 的夹角为θ,由已知可得a 2+2a ·b +b 2=3(a 2-2a ·b +b 2),即4a ·b =a 2+b 2,由于|a |=|b |,所以a ·b =12a 2,所以cos θ=a ·b |a |·|b |=12,θ=60°,选C.优解:由|a |=|b |,且|a +b |=3|a -b |可构造边长为|a |=|b |=1的菱形,如图,则|a +b |与|a -b |分别表示两条对角线的长,且|a +b |=3,|a -b |=1,故a 与b 的夹角为60°,选C. 答案:C2.已知点P 在抛物线y 2=4x 上,则点P 到点Q (2,-1)的距离与点P 到抛物线的焦点F 的距离之和取得最小值时,点P 的坐标为( ) A .(14,1)B .(14,-1)C .(1,2)D .(1,-2)解析:如图,由于点Q (2,-1)在抛物线的内部,由抛物线的定义可知,|PF |等于点P 到准线x =-1的距离.过Q (2,-1)作x =-1的垂线QH ,交抛物线于点K ,则点K 为点P 到点Q (2,-1)的距离与点P 到准线x =-1的距离之和取得最小值时的点.将y =-1代入y 2=4x 得x =14,所以点P 的坐标为(14,-1),选B.答案:B方法四 待定系数法要确定变量间的函数关系,设出某些未知系数,然后依据所给条件来确定这些未知系数的方法叫作待定系数法,其理论依据是多项式恒等——两个多项式各同类项的系数对应相等.使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决.待定系数法主要用来解决所求解的数学问题具有某种确定的数学表达式,例如数列求和、求函数式、求复数、解析几何中求曲线方程等. [例4] (2021·天津红桥区模拟)已知椭圆C 的焦点在y 轴上,焦距等于4,离心率为22,则椭圆C 的标准方程是( ) A.x 216+y 212=1 B.x 212+y 216=1C.x 24+y 28=1 D.x 28+y 24=1 解析:由题意可得2c =4,故c =2,又e =2a =22,解得a =22,故b =222-22=2,由于焦点在y 轴上,故选C. 答案:C[增分有招] 待定系数法主要用来解决已经定性的问题,如[本例]中已知椭圆的焦点所在坐标轴,设出标准方程,依据已知列方程求解. [技法体验]1.若等差数列{a n }的前20项的和为100,前45项的和为400,则前65项的和为( ) A .640 B .650 C .660D .780解析:设等差数列{a n}的公差为d ,依题意,得⎩⎪⎨⎪⎧ 20a 1+20×192d =10045a 1+45×442d =400⇒⎩⎪⎨⎪⎧a 1=9245d =1445,则前65项的和为65a 1+65×642d =65×9245+65×642×1445=780.答案:D2.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f (π4)的值为( )A. 2 B .0 C .1D. 3解析:由题图可知,A =2,34T =11π12-π6=34π,∴T =2πω=π,∴ω=2,即f (x )=2sin(2x +φ),由f (π6)=2sin(2×π6+φ)=2得2×π6+φ=2k π+π2,k ∈Z ,即φ=π6+2k π,k ∈Z ,又0<φ<π,∴φ=π6,∴f (x )=2sin(2x +π6),∴f (π4)=2sin(2×π4+π6)=2cos π6=3,故选D.答案:D 方法五 估值法估值法就是不需要计算出代数式的精确 数值,通过估量其大致取值范围从而解决相应问题的方法.该种方法主要适用于比较大小的有关问题,尤其是在选择题或填空题中,解答不需要具体的过程,因此可以猜想、合情推理、估算而获得,从而削减运算量.[例5] 若a =20.5,b =log π3,c =log 2sin 2π5,则( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a解析:由指数函数的性质可知y =2x在R 上单调递增,而0<0.5<1,所以a =20.5∈(1,2).由对数函数的性质可知y =log πx ,y =log 2x 均在(0,+∞)上单调递增,而1<3<π,所以b =log π3∈(0,1);由于sin 2π5∈(0,1),所以c =log 2sin 2π5<0.综上,a >1>b >0>c ,即a >b >c .故选A. 答案:A[增分有招] 估算,省去很多推导过程和比较简单的计算,节省时间,是发觉问题、争辩问题、解决问题的一种重要的运算方法.但要留意估算也要有依据,如[本例]是依据指数函数与对数函数的单调性估量每个值的取值范围,从而比较三者的大小,其实质就是找一个中间值进行比较. [技法体验]已知函数f (x )=2sin(ωx +φ)+1⎝⎛⎭⎪⎫ω>0,|φ|≤π2,其图象与直线y =-1相邻两个交点的距离为π.若f (x )>1对于任意的x ∈⎝ ⎛⎭⎪⎫-π12,π3恒成立,则φ的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π6,π3 B.⎣⎢⎡⎦⎥⎤π12,π2 C.⎣⎢⎡⎦⎥⎤π12,π3D.⎝⎛⎦⎥⎤π6,π2解析:由于函数f (x )的最小值为-2+1=-1,由函数f (x )的图象与直线y =-1相邻两个交点的距离为π可得,该函数的最小正周期为T =π,所以2πω=π,解得ω=2.故f (x )=2sin(2x +φ)+1.由f (x )>1,可得sin(2x +φ)>0.又x ∈⎝ ⎛⎭⎪⎫-π12,π3,所以2x ∈⎝ ⎛⎭⎪⎫-π6,2π3.对于选项B ,D ,若取φ=π2,则2x +π2∈⎝ ⎛⎭⎪⎫π3,7π6,在⎝ ⎛⎭⎪⎫π,7π6上,sin(2x +φ)<0,不合题意;对于选项C ,若取φ=π12,则2x +π12∈⎝ ⎛⎭⎪⎫-π12,3π4,在⎝ ⎛⎭⎪⎫-π12,0上,sin(2x +φ)<0,不合题意.选A.答案:A方法六 反证法反证法是指从命题正面论证比较困难,通过假设原命题不成立,经过正确的推理,最终得出冲突,因此说明假设错误,从而证明白原命题成立的证明方法.反证法证明问题一般分为三步:(1)反设,即否定结论;(2)归谬,即推导冲突;(3)得结论,即说明命题成立.[例6] 已知x ∈R ,a =x 2+32,b =1-3x ,c =x 2+x +1,则下列说法正确的是( )A .a ,b ,c 至少有一个不小于1B .a ,b ,c 至多有一个不小于1C .a ,b ,c 都小于1D .a ,b ,c 都大于1解析:假设a ,b ,c 均小于1,即a <1,b <1,c <1,则有a +b +c <3,而a +b +c =2x 2-2x +72=2⎝ ⎛⎭⎪⎫x -122+3≥3.明显两者冲突,所以假设不成立.故a ,b ,c 至少有一个不小于1.选A. 答案:A[增分有招] 反证法证明全称命题以及“至少”“至多”类型的问题比较便利.其关键是依据假设导出冲突——与已知条件、定义、公理、定理及明显的事实冲突或自相冲突.如[本例]中导出等式的冲突,从而说明假设错误,原命题正确. [技法体验]假如△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:由条件知△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形. 假设△A 2B 2C 2是锐角三角形,则由题意可得⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,解得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1,所以A 2+B 2+C 2=⎝ ⎛⎭⎪⎫π2-A 1+⎝ ⎛⎭⎪⎫π2-B 1+⎝ ⎛⎭⎪⎫π2-C 1,即π=3π2-π,明显该等式不成立,所以假设不成立.易知△A 2B 2C 2不是锐角三角形,所以△A 2B 2C 2是钝角三角形.故选D. 答案:D 方法七 换元法换元法又称帮助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者变为生疏的形式,把简单的计算和推证简化.换元的实质是转化,关键是构造元和设元.理论依据是等量代换,目的是变换争辩对象,将问题移至新对象的学问背景中去争辩,从而使非标准型问题标准化、简单问题简洁化.换元法经常用于三角函数的化简求值、复合函数解析式的求解等. [例7] 已知正数x ,y 满足4y -2yx=1,则x +2y 的最小值为________.解析:由4y -2y x =1,得x +2y =4xy ,即14y +12x =1,所以x +2y =(x +2y )⎝ ⎛⎭⎪⎫14y +12x =1+x 4y +y x ≥1+2x 4y ×yx=2⎝ ⎛⎭⎪⎫当且仅当x 4y =yx ,即x =2y 时等号成立.所以x +2y 的最小值为2.答案:2[增分有招] 换元法主要有常量代换和变量代换,要依据所求解问题的特征进行合理代换.如[本例]中就是使用常数1的代换,将已知条件改写为“14y +12x =1”,然后利用乘法运算规律,任何式子与1的乘积等于本身,再将其开放,通过构造基本不等式的形式求解最值. [技法体验]1.(2022·成都模拟)若函数f (x )=1+3x+a ·9x,其定义域为(-∞,1],则a 的取值范围是( ) A .a =-49B .a ≥-49C .a ≤-49D .-49≤a <0解析:由题意得1+3x +a ·9x≥0的解集为(-∞,1],即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13x 2+⎝ ⎛⎭⎪⎫13x +a ≥0的解集为(-∞,1].令t =⎝ ⎛⎭⎪⎫13x ,则t ≥13,即方程t 2+t +a ≥0的解集为⎣⎢⎡⎭⎪⎫13,+∞,∴⎝ ⎛⎭⎪⎫132+13+a =0,所以a =-49.答案:A2.函数y =cos 2x -sin x 在x ∈⎣⎢⎡⎦⎥⎤0,π4上的最大值为________.解析:y =cos 2x -sin x =-sin 2x -sin x +1. 令t =sin x ,又x ∈⎣⎢⎡⎦⎥⎤0,π4,∴t ∈⎣⎢⎡⎦⎥⎤0,22,∴y =-t 2-t +1,t ∈⎣⎢⎡⎦⎥⎤0,22.∵函数y =-t 2-t +1在⎣⎢⎡⎦⎥⎤0,22上单调递减,∴t =0时,y max =1.答案:1 方法八 补集法补集法就是已知问题涉及的类别较多,或直接求解比较麻烦时,可以通过求解该问题的对立大事,求出问题的结果,则所求解问题的结果就可以利用补集的思想求得.该方法在概率、函数性质等问题中应用较多. [例8]某学校为了争辩高中三个班级的数学学习状况,从三个班级中分别抽取了1,2,3个班级进行问卷调查,若再从中任意抽取两个班级进行测试,则两个班级不来自同一班级的概率为________. 解析:记高一班级中抽取的班级为a 1,高二班级中抽取的班级为b 1,b 2, 高三班级中抽取的班级为c 1,c 2,c 3.从已抽取的6个班级中任意抽取两个班级的全部可能结果为(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 1,c 2),(a 1,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共15种.设“抽取的两个班级不来自同一班级”为大事A ,则大事A 为抽取的两个班级来自同一班级. 由题意,两个班级来自同一班级的结果为(b 1,b 2),(c 1,c 2),(c 1,c 3),(c 2,c 3),共4种. 所以P (A )=415,故P (A )=1-P (A )=1-415=1115. 所以两个班级不来自同一班级的概率为1115.答案:1115[增分有招] 利用补集法求解问题时,肯定要精确 把握所求问题的对立大事.如[本例]中,“两个班级不来自同一班级”的对立大事是“两个班级来自同一班级”,而高一班级只有一个班级,所以两个班级来自同一班级的可能性仅限于来自于高二班级,或来自于高三班级,明显所包含基本大事的个数较少. [技法体验]1.(2022·四川雅安中学月考)已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是( ) A .(-∞,-1) B .(-1,3) C .(-3,+∞)D .(-3,1)解析:依题意可知“∀x ∈R,2x 2+(a -1)x +12>0”为真命题,所以Δ=(a -1)2-4×2×12<0,即(a +1)·(a -3)<0,解得-1<a <3.故选B. 答案:B2.已知函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,则实数a 的取值范围为________. 解析:f ′(x )=2ax -1+1x.(1)若函数f (x )在区间(1,2)上单调递增,则f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x≥0,得a ≥12⎝ ⎛⎭⎪⎫1x -1x 2.①令t =1x ,由于x ∈(1,2),所以t ∈⎝ ⎛⎭⎪⎫12,1, 设h (t )=12(t -t 2)=-12⎝ ⎛⎭⎪⎫t -122+18,t ∈⎝ ⎛⎭⎪⎫12,1,明显函数y =h (t )在区间⎝ ⎛⎭⎪⎫12,1上单调递减,所以h (1)<h (t )<h ⎝ ⎛⎭⎪⎫12,即0<h (t )<18. 由①可知,a ≥18.(2)若函数f (x )在区间(1,2)上单调递减,则f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x≤0,得a ≤12⎝ ⎛⎭⎪⎫1x -1x 2.②结合(1)可知,a ≤0.综上,若函数f (x )在区间(1,2)上单调,则实数a 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫18,+∞. 所以若函数f (x )在区间(1,2)上不单调,则实数a 的取值范围为⎝ ⎛⎭⎪⎫0,18.答案:⎝ ⎛⎭⎪⎫0,18 方法九 分别参数法分别参数法是求解不等式有解、恒成立问题常用的方法,通过分别参数将问题转化为相应函数的最值或范围问题求解,从而避开对参数进行分类争辩的繁琐过程.该种方法也适用于含参方程有解、无解等问题的解决.但要留意该种方法仅适用于分别参数后能够求解相应函数的最值或值域的状况.[例9] 若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是________.解析:由于x >0,则由已知可得a ≥-x -1x 在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立,而当x ∈⎝ ⎛⎦⎥⎤0,12时,⎝ ⎛⎭⎪⎫-x -1x max =-52, ∴a ≥-52,故a 的最小值为-52.答案:-52[增分有招] 分别参数法解决不等式恒成立问题或有解问题,关键在于精确 分别参数,然后将问题转化为参数与函数最值之间的大小关系.分别参数时要留意参数系数的符号是否会发生变化,假如参数的系数符号为负号,则分别参数时应留意不等号的变化,否则就会导致错解. [技法体验]1.(2022·长沙调研)若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,518 B .(-∞,3] C.⎣⎢⎡⎭⎪⎫518,+∞D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立, 即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上恒成立,由于y =32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518,故选C.答案:C2.(2022·湖南五校调研)方程log 12(a -2x)=2+x 有解,则a 的最小值为________.解析:若方程log 12(a -2x )=2+x 有解,则⎝ ⎛⎭⎪⎫122+x =a -2x有解,即14⎝ ⎛⎭⎪⎫12x +2x =a 有解,∵14⎝ ⎛⎭⎪⎫12x +2x ≥1,故a 的最小值为1. 答案:1 方法十 构造法构造法是指利用数学的基本思想,经过认真的观看,深化的思考,构造出解题的数学模型,从而使问题得以解决.构造法的内涵格外丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体问题的特点实行相应的解决方法,其基本的方法是借用一类问题的性质,来争辩另一类问题的相关性质.常见的构造法有构造函数、构造方程、构造图形等. [例10] 已知m ,n ∈(2,e),且1n 2-1m 2<ln mn,则( )A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定解析:由不等式可得1n 2-1m2<ln m -ln n ,即1n 2+ln n <1m2+ln m .设f (x )=1x2+ln x (x ∈(2,e)),则f ′(x )=-2x 3+1x =x 2-2x3.由于x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增. 由于f (n )<f (m ),所以n <m .故选A. 答案:A[增分有招] 构造法的实质是转化,通过构造函数、方程或图形等将问题转化为对应的问题来解决.如[本例]属于比较两个数值大小的问题,依据数值的特点,构造相应的函数f (x )=1x2+ln x .[技法体验]1.a =ln 12 014-12 014,b =ln 12 015-12 015,c =ln 12 016-12 016,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b解析:令f (x )=ln x -x ,则f ′(x )=1x -1=1-xx.当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数.∵1>12 014>12 015>12 016>0,∴a >b >c .答案:A2.如图,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR33=6π.答案:6π。
高考数学填空题的解法分析英山县雷店高中邓哲【考点梳理】一、题型特点填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。
不过填空题和选择题也有质的区别。
首先,表现为填空题没有备选项。
因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些,长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。
其次,填空题的结构,往往是在一个正确的命题或断言中,抽去其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活。
在对题目的阅读理解上,较之选择题,有时会显得较为费劲。
当然并非常常如此,这将取决于命题者对试题的设计意图。
填空题与解答题比较,同属提供型的试题,但也有本质的区别。
首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明。
填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括和准确。
其次,试题内涵,解答题比起填空题要丰富得多。
填空题的考点少,目标集中,否则,试题的区分度差,其考试信度和效度都难以得到保证。
这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因。
有的可能是一窍不通,入手就错了,有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管它们的水平存在很大的差异。
对于解答题,则不会出现这个情况,这是因为解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况评定分数,用以反映其差别,因而解答题命题的自由度,较之填空题大得多。
由此可见,填空题这种题型介于选择题与解答题这两种题型之间,而且确实是一种独立的题型,有其固有的特点。
二、考查功能1.填空题的考查功能大体上与选择题的考查功能相当。
同选择题一样,要真正发挥好填空题的考查功能,同样要群体效应。
但是,由于填空题的应答速度难以追上选择题的应答速度,因此在题量的使用上,难免又要受到制约。
从这一点看,一组好的填空题虽然也能在较大的范围内考查基础知识、基本技能和基本思想方法,但在范围的大小和测试的准确性方面填空题的功能要弱于选择题。
不过,在考查的深入程度方面,填空题要优于选择题。
作为数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断,几乎没有间接方法可言,更是无从猜答,懂就是懂,不懂就是不懂,难有虚假,因而考查的深刻性往往优于选择题。
但与解答题相比其考查的深度还是差得多。
就计算和推理来说,填空题始终都是控制在低层次上的。
2.填空题的另一个考查功能,就是有效地考查阅读能力、观察和分析能力。
在高考数学考试中,由于受到考试时间和试卷篇幅的限制,在权衡各种题型的利弊和考查功能的互补时,填空题由于其特点和功能的限制,往往被放在较轻的位置上,题量不多。
三、思想方法同选择题一样,填空题也属小题,其解题的基本原则是“小题不能大做”。
解题的基本策略是:巧做。
解题的基本方法一般有:直接求解法,图像法和特殊化法(特殊值法,特殊函数法,特殊角法,特殊数列法,图形特殊位置法,特殊点法,特殊方程法,特殊模型法)等。
【例题解析】一、直接求解法——直接从题设条件出发,利用定义、性质、定理、公式等,经过变形、推理、计算、判断得到结论的方法,称之为直接求解法。
它是解填空题的常用的基本方法。
使用直接法解填空题,要善于透过现象抓本质,自觉地、有意识地采取灵活、简捷的解法。
例1 已知数列{a n }、{b n }都是等差数列,a 1=0、b 1= -4,用S k 、S ′k 、分别表示数列{a n }、{b n }的前k 项和(k 是正整数),若S k +S ′k =0,则a k +b k 的值为。
解 法一 直接应用等差数列求和公式S k =2)(1k a a k +,得2)(1k a a k ++2)(1k b b k +=0,又a 1+b 1= -4, ∴a k +b k =4。
法二 由题意可取k=2(注意:k ≠1,为什么?),于是有a 1+a 2+b 1+b 2=0,因而a 2+b 2=4,即a k +b k =4。
二、图像法——借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。
文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。
例2 若关于x 的方程21x -=k(x-2)有两个不等实根,则实数k 的取值范围是。
解 令y 1=21x -,y 2=k(x-2),由图14-3可知k AB <k ≤0,其中AB 为半圆的切线,计算得k AB = -33,∴-33<k ≤0。
例3 已知两点M(0,1),N(10,1) ,给出下列直线方程①5x-3y-22=0;②5x-3y-52=0;③x-y-4=0;④4x-y-14=0。
在直线上存在点P 满足|MP|=|NP|+6的所有直线方程的序号是 。
解 由|MP|=|NP|+6可知,点P 的轨迹是以M (0,1),N (10,1)为焦点,实轴长为6的双曲线的右支,其方程为9)5(2-x -16)1(2-y =1,(x>5)。
本题实质上可转化为考察所给直线与双曲线的右支有无交点的问题,结合图形判断,易得②③直线与双曲线的右支有交点。
三、特殊化法——当填空题的结论唯一或其值为定值时,我们只须把题中的参变量用特殊值(或特殊函数、特殊角、特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型等)代替之,即可得到结论。
1.特殊值法例4 设a>b>1,则log a b,log b a,log ab b 的大小关系是 。
解 考虑到三个数的大小关系是确定的,不妨令a=4,b=2,则log a b=21,log b a=2,log ab b=31, ∴log ab b<log a b<log b a 。
2.特殊函数法 例5 如果函数f(x)=x 2+bx+c 对任意实数t 都有f(2+t)=f(2-t),那么f(1),f(2),f(4)的大小关系是。
解 由于f(2+t)=f(2-t),故知f(x)的对称轴是x=2。
可取特殊函数f(x)=(x-2)2,即可求得f(1)=1,f(2)=0,f(4)=4。
∴f(2)<f(1)<f(4)。
3.特殊角法例6 cos 2α+cos 2(α+120°)+cos 2(α+240°)的值为 。
解 本题的隐含条件是式子的值为定值,即与α无关,故可令α=0°,计算得上式值为23。
4.特殊数列例7 已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,则1042931a a a a a a ++++的值是 。
解 考虑到a 1,a 3,a 9的下标成等比数列,故可令a n =n ,又易知它满足题设条件,于是1042931a a a a a a ++++=1613。
5.图形特殊位置法例8 已知SA ,SB ,SC 两两所成角均为60°,则平面SAB 与平面SAC 所成的二面角为。
解 取SA=SB=SC ,将问题置于正四面体中研究,不难得平面SAB 与平面SAC 所成的二面角为arccos31。
6.特殊点法 例9 椭圆92x +42y =1的焦点为F 1、F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,点P 横坐标的取值范围是 。
解 设P(x,y),则当∠F 1PF 2=90°时,点P 的轨迹方程为x 2+y 2=5,由此可得点P 的横坐标x=±53,又当点P 在x 轴上时,∠F 1PF 2=0;点P 在y 轴上时,∠F 1PF 2为钝角,由此可得点P 横坐标的取值范围是-53<x<53。
7.特殊方程法 例10 直线l 过抛物线y 2=a(x+1)(a>0)的焦点,并且与x 轴垂直,若l 被抛物线截得的线段长为4,则a= 。
解 ∵抛物线y 2=a(x+1)与抛物线y 2=ax 具有相同的垂直于对称轴的焦点弦长,故可用标准方程y2=ax替换一般方程y2=a(x+1)求解,而a值不变。
由通径长公式得a=4。
8.特殊模型法例11 已知m,n是直线,α、β、γ是平面,给出下列命题:①若α⊥γ,β⊥γ,则α∥β;②若n⊥α,n⊥β,则α∥β;③若α内不共线的三点到β的距离都相等,则α∥β;④若nα,mα,且n∥β,m∥β,则α∥β;⑤若m,n为异面直线,n∈α,n∥β,m∈β,m∥α,则α∥β;则其中正确的命题是。
(把你认为正确的命题序号都填上)解依题意可构造正方体AC1,如图14-5,在正方体中逐一判断各命题易得正确命题的是②⑤。
四、构造法——在解题时有时需要根据题目的具体情况,来设计新的模式解题,这种设计工作,通常称之为构造模式解法,简称构造法。
例12 如图14-6,点P在正方形ABCD所在的平面外,PD⊥ABCD,PD=AD,则PA与BD所成角的度数为。
解根据题意可将上图补形成一正方体,在正方体中易求得为60°。